Современная электронная библиотека ModernLib.Net

Кризис европейских наук и трансцендентальная феноменология

ModernLib.Net / Философия / Гуссерль Э. / Кризис европейских наук и трансцендентальная феноменология - Чтение (стр. 3)
Автор: Гуссерль Э.
Жанр: Философия

 

 


      Здесь наставницей нам служит математика. Она уже указала нам путь относительно пространственно-временных форм двояким образом. Во-первых, она создала идеальную объективность с помощью идеализации физического мира и его пространственно-временной оформленности. Из неопределенных, всеобщих форм пространства и времени, присущих жизненному миру, из свойственных ему эмпирически созерцаемых форм она создала объективный мир в подлинном смысле слова, а именно бесконечную тотальность идеальных предметностей, определяемых методически и всегда и для любого человека однозначно. Тем самым она впервые показала, что бесконечность предметов, субъективно-релятивных и данных лишь в неопределенных, всеобщих представлениях, объективно определяема лишь благодаря априорному всеохватывающему методу и мыслима как действительно определенная сама по себе. Точнее говоря, определяемая как существующая сама по себе и в своих предметах, и в их свойствах, и в своих отношениях. Говоря "мыслима", я имею в виду, что бесконечность конструируема ex datis в своем объективно истинном бытии-самом-по-себе с помощью не просто постулируемого, но действительно созданного, аподиктически воспроизводимого метода.
      Во-вторых, математика, вступающая в контакт с искусством измерения и руководящая им, нисходя от мира идеальных сущностей (Idealitat) к эмпирически созерцаемому миру, показывает, что может быть достигнут универсальный, действительно созерцаемый мир 6 самих вещах, хотя она, будучи математикой форм, и проявляет интерес лишь к одной его стороне (правда, необходимым образом присутствующей во всех вещах), все же в состоянии достичь объективно реального познания совершенно нового рода, а именно аппроксимативно приближающегося к миру ее собственных идеальных сущностей. Вещи эмпирически созерцаемого мира в соответствии с образом действия мира (Weltstil) обладают телесностью и суть "res extensae", воспринимаются в своих изменчивых связях и, будучи рассмотрены как целое, представляют собой совокупность, где каждое отдельное тело занимает свое относительное место и т.д. С помощью чистой математики и практического искусства измерения можно построить для всего физического мира совершенно новое индуктивное предсказание, а именно на основе уже данных и измеренных характеристик форм "рассчитать" неизбежные характеристики, еще неизвестные и недоступные для непосредственного измерения. Так идеальная геометрия, отчужденная от мира, становится "прикладной" и вместе с тем в известном смысле всеобщим методом познания реальности.
      Но не позволяет ли этот способ объективации мышления, делающий акцент на абстрактном аспекте мира, приблизиться к решению следующих вопросов?
      Нельзя ли допустить существование чего-то подобного и для конкретного мира как такового? Может быть, обращение мыслителей Ренессанса, в частности, Галилея, к античной философии со всей очевидностью раскрывает возможность философии как эпистемы, управляющей всей наукой об объективном мире? Если чистая математика, примененная к природе, полностью осуществила, как уже было показано, постулат эпистемы в сфере форм, то не предвосхитил ли Галилей и идею природы, конструктивно и во всех своих аспектах определяемой в этом способе объективации мышления?
      Возможно ли, что с помощью методов измерения, процедур аппроксимации и конструктивных определений охватываются все реальные свойства и каузальные связи созерцаемого реального мира, опытно исследуемого во всех аспектах? Оправдано ли это всеохватывающее предсказание и может ли оно стать практическим методом конкретного познания природы?
      Трудность состоит в том, что материальная полнота "специфических" чувственных качеств не может восполнить конкретность пространственно-временных характеристик физического мира, а в своем степенном различии (Gradualitat) эти характеристики не могут рассматриваться непосредственно как сами эти формы. Однако эти качества и все, что образует конкретность чувственно воспринимаемого мира, необходимо понять как выражение "объективного" мира. И более того, они должны сохранить это значение. Если во всех изменениях субъективных интерпретаций остается несокрушимой достоверность одного и того же мира, связующего нас, самой по себе сущей действительности - именно таков способ мысли, приведшей к выдвижению идеи новой физики, - то все моменты опытного знания открывают нам тот же самый мир. Объективное знание о действительности достижимо, если те стороны, от которых чистая математика абстрагируется, например, от чувственных качеств, стороны пространственно-временных форм и их возможных конфигураций , если они были математизируемы не непосредственно, а лишь косвенным путем.
      с) Проблема математизируемости "полноты" <качеств>
      Здесь встает вопрос о том, что же такое косвенная математизация? Прежде всего обратимся к той глубокой причине, из-за которой непосредственная математизация (или какой-то аналог аппроксимативного конструирования) специфических чувственных качеств 6 принципе невозможна.
      Эти качества обнаруживаются в градациях степени, в соответствии с определенным способом измерения эти качества принадлежат всем градациям степени - "измерению" "величины" холода и тепла, шероховатости и гладкости, освещенности и затемненности и т.д. Но здесь еще не существует точного измерения, нет повышения точности ни измерения, ни методов измерения. Сегодня, говоря об измерении, о единицах измерения, о методах измерения или о величинах, мы обычно понимаем "точное" как то, что уже соотнесено с идеальными сущностями; сколь ни трудно, но все же необходимо осуществить изолирующее абстрагирование полноты: рассмотрев физический мир, так сказать, опытно, под углом зрения тех свойств, которые принято называть "специфическими чувственными качествами", необходимо с помощью универсальных абстракций, противопоставляемых этим качествам, создать универсальный мир форм.
      Что же такое "точность"? Очевидно, не что иное, как то, что уже было сказано выше: эмпирическое измерение при повышении своей точности и руководствующееся миром идеальных сущностей, объективируемого с помощью процедур идеализации и конструирования, или миром особых идеальных структур, подчиняющихся шкалам измерения. Здесь следует прояснить эту противоположность. Мы имеем не две, а лишь одну универсальную форму мира, не две, и лишь одну геометрию, а именно геометрию такого рода форм, одну, а не две полноты <чувственных качеств>. Итак, тела эмпирически воспринимаемого мира в соответствии со структурой мира, априорно принадлежащей самому миру, таковы, что каждое тело при расширении себя, говоря абстрактно, становится протяженностью, а протяженность всех этих форм оказывается некоей, совокупной, бесконечной протяженностью мира. В качестве мира, универсальной конфигурации всех тел протяженность - это тотальная форма, охватывающая все формы, а эта форма идеализируема с помощью аналитических процедур и становится господствующей благодаря процедуре конструирования.
      Конечно, к структуре мира принадлежат все тела, обладающие специфическими чувственными качествами. Однако в основе качественных конфигураций нет какого-либо аналога пространственно-временным формам; они не включены в форму мира, специфическую для них. Предельные формы этих качеств не идеализируемы в аналогичном смысле, измерение их ("оценка") не соотносимо с соответствующими идеальными сущностями в конструируемом мире, хотя и соотносимо с идеальными сущностями объективируемого мира. Поэтому и аппроксимация по своему смыслу не аналогична тому действию, которое присуще математизируемым формам, - объективирующему действию.
      Что же касается "косвенной математизации" тех аспектов мира, которые сами по себе не имеют математизируемой формы мира, то такая математизация мыслима лишь в том смысле, что специфические чувственные качества ("полнота" их), опытно воспринимаемые в телах, соединены с упорядоченными формами, которые по своей сути принадлежат телам.
      Если спросить, чем же предопределены априори универсальная форма мира с ее универсальной каузальностью, т.е. если задаться вопросом об инвариантном и всеобщем способе бытия (Seinsstil), который сохраняется в воспринимаемом нами мире во всех непрерывных изменениях, то, с одной стороны, предопределена форма пространства-времени и каждое тело определено относительно этой формы, причем определено априори (до идеализации); кроме того, предопределено и то, что в каждом реально существующем теле эмпирически данные формы требуют эмпирической полноты и наоборот; поэтому эта всеобщая каузальность связует в конкретное те моменты, которые были оторваны друг от друга, лишь абстрактно, а не реально. Далее, вообще-то говоря, существует универсальная конкретная каузальность. Благодаря ей можно предсказать, что воспринимаемый мир может быть воспринимаем как мир в бесконечно открытом горизонте, а бесконечное многообразие особенных причин может быть предсказано лишь благодаря этому горизонту и только в нем. Итак, в любом случае нам априори известно то, что физический мир, взятый со стороны любой формы .требует полноты сторон, пронизывающих все формы, а также известно, что любое изменение, независимо от того, относится ли оно к форме или к полноте сторон, осуществлялось в соответствии с каузальной связью, непосредственной или опосредствованной. Столь далеко простирается неопределенное, всеобщее, априорное предвосхищение.
      Все же нельзя сказать, что все изменения полноты качеств, все их превращения и их неизменность осуществляются по каузальным правилам так, что вся абстрактная сторона мира исключительно зависит от того, что каузально осуществляется в формах как определенной стороне мира. Иначе говоря, априори нельзя считать, что любое изменение специфических качеств воспринимаемых тел, которые становятся предметом действительного и возможного опыта, причинным образом указывает на абстрактный слой мира слой форм, т.е. что каждое такое изменение имеет своего двойника в царстве форм, а совокупное изменение их полноты имеет своего каузального двойника в сфере форм.
      Эта мысль может показаться прямо-таки фантастической. Ведь мы тем самым принимаем давно уже известную и широко осуществлявшуюся тысячелетия тому назад, правда, отнюдь не во всех областях, идеализацию пространства-времени со всеми их формами, со всеми изменениями пространства и времени и со всеми изменениями их форм. В этом и заключалась, как мы уже знаем, идеализация, осуществленная искусством измерения не просто как искусством измерения, а как искусством создания эмпирически каузальных конструкций (причем, само собой разумеется, как и любое искусство, оно использует и дедуктивные выводы). Теоретическая установка и тематизация чистых сущностей и конструкций ведет к чистой геометрии (под ней здесь понимается и математика чистых форм вообще); а позднее - вместе с поворотом, который нами уже был описан, - возникает, как мы помним, прикладная геометрия: практическое искусство измерения, осуществляющееся на основе идеальных сущностей и идеальных конструкций, построенных с их помощью. Следовательно, возникает практическое искусство измерения в соответствующих, весьма узких областях конкретно-причинной объективации физического мира. Коль скоро все это можно сделать явным, то выдвинутая уже давно и казавшаяся странной мысль перестала казаться странной, а благодаря научному воспитанию в школе, начинающемуся уже в детском возрасте, эта мысль обрела, наоборот, характер чего-то само собой разумеющегося. То, что в донаучном опыте мы воспринимаем как цвет, звук, тепло, вес тел, оказывается при каузальном подходе, например, тепловым излучением тел, которое делает теплым все окружающие тела и тем самым обнаруживается "физически" - как колебания звуковые, тепловые, следовательно, только как процессы мира форм. Ныне этот способ универсальной индикации рассматривается как нечто само собой разумеющееся. Однако если возвратиться к Галилею, то для него - создателя концепции, впервые сделавшей возможной создание физики,- все это не было чем-то само собой разумеющимся, каким оно стало благодаря его деятельности. Для Галилея само собой разумеющейся была лишь чистая математика и обычный способ ее применения.
      Если задуматься о мотивации Галилея, решающей для формирования идеи новой физики, то необходимо отметить, что в его эпоху ход его мысли казался странным и задаться вопросом, как он пришел к мысли, согласно которой все специфические чувственные качества должны рассматриваться как реальное обнаружение математических индикаторов процессов, присущих идеальным формам, всегда принимаемых как нечто .само собой разумеющееся. Из этого вытекает возможность косвенной математизации в полном смысле слова, поскольку возможны конструирование и объективное определение (хотя и опосредствованно и с помощью индуктивных методов) всех процессов с точки зрения полноты ex datis. Бесконечная природа - этот конкретный универсум каузальности стала своеобразной прикладной математикой - таково утверждение этой странной концепции.
      Все же вначале следует ответить на вопрос, что же вызвало к жизни в этом традиционно данном мире, математизация которого весьма ограниченна и осуществляется так, как было указано греками, что же вызвало к жизни мысль Галилея?
      d) Движущие мотивы, галилеевской концепции природы
      Уже здесь налицо повод, еще весьма слабый, для того чтобы более внимательно отнестись к многообразным, но все же лишенным внутренней связи формам опыта, которые существовали в совокупном преднаучном опыте, позволяли достичь опосредствованной квантификации чувственных качеств и выражения их через величины и числовые меры. Уже пифагорейцы в древности заметили зависимость высоты звука от длины натянутой и колеблющейся струны. Конечно, были хорошо известны и иные причинные зависимости аналогичного рода. В их основе лежит зависимость конкретно воспринимаемых процессов окружающего мира от полноты событий и процессов в сфере форм, зависимость легко выявляемая. Однако здесь еще, вообще-то, не существует мотива для анализа сплетений каузальных зависимостей. Они не возбуждают какого-либо интереса, будучи смутными и неопределенными. Совершенно иначе обстоит дело там, где они становятся определенными по характеру, что позволяет применить определяющую индукцию и вынуждает нас прибегнуть к измерению полноты. Отнюдь не все, что изменяется вместе с такой стороной, как форма, может быть измерено с помощью традиционных методов. От этих опытных наблюдений еще длинный путь к выдвижению универсальной идеи и гипотезы, согласно которой все специфически чувственные качества - это лишь индикаторы, указывающие на определенную констелляцию фигур и процессов, присущих сфере форм. К этому вплотную подошли мыслители Возрождения, которые делали смелые обобщения и выдвигали нередко чрезмерные гипотезы, находившие поддержку у публики. Математика как царство подлинно объективного знания (и техника под ее руководством) была и для Гали-лея, и для "современного" человека, центром интересов, направленных на философское познание мира и рациональную практику. Должны быть найдены методы измерения всего того, что охватывает геометрия, математика форм в их идеальности и априорности. Весь конкретный мир должен раскрыть себя как математически-объективный, если мы, осуществляя отдельные опыты, исходим из того, что все в них измеримо с помощью прикладной геометрии и, следовательно, создаем соответствующие методы измерения. Если мы действуем таким образом, то мы опосредствованно математизируем все специфические качественные события.
      При истолковании мысли Галилея о том, что универсальная приложимость чистой математики есть нечто само собой разумеющееся, необходимо обратить внимание на следующее. При каждом приложении к чувственно данной природе математика должна освободить свои абстракции от созерцательной полноты и в то же время она оставляет неприкосновенными идеализованные формы (пространственные формы, длину, движения, деформации). Однако одновременно с этим осуществляется идеализация и полноты их чувственных качеств. Экстенсивная и интенсивная бесконечность - понятия, возникшие при идеализации чувственных явлений; эта идеализация выходит за границы возможностей действительного созерцания, за границы разрушимости и делимости до бесконечности. И таково все, что принадлежит математическому континууму, это означает обоснование с помощью бесконечности полноты качеств, обосновываемой ео ipso (тем самым) .Весь конкретный физический мир отягощен бесконечностью не только форм, но и полноты качеств. Однако вновь следует обратить внимание на то, что далеко не всякая "косвенная математизируемость" характеризует своеобразие галилеевской концепции физики.
      Пока что мы подошли к общей мысли, точнее говоря, к выдвижению общей гипотезы: универсальная индуктивность господствует в воспринимаемом мире, обнаруживает себя в повседневном опыте и она скрыта в бесконечности.
      Конечно, для Галилея индуктивность вовсе не была гипотезой. Для него физика была столь же определенна, как и современная ему чистая и прикладная математика. Для него гипотеза непосредственно указывала и методический путь своей реализации. Для нас же успешность реализации значима как проверка гипотезы, гипотезы отнюдь не само собой разумеющейся и относящейся к недоступной фактической структуре конкретного мира. Прежде всего Галилей стремился разработать плодотворные и непрерывно совершенствуемые методы, выйти за пределы того, что уже было достигнуто, создать действительные методы измерения, позволяющие предсказать то, что происходит в мире идеальных объектов математики в качестве идеальных возможностей, измерения, например, скорости, ускорения. Но чистая математика форм сама нуждалась в плодотворном развертывании конструктивной квантификации - это позднее и привело к созданию аналитической геометрии. Необходимо систематически осмыслить и с помощью ряда вспомогательных средств выразить универсальность причинности, или, как можно было бы сказать, своеобразную универсальную индуктивность опытного мира, существование которой уже предполагалось в исходной гипотезе. Следует обратить внимание на то, что в новой, конкретной и двусторонней идеализации мира, содержавшейся в гипотезе Галилея, как нечто само собой разумеющееся, предполагалась универсальная и точная причинность, которая не достигается, конечно, с помощью индукции через демонстрацию индивидуальных разновидностей причинности, а, наоборот, предшествует любой индукции отдельных причинных связей и руководит ею. Именно это и характерно для конкретно всеобщей, созерцаемой причинности, которая сама созидает конкретно-чувственные формы мира в противовес частным, индивидуальным формам причинности, опытно постигаемым в жизненном мире.
      Эта универсальная идеализованная причинность охватывает все фактические формы и полноту качеств в их идеальной бесконечности. Несомненно, если измерения в сфере форм должны привести к действительным объективным определениям, то и события должны быть рассмотрены с точки зрения их полноты. Необходимо охватить совершенно конкретные вещи и события методом, иначе говоря, найти ту каузальную связь, которая существует между фактуальной полнотой и формами. Применение математики к реально существующей полноте форм делает возможным конкретизацию причинных предпосылок, которые впервые здесь становятся определенными. Как действительно продвинуться вперед, как осуществить методологически выверенную работу в чувственно воспринимаемом мире, как в этом мире фактуально постигаемых чувственно данных, в мире, в который идеализация внесла еще не познанную бесконечность, достичь каузальной детерминации в двух своих аспектах, как раскрыть скрытую бесконечность с помощью методов измерения, как при этом с помощью возрастающей аппроксимации в сфере форм сделать все более совершенными индикаторы качественной полноты идеализованных тел и как определить сами эти тела с помощью методов аппроксимации в качестве конкретных событий со всеми их идеальными возможностями,- все это предмет открытий в физике. Иными словами, это предмет исследовательской практики без предварительного систематического осмысления принципиальных возможностей и важных предпосылок математической объективации, которая позволила бы определить конкретно-реальное в сети универсальных, конкретных причинных связей.
      Открытие - это смесь инстинкта и метода. Конечно, возникает вопрос, может ли такое смешение быть в строгом смысле слова философией, или наукой? Может ли оно быть познанием мира в предельном смысле, а именно быть средством понимания мира и самого себя. Галилей, будучи первооткрывателем, последовательно шел к реализации своей идеи - сформировать методы измерения сходных данных всеобщего опыта: и действительный опыт подтвердил то, что было предсказано гипотезой для всех случаев (хотя это еще не было радикально проясненной методикой). Он действительно выявил причинные закономерности, которые могут быть математически выражены в "формулах".
      В актуальном процессе измерения чувственно данных опыта, конечно же, были получены лишь эмпирически-неточные величины и количества. Искусство измерения- это искусство, нуждающееся в постоянном совершенствовании "точности" измерения. Это не просто искусство использования уже найденного метода, а метод, который постоянно сам себя улучшает, с помощью изобретения все новых и все более искусных средств (например, инструментов). Соотнесенность мира с чистой математикой в качестве поля ее приложения позволяет выявить математический смысл "in infinitum" - "снова и снова" и тем самым любое измерение обретает смысл приближения к недостижимому, но идеально-тождественному полюсу, а именно к определенным математическим сущностям или, иначе говоря, к числовым конструкциям, принадлежащим этим сущностям.
      С самого начала метод обретает всеобщий смысл, хотя и имеет дело с тем, что идивидуально и фактуально. Например, с самого начала мы видим не свободное падение какого-то тела, а индивидуальный факт, представляющий собой некоторый общий тип в созерцаемой нами природе, куда он заранее включен вместе с эмпирически данными инвариантами. Все это, конечно, входило в галилеевскую установку на математизацию и идеализацию. Косвенная математизация мира, которая развертывалась как методологическая объективация созерцаемого мира, привела к общим числовым формулам, которые, будучи однажды найденными, могут применяться для осуществления фактической объективации подводимых под них отдельных случаев. Эти формулы явно выражают всеобщие причинные связи, "законы природы", законы реальных зависимостей в форме "функциональной" зависимости чисел. Следовательно, их подлинный смысл заключается не в чисто числовых взаимоотношениях (как будто бы они - формулы в сугубо арифметическом смысле), а в том, что вместе сними Галилеем была сформулирована идея об универсальной физике со своим (как нами уже было отмечено) весьма сложным смысловым содержанием, была поставлена перед научным человечеством задача, процесс решения которой в физике стал процессом создания частных методов, математических формул и "теорий", сформулированных благодаря им.
      е) Проверяемый характер естественнонаучных фундаментальных гипотез
      Согласно нашему замечанию, которое, конечно, далеко выходит за пределы проблемы объяснения галилеевской мотивации и вытекающих из нее идеи и задачи физики, идея Галилея - это гипотеза, хотя и гипотеза в высшей степени значительная; ее проверка в естествознании на протяжении столетий это проверка весьма примечательного сорта. Она примечательна тем, что гипотеза, несмотря на проверку, всегда остается лишь гипотезой; ее проверка (любая мыслимая для нее проверка) оказывается бесконечным процессом проверки. В этом и заключена суть естествознания, априори - это способ его бытия, быть бесконечно гипотетическим и бесконечно проверяемым знанием. При этом проверка не включает, как повседневная практическая жизнь, возможность заблуждения и не требует коррекции. На любой фазе развития естествознания существует вполне корректный метод и теория, благодаря которым достигается элиминация "заблуждения" .Ньютон, выражая идеалы точного исследователя природы, сказал: "Hypotheses non fingo" (Гипотез не измышляю), подразумевая при этом, что он не допускает просчетов и ошибок в методе. Во всеобщей идее точной науки, во всех ее понятиях, принципах и методах, выражающих идеал "точности", во всеобщей идее физики и чистой математики уже заключена "in infinitum" (в бесконечности) постоянная форма специфической индуктивности, которая в истории впервые введена геометрией. В бесконечном прогрессе все более корректных теорий, где отдельные теории называются "естествознанием определенного времени", мы сталкиваемся с прогрессом гипотез, с прогрессом выдвижения гипотез и их проверки. Прогресс включает в себя непрерывное совершенствование, а для естествознания, взятого в целом, характерно то, что оно все более и более возвращается к самому себе, к своему "предельному" истинному бытию, что оно дает все лучшее и лучшее "представление" о том, что же такое "истинная природа". Но истинная природа заключена не в бесконечности прямой линии, а подобно бесконечно далекому полюсу- в бесконечности теорий и мыслима лишь как проверка; она, следовательно, соотносима лишь с бесконечным историческим процессом аппроксимации. Этот процесс может стать предметом философской мысли, но в таком случае возникают вопросы, которые не могут быть здесь разрешены и которые выходят за рамки исследования. Ведь здесь речь идет о том, чтобы достичь полной ясности относительно идеи и задачи физики, которая, возникнув в галилеевской форме, определяла философию нового времени, понять физику в ее движущих причинах, уяснить то, что входило в ее мотивы, как что-то по традиции само собой разумеющееся, выявить то, какие смысловые предпосылки остались непроясненными или вскрыть то, какой специфический смысл скрыт за тем, что же считается само собой разумеющимся.
      Поэтому необходимо более конкретно описать первые шаги физики Галилея и формирования ее методов.
      f) Проблема смысла естественнонаучных "формул"
      Одно важно для нашего объяснения. Решающей процедурой, которая в соответствии с общим смыслом естественнонаучного метода делает возможным систематически упорядоченные и вполне определенные предсказания в сфере непосредственно чувственного опыта и всего возможного опытного знания, выходящего за пределы преднаучного жизненного мира, является действительное упорядочивание математических идеальных сущностей, вначале введенных в гипотезу как что-то неопределенно всеобщее, а затем уже как всеобщее в своей определенности. И если эта процедура сохраняет свой изначальный смысл, то необходимо тематизировать этот смысл для того, чтобы постичь прогрессирующую последовательность актов созерцания (отныне рассматриваемых как аппроксимации), указывающих на функциональную координацию качеств, короче говоря, на формулы. Иными словами, следуя этим формулам, сделать эту последовательность актуальной. Это же относится и к самой координации, которая выражается в функциональных формулах, позволяя предсказывать ожидаемые эмпирические регулярности, характерные для практического жизненного мира. Иными словами, если найдены формулы, то уже заранее предполагается практически желаемое предсказание того, что предположено с эмпирической достоверностью в созерцаемом мире конкретной действительной жизни, где математика - это лишь специальная форма практики. Математизация, реализующаяся в формулах, оказывается процедурой, решающей для жизни. Из этого рассуждения становится ясным, что с самых первых шагов формирования концепции и построения метода естествоиспытатель обнаруживает глубокий интерес к решающему, основному звену отмеченной выше процедуры - к формулам и с помощью "естественнонаучных методов", "метода истинного познания природы" и всей совокупности весьма искусных методов получает их, делая логически обязательными для каждого человека. Опять-таки, понятно, что было бы ошибочным искать в этих формулах и в их смысле истинное бытие самой природы.
      Теперь более внимательно следует рассмотреть "смысл этих формул", а именно объективацию смысла (Sinnverau/?erlichung), неизбежно осуществляющуюся вместе с формированием и использованием метода. Измерения ведут к числовым мерам, а в общих высказываниях о функциональной зависимости величин вместо определенных чисел используются числа вообще, превращаясь во всеобщие высказывания, которые выражают законы функциональной зависимости. Здесь необходимо обратить внимание на мощное влияние - с одной стороны, благотворное, с другой - губительное - алгебраических обозначений и способов мышления, получившие в новое время широкое распространение с работ Виета, т.е. еще до Галилея. Прежде всего это означает невиданное расширение возможностей арифметического способа мышления, передаваемого из поколения в поколение в старых, примитивных формах. Возникло свободное, систематическое, априорное мышление, полностью свободное от всякой связи с чувственно воспринимаемой действительностью, размышление о числах вообще, числовых отношениях, числовых законах. Поскольку этот способ мышления получил распространение в геометрии, во всей чистой математике ^пространственно-временных форм, постольку геометрия получила методическую алгебраическую формализацию. Так сформировалась программа "арифметизации геометрии", "арифметизации всего царства чистых форм" (идеальных прямых, окружностей, треугольников, движений, позиционных отношений и т.д.). Они мыслятся идеальными и точными в той мере, в какой измеримыми, коль скоро единицы измерения, сами по себе идеальные, обретают смысл пространственно-временных величин.
      Арифметизация геометрии приводит определенным образом к опустошению ев смысла. Действительные пространственно- временные идеальные сущности, впервые представленные в геометрическом способе мышления под общим названием "чистые интуиции", превратились, так сказать, в чистые числовые формы, в алгебраические образования. При алгебраической калькуляции нужно отказаться от геометрического значения, даже отбросить его; считать означает вспомнить лишь в конце, что числа характеризуют какие-то величины. Конечно, здесь не идет речь об обычном "механическом" счете чисел, а о мышлении, об открытиях, о великих открытиях, но все же незаметно было осуществлено "символическое" изменение смысла. Из этого позднее проистекает совершенно осознанный методический сдвиг - методический переход, например, от геометрии к чистому анализу, который трактовался как наука в собственном смысле, а результаты, полученные в нем, были применены в геометрии. На этом следует хотя бы вкратце остановиться.

  • Страницы:
    1, 2, 3, 4, 5