Современная электронная библиотека ModernLib.Net

Поиски жизни в Солнечной системе

ModernLib.Net / Хоровиц Н. / Поиски жизни в Солнечной системе - Чтение (стр. 11)
Автор: Хоровиц Н.
Жанр:

 

 


      Во-вторых, в качестве источника освещения в эксперимен те использовался не солнечный свет на Марсе-это было технически трудно осуществить,-а ксеноновая лампа со спектром, похожим на спектр солнечного света у поверх ности Марса (в котором отфильтрованы длины волн короче 320 нм). Свет требовался для обеспечения энергией фото синтеза организмов, если бы таковые обнаружились. Так как лабораторные эксперименты показали, что на минеральной поверхности, облученной ультрафиолетовым светом с дли ной волны короче 300 нм, в присутствии СО и паров воды идет абиогенный синтез простых органических соединений, мы решили исключить этот диапазон волн, чтобы избежать путаницы при выяснении природы источников органического вещества. Хотя указанная область присутствует в спектре солнечного излучения, достигающего поверхности Марса, мы оправдывали ее исключение тем, что свет этих длин волн настолько разрушителен для сложных органических моле кул, что у марсианских организмов должны были вырабо таться защитные механизмы, позволяющие либо отфильтро вывать, либо нейтрализовать ее действие.
      Лабораторные испытания показали, что течение экспери мента не зависит от фотосинтеза в пробах грунта. Фиксация СО и СОд в органическое вещество в живых клетках происхо дит и в ходе темновых процессов. В самом деле, при лабораторных испытаниях приборы регистрировали фикса цию как в темноте, так и при фотосинтезе.
      На Марсе было проведено девять экспериментов по выделению продуктов пиролиза: шесть-на Равнине Хриса и три-на Равнине Утопия. Самый первый анализ (сделанный на Равнине Хриса, С 1-на рис. 18) дал положительный ре зультат. Количество связавшегося углерода было невелико по сравнению с тем, что наблюдалось при анализах образцов земного грунта, но значительно выше фонового уровня, установленного в предполетных лабораторных анализах сте рильных проб грунта. Учитывая меры, принятые для устра нения помех небиологической природы, получение даже сла бого сигнала с Марса было поразительным. Поэтому было решено провести новый контрольный эксперимент (С 2): вторая проба марсианского грунта нагревалась при темпера туре 175 С в течение трех часов перед инкубацией с радио активными газами. Количество связавшегося углерода при
      этом снизилось на 88%. Казалось, мы обнаружили на Марсе синтез органического вещества, чувствительный к температу ре, но то обстоятельство, что и после нагрева 12% реакции продолжалось, ставило под сомнение биологическую приро ду процесса.
      В двух последующих экспериментах (С 3 и С 4) были предприняты безуспешные попытки повторить результат эксперимента С 1. Если исходить из критериев, установлен ных на основании предполетных анализов, то результаты экспериментов можно лишь с большой натяжкой признать положительными, хотя ни один из них по количеству связан ного углерода даже не приблизился к эксперименту С 1. Была проведена еще одна проверка (С 5) термостабильности сла бых реакций, зарегистрированных в СЗ и С 4. На этот раз образец грунта инкубировали при 120 С в течение примерно 2 мин, после чего температура понижалась до 90 С и грунт инкубировался еще около 2 ч. На этот раз никаких изменений в реакции не произошло, что опять же свидетельствовало о ее небиологической природе. В последнем эксперименте на Равнине Хриса (С 6) изучалось влияние на реакцию паров воды. Никаких изменений не было обнаружено и в этом случае.
      Из трех экспериментов, проведенных на Равнине Утопия, первый (U 1) по слабому положительному ответу был сходен с экспериментами С 2-С 6. На основании выработанных еще на Земле критериев результаты LJ 2 и U 3 следовало признать отрицательными. Дальнейшие анализы на Равнине Утопия пришлось прекратить из-за появления течи в аппарате.
      Хотя положительные результаты экспериментов по вы делению продуктов пиролиза еще не получили полного истолкования, вероятность тою, что они связаны с биологи ческими процессами, ничтожна. Такой вывод объясняется следующими причинами.
      1. Поскольку не удалось воспроизвести обнадеживающий результат эксперимента С 1, следует рассматривать получен ные в нем высокие показания как аномалию, обусловленную, видимо, сбоем в работе прибора. Если это действительно так. то 88%-ная потеря активности в эксперименте С 2 неоправданно высока и реакция более устойчива к высокой температуре, чем это следует из результатов первого ана лиза. Термостабильная, небиологическая по своей природе реакция четко выражена в эксперименте С 5.
      2. Хотя вода должна быть фактором, ограничивающим возможность жизни на Марсе (см. гл. 6), введение в экспери
      ментальную камеру ее паров в концентрации, создающей влажность, близкую к насыщению, не влияло на реакцию либо оказывало угнетающее воздействие. (Воду впрыскивали в экспериментах С 5, С 6 и LJ 2. Подробности приведены в работах [4, 5].)
      3. Хотя данных на этот счет недостаточно, по-видимому, можно считать, что наблюдаемая реакция протекает при мерно одинаково как в темноте, так и на свету. (Эксперимен ты LJI и LJ3 проводились в темноте, а все другие-на свету.) Образцы грунта, взятые с поверхности Земли, как правило, связывают гораздо больше углерода на свету, что объясняет ся присутствием там фотосинтезирующих организмов.
      4. Лабораторные опыты, проведенные после полета "Ви кингов", показали, что, за исключением сомнительной чувст вительности реакции к высоким температурам, все отмечен ные выше ее особенности характерны для небиологических реакций между смесью радиоактивных газов и богатыми железом минералами. К их числу относится магемит (у-Ре^Оз)-магнитная форма оксида железа, которая срав нительно редко встречается на Земле, но, как позволяют думать результаты, полученные "Викингами", широко рас пространена на Марсе.
      Таким образом, на основании полученных результатов фиксацию углерода, зарегистрированную в эксперименте по выделению продуктов пиролиза (ВПП), вероятно, можно объяснить тем, что на поверхности Марса присутствуют один или несколько железосодержащих минералов, которые реагируют с СО из газовой смеси. Содержание железа в
      грунте поверхности Марса составляет 13%. Хотя специалис ты все еще обсуждают вопрос, какие именно минералы имеются на поверхности планеты, вероятно, в данном экспе рименте были зарегистрированы продукты реакции, катали зируемой железом. Природа образовавшегося продукта, не зависимо от того, органический он (т. е. содержащий атомы углерода, соединенные с атомами водорода) или нет, не известна. Если предположить первое, то, судя по результатам эксперимента ВПП, количество синтезированного органи ческого вещества должно быть близко к пределу чувстви тельности газового хроматографа с масс-спектрометром (эксперимент ГХМС) при условии, что углерод перешел в состав какого-то одного соединения. Если бы образовалось более одного соединения, то газовый хроматограф не смог бы их обнаружить. В любом случае результаты этих двух экспериментов не противоречат друг другу.
      Не понятно, как можно согласовать данные эксперимента ВПП со свидетельствами присутствия в грунте Марса агрес сивных пероксидных соединений. Если такие соединения равномерно распределены в грунте, то это значит, что в их присутствии синтез органических соединений невозможен. Однако в тех экспериментах ВПП, где пары воды вводились в смесь радиоактивных газов, не было замечено, чтобы количество углерода, поглощенного в образце грунта, су щественно возросло. Это позволяет предполагать, что рас пределение химических соединений на поверхности планеты неравномерно. Отсюда также следует, что частицы грунта, проявившие активность при фиксации углерода в экспери ментах ВПП, не были компонентами, связанными с пе роксидными соединениями.
      Подведение итогов
      Районы посадки двух спускаемых аппаратов "Викингов" были очень похожи по химическому составу образцов грун та, несмотря на различие климатических условий и большое расстояние между ними. Мы понимаем теперь, что это сходство обусловлено теми процессами, которые происходят по всей планете, и данные, полученные на Равнинах Хриса и Утопия, вероятно, типичны для поверхности Марса. Приме ром таких процессов могут служить планетарные бури, которые разносят мелкий поверхностный материал по всей планете. Другим примером-особенно важным благодаря
      своей биологической значимости-следует считать процесс расщепления молекул воды в нижних слоях атмосферы Марса коротковолновым ультрафиолетовым излучением Солнца. Продукты этого фотолиза, Н и ОН, очень реактив ны, а их последующая судьба прояснилась после теорети ческих исследований Доналда Хантена и других специалис тов по атмосфере планет.
      ОН-сильный окислитель, и непрерывное образование его в непосредственной близости от поверхности Марса обуслов ливает отсутствие в ней органического вещества. Между прочим с этим связана и красноватая окраска Марса: он покрыт оксидами железа. Данное обстоятельство объясняет, почему атмосфера планеты не состоит из СО и Од. Ведь именно эти газы образуются при облучении СОд ультра фиолетом Солнца, но СО вновь окисляется в присутствии ОН. Наконец, реакции с участием ОН легко приводят к образованию пероксидных соединений, подобных Н^Од и НОд. Еще до полетов "Викингов" Хантен предсказывал, что эти соединения должны проникать из атмосферы в поверх ностные слои Марса. Именно наличием таких веществ мож но объяснить результаты экспериментов по газообмену и выделению радиоактивной метки.
      Специалисты по атмосферам планет слишком поздно пришли к этому заключению, чтобы как-то повлиять на программу исследований по поиску жизни на Марсе. Мы узнали об этих выводах только после полета "Викингов". Тем не менее тот факт, что приборы спускаемых аппаратов подтвердили теоретические предсказания, не только доказы вает обоснованность изменений, внесенных в программу эксперимента по газообмену, но и важен в другом от ношении. При спуске на Марс оба космических аппарата продвигались к поверхности сквозь облака поднятой пыли, которая потом исследовалась вместе с примесями, образо вавшимися от выхлопов тормозных двигателей. В выхлопе содержалось 0,5% паров воды, и поэтому какое-то разруше ние пероксидов кажется неизбежным. Кроме того, на треть выхлоп состоял из аммиака-горючего газа, который также мог прореагировать с этими веществами в присутствии минеральных катализаторов, содержащихся в грунте. Таким образом, исследовавшиеся пробы содержали, вероятно, лишь часть действительно имеющихся в грунте активных молекул, и то, что какая-то их доля все же сохранилась, следует рассматривать как удачу.
      Окисление при помощи пероксидов не единственный про цесс, в котором органическое вещество на Марсе может быть разрушено. Эксперименты, проведенные Пангом и его сотрудниками, показали, что под воздействием ультрафиоле тового излучения в присутствии оксида титана (в грунте на поверхности Марса содержится 0,5% титана) атмосферный кислород вызывает быстрое окисление органического ве щества. Как и окисление под действием ОН, этот процесс также происходит на планете повсеместно.
      Зная по крайней мере два механизма, способствующие разрушению органического вещества на всей поверхности Марса, трудно сомневаться в том, что данные, полученные аппаратами "Викинг", характерны для любого района планеты.
      Глава 8 Жизнь в Солнечной системе
      Нам суждено спускаться вновь и вновь. В тот край, откуда началась дорога, Чтобы опять взглянуть... и в изумленьи Его увидеть, словно в первый раз.
      Т. С. Э.шот, "Легкое головокружение"
      Убежденность в существовании жизни на планетах Сол нечной системы возникла у людей лет на 300 раньше, чем были получены' убедительные научные данные как о самой жизни, так и о планетах. Такие представления-плод естест венного, но неоправданно широкого толкования революци онных идей Коперника-сформировались у мыслителей XVII-XVIII вв. не на основе научных фактов, а исходя из общих философских принципов. Со временем благодаря углублению научных знаний существование жизни на других планетах перестало быть не вызывающей сомнения истиной. а превратилось в гипотезу, которая подлежала логическому анализу и экспериментальной проверке. Выполнению этой программы, которая завершилась лишь в наши дни, спо собствовали два обстоятельства: более глубокое проникнове ние в гайны природы и происхождения живой материи, а также разработка новых методов исследования планет. позволившая переступить пределы, установленные возмож ностями земных телескопов. В числе этих новых методов прежде всего следует назвать создание межпланетных косми ческих аппаратов и непрерывно совершенствующуюся техни ку передачи информации.
      Современные биологи показали, что жизнь-это хими ческий феномен, отличающийся от прочих химических про цессов проявлением генетических свойств. Во всех известных живых системах носителями этих свойств служат нуклеино вые кислоты и белки. Сходство нуклеиновых кислот, белков и работающих на их основе генетических механизмов у организмов самых различных видов практически не оставля ет сомнений в том, что все живые существа, ныне обитающие на Земле, связаны эволюционной цепью, которая соединяет их также с существовавшими в прошлом и вымершими видами. Подобная эволюция-естественный и неизбежный
      результат работы генетических систем. Таким образом, несмотря на бесконечное разнообразие, все живые существа на нашей планете принадлежат к одной семье. На Земле фактически существует лишь одна форма жизни, которая могла возникнуть только однократно.
      Основным элементом земной биохимии является угле род. Химические свойства этого элемента делают его особен но подходящим для образования такого типа больших ин формационно богатых молекул, которые необходимы для построения генетических систем с практически неограничен ными эволюционными возможностями. Космос также очень богат углеродом, и целый ряд данных (результаты лабора торных экспериментов, анализов метеоритов и спектроско пии межзвездного пространства) свидетельствует, что обра зование органических соединений, подобных тем, которые входят в состав живой материи, достаточно легко и в широких масштабах происходит во Вселенной. Поэтому вероятно, что если жизнь существует в каком-то ином уголке Вселенной, то она также основана на химии углерода.
      Биохимические процессы, основанные на химии углерода, могут протекать лишь при сочетании на планете определен ных условий температуры и давления, а также наличия подходящего источника энергии, атмосферы и растворителя. Хотя в земной биохимии роль растворителя играет вода, возможно, хотя и не обязательно, что в биохимических процессах, происходящих на иных планетах, участвуют дру гие растворители.
      Условия, существующие в действительности на известных нам планетах, позволяют считать, что эти минимальные требования чрезвычайно жестки и, по всей видимости, при годные для жизни планеты-достаточно редкое явление. Благодаря значительным успехам в изучении планет к 1975 г. стало очевидным, что в Солнечной системе только Марс, хотя и с малой долей вероятности, может рассматриваться как возможное место существования внеземной жизни. Состоявшийся в том году полет "Викингов" завершил серию важных космических экспедиций на Марс, подведя исследо вания, связанные с поисками жизни на других планетах, к кульминационной точке. Была закончена одна из самых удивительных глав в летописи современной науки, поро дившей миф о жизни на Марсе. Низвержение этого мифа, начатое в 1963 г., поведало нам немало интересного не только о самом Марсе, но и о человеческой психологии. Оно же продемонстрировало поистине безграничное могущество
      науки, ее способность вскрывать и исправлять собственные ошибки.
      "Викинги" не только не обнаружили жизни на Марсе, но и - что не менее важно - выяснили причины невозможности ее там. Марс лишен той удивительной особенности, которая определяет экологию нашей планеты,-океанов жидкой во ды, обильно освещаемых Солнцем. На Марсе совершенно нет жидкой воды, и он подвержен воздействию всеразру шающего коротковолнового ультрафиолетового излучения. Даже одного из этих факторов, вероятно, вполне достаточно, чтобы сделать планету стерильной, а в сочетании они при вели к возникновению на поверхности планеты высокоокис лительных условий, которые несовместимы с существова нием органических соединений. Поэтому на Марсе нет не только жизни, но и органического вещества.
      Но кое-кто, не взирая ни на какие научные данные, продолжает считать планету обитаемой. Время от времени приходится, например, слышать, что где-то на Марсе все же может существовать сырое и теплое место-марсианский рай, богатый своеобразными, марсианскими формами жиз ни. Порой ставятся под сомнения и выводы, сделанные па основании полетов "Викингов", ибо полученные результаты можно интерпретировать, предполагая, что в грунте планеты обитают микроорганизмы, плотность популяции которых ниже порога чувствительности газового хроматографа с масс-спектрометром.
      Эти взаимоисключающие точки зрения-одна, допускаю щая, что жизнь на Марсе, как и на Земле, нуждается в воде, и другая, напротив, отрицающая подобную необходимость, совершенно фантастичны. "Райский сад", будь он на Марсе, был бы различим на фотографиях марсианской поверхности по висящему над ним облаку водяных паров и, возможно, по наличию снега. Но этих признаков обнаружено не было, и очень маловероятно, что подобное место может существо вать на Марсе. Равнина Утопия (где совершил посадку один из спускаемых аппаратов), грунт на которой в течение длительного времени ежегодно бывает покрыт инеем, явля ется по марсианским стандартам очень влажным местом, и поэтому нет оснований говорить, что при осуществлении научной программы "Викинг" образцы отбирались только в самых засушливых областях. А второе предположение, сог ласно которому в марсианском грунте даже и сейчас обита ют микроорганизмы-не более чем еще один вариант леген ды о голубом единороге, утверждающей, что этот зверь
      живет в пещере на Луне. Данное утверждение невозможно опровергнуть, поскольку создатель легенды наделил едино рога всеми свойствами, необходимыми для выживания на Луне. По аналогии марсианские организмы должны быть, например, способны к существованию без воды или иного растворителя и быть устойчивыми к процессу, разрушающе му органические вещества, фотодеструкции.
      Неудавшиеся попытки обнаружить жизнь на Марсе яви лись не только разочарованием, но и открытием. Поскольку Марс, несомненно, считался наиболее "перспективным" объектом для поисков внеземной жизни в Солнечной систе ме, то теперь, в сущности, стало ясно, что Земля - единствен ная несущая жизнь планета в ближайшей к нам области Галактики. Мы пробудились ото сна! Мы одиноки, мы и все другие виды-наши фактические родственники, с которыми мы делим Землю. Если современные исследования Солнеч ной системы заставят нас глубже осознать уникальность нашей маленькой планеты и усилят тем самым нашу реши мость избежать самоуничтожения, то они дадут человечеству нечто большее, чем просто сумму новых научных знаний.
      Словарь терминов
      Адсорбция. Связывание молекул газа или молекул, находящихся в растворе, с твердыми поверхностями под действием специфических физических или химических сил.
      Альдегид. Органическое соединение, общая структура которого опи сывается формулой
      где R-либо водород (образующий формальдегид), либо органи ческий радикал. Знак "- -" означает двойную связь (см. Химическая св.чзь).
      Аминокислота. Основная субъединипа белков с общей формулой RCH(NH^)COOH, где R любой из 20 различных радикалов.
      Белок. Молекула, образованная одним или несколькими полипепти дами (см. По.шпептид). Белки в виде ферментов (см. Фермент) играют основную роль практически во всех химических реакциях. протекающих в живых клетках. Они выполняют также многие другие биологические функции, например образуют мышечные волокна.
      Водородная связь. См. Химическая связь. Возгонка. Испарение твердого тела, минуя фазу таяния.
      Восстановление. Присоединение атомов водорода или электронов (либо отщепление атомов кислорода) к элементу или соединению.
      Генетическая система. Химические вещества и физические механиз мы, лежащие в основе саморепликации и мутации.
      Давление паров. Давление, вызываемое паром, находящимся в рав новесии с жидкой или твердой фазой вещества.
      Диэлектрическая проницаемость. Величина, характеризующая поля ризацию диэлектрика под действием электрического поля; показыва ет. во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Величина диэлектрической проницаемости важна для объяснения свойств жидкостей как раство
      рителей. Среди жидкостей вода имеет одно из самых высоких значений диэлектрической проницаемости.
      Изотоп. Разновидности одного и того же химического элемента, отличающиеся друг от друга массой атомов. Изотопы одного элемента сходны по химическим свойствам, но некоторые из них нестабильны и подвержены радиоактивному распаду.
      Иней. Мельчайшие кристаллы льда. образующиеся при конденсации газа на холодной поверхности.
      Ион. Атом или группа атомов, несущие электрический заряд вследствие потери либо приобретения одного или более электронов.
      Катабатический ветер. Нисходящий воздушный поток в атмосфере. Такие ветры возникают в результате нагревания, вызванного ло кальным возрастанием давления, и характеризуются относительно низкой влажностью.
      Катализатор. Вещество, которое ускоряет химическую реакцию, не расходуясь и не изменяясь при этом.
      Мантия. Слой Земли, лежащий между земной корой и ядром, расположенным в центре.
      Микромоль (мкмоль). Милионная доля моля. Моль-это количество граммов вещества, численно равное его молекулярной массе. В 1 моле содержится 6.02 х 10 молекул вещества.
      Мономер. Молекула (например, нуклеотид или аминокислота), из которой обычно образуются линейные цепи полимеров (в частности, нуклеиновые кислоты и белки).
      Мутация. Случайное изменение структуры гена, которое закрепляет ся в результате саморепликации.
      Нуклеиновая кислота. Линейный полимер, образующийся из нуклео тидов в результате связывания остатка фосфорной кислоты одного нуклеотида с сахаром следующего. Одна из двух типов нуклеиновых кислот. ДНК. образует гены. Другая. РНК. участвует в процессе синтеза белков.
      Нуклеотид. Мономерная субъединица нуклеиновых кислот с общей структурой: азотистое основание-сахар-фосфорная кислота.
      Окисление. Присоединение кислорода к элементу или соединению либо отщепление водорода или электронов.
      Оптический изомер. Химическое соединение, которое, находясь в растворе, вызывает вращение плоскости поляризации света по ча совой стрелке или против нее. У каждого такого соединения есть пара-соединение, представляющее собой зеркальное отражение пер вого, которое вызывает поворот плоскости поляризации света в противоположном направлении.
      Относительная влажность. Концентрация паров воды в воздухе. выраженная в процентах по отношению к насыщающей концентра ции при той же температуре.
      Парниковый эффект. Нагревание атмосферы, вызванное ее непро зрачностью для инфракрасного излучения; возникает в результате
      поглощения грунтом солнечного (главным образом видимого) све та, для которого атмосфера прозрачна.
      Полимер. См. Мономер.
      Полипептид. Линейный полимер, образованный в результате соеди нения аминокислот.
      Полярная молекула. Молекула, в которой центр положительного заряда не совпадает с центром отрицательного заряда, вследствие чего возникают положительный и отрицательный полюса. Боль шинство молекул, входящих в состав живых клеток, полярны, как и многие растворители, например вода, аммиак, спирты. Полярные растворители характеризуются высокой диэлектрической проницае мостью (см. Диэлектрическая проницаемость).
      Радикал. Атом или группа атомов, обладающих одним или более неспаренными электронами. Свободные радикалы, т. е. радикалы, не объединенные в молекулы, например образующиеся при фотолизе воды Н и ОН, обычно отличаются очень высокой реакционно способностью.
      Сахар. Углевод, содержащий, как правило, не более 12 атомов углерода и имеющий общую формулу С^(НдО)". Обычный пищевой сахар, или сахароза, имеет формулу С^Н^Ои.
      Свободная энергия. Мера количества работы (химической, механи ческой или электрической), связанной с химическими реакциями. протекающими при постоянных давлении и температуре. Реакции с выделением свободной энергии, например окисление сахара, про исходят самопроизвольно и могут служить источником энергии. Реакции с поглощением свободной энергии, т. е. запасающие ее. например фотосинтез, не могут протекать без поступления энергии извне. Про реакции, в ходе которых не происходит изменения свободной энергии, говорят, что они находятся в равновесии.
      Спектрограмма. Фотография спектра.
      Тройная точка. Температура, при которой твердая, жидкая и газо образная фазы вещества находятся в равновесии. Температура тройной точки чистой воды равна 0,0099 С.
      Углеводород. Химическое соединение, состоящее только из углерода и водорода.
      Фермент. Белок, функционирующий как биологический катализатор.
      Фотолиз. Расщепление молекул, как правило, вызванное поглоще нием ультрафиолетового излучения.
      Фотосинтез. Процесс, при котором зеленые растения, морские во доросли и некоторые бактерии используют солнечный свет для синтеза органического вещества из диоксида углерода (углекислого газа).
      Химическая связь. Сила, удерживающая вместе атомы в молекулах. Наиболее часто встречающаяся химическая связь-это образование у двух атомов пары обобщенных электронов. Двойная химическая связь создается двумя, а тройная тремя парами обобщенных электронов. Водородные связи, играющие важную роль в формиро
      вании структуры воды, ДНК и белков, создаются ионами водорода, каждый из которых связан с двумя отрицательно заряженными атомами, например атомами кислорода или азота.
      Электролит. Вещество, которое при растворении в воде диссоцииру ст на положительно и отрицательно заряженные ионы.
      Электрострикция. Изменение объема и ограничение свободы движе ния молекул растворителя, вызванное воздействием электрических полей, возникающих в ходе многих химических реакций.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11