Д.С. Но там же других и нет связей.
В.В. Да, там других просто нет, вот такой полимер. Если взять маленький её фрагмент, состоящий из двух, трех, четырех кирпичиков, то никакой палочкой его уже не порвёшь.
Д.С. Надо ещё учесть и то, что все эти молекулы ДНК обязательно находятся в воде, это тоже очень важно.
В.В. Когда мы говорим о воде, то вот как раз картинка, которая говорит о стандартном представлении, учебниковом представлении о том, как устроена молекула воды. Синий шар – это атом кислорода, два жёлтеньких шарика – это атомы водорода. И чем эта жидкость отличается от других самых разнообразных жидкостей, и Дмитрий об этом более подробно будет говорить, это тем, что эта молекула на самом деле не уравновешена полностью. Вот там видны знаки «минус» и знаки «плюс». На атоме кислорода есть немножко отрицательного заряда. На атоме водорода есть немножко положительного заряда. Этих молекул много, и отрицательный заряд атома кислорода притягивает положительный заряд атома водорода. Образуется связь. Эта связь очень слабенькая, так называемая водородная связь. Её энергия в десятки раз меньше, чем связь между атомом кислорода и атомом водорода в одной молекуле воды. И поэтому, основываясь на представлениях из учебника, думать, что воду можно рассматривать как содержащую полимеры, до их работ казалось совершенно диким. Связи такие слабенькие, что там, казалось бы, нечего говорить о полимеризации. А вот дальше уже начинается история исследования воды как полимера.
Д.С. Это, конечно же, была очень светлая мысль. Покажите вторую картинку. Смотрите: многие свойства воды претерпевают, во всяком случае, основные свойства, претерпевают экстремумы температурных характеристик, то есть они проходят через минимум или максимум. Известная нам плотность воды, например, при плюс четырех градусах будет наибольшей. Это, видимо, следствие того, что когда кристалл льда при таянии разрушается и уплотняется, то это уплотнение ещё может долго продолжаться при увеличении температуры. Но одновременно начинает работать ещё механизм, растаскивающий такие фрагменты, тепловой механизм. И в конце концов, плотность воды, пройдя через максимум, начинается спадать.
А.Г. У меня вопрос на понимание. А если мы охлаждаем воду, не проходя отметку замерзания, скажем, от 6 градусов до 4. Плотность такой воды будет меньше, чем плотность воды, которая получилась в результате таяния льда?
Д.С. Нет, эта характеристика и в ту и в другую сторону проходит через этот максимум, и в ней нет гистерезиса… Где-то здесь при 4 градусах уже начинают складываться мощные структуры из водяных молекул. Это гелеподобные структуры, имеющие даже сдвиговую упругость, некие такие студнеподобные образования.
Вот ещё одна характеристика интересная, посмотрите, – это теплоёмкость, которая отмечена красной линией. Минимум теплоёмкости воды как раз там, где мы все – теплокровные – располагаемся. И падающая ветвь от нуля до 38 градусов, она, вообще-то, свойственна только твёрдым телам. То есть вода ещё некоторое время по этому параметру сохраняет свойства твёрдых тел, и только после 38-40 градусов начинает быть так называемой обычной жидкостью.
Здесь я ещё привёл скорость звука – это зелёная кривая, она характеризует упругие свойства воды. Ну и электрические свойства воды – характеристика электронной поляризуемости. Все эти характеристики имеют экстремумы температурных свойств…Так вот, всё это формально страшно похоже на то, как ведут себя температурные характеристики полимеров. Они тоже имеют экстремумы многих свойств. Вот эта-то аналогия, видимо, и навела (так, по крайней мере, он сам мне и рассказывал – Георгий Алексеевич Домрачев) на мысль о том, что вода полимероподобна. К ней надо относиться как к полимеру. А про полимеры-то известно было уже в своё время, что они неустойчивы при механических воздействиях. Вообще, это некогда была проблема: что же такое мы наделали – такие прочные вещества, что их и кислоты не берут. Так вот: замечательные физхимики Каргин, Слонимский – они ввели такое понятие – механохимия полимеров. Они доказали, что полимеры – сложные структуры, при механическом воздействии закономерно кроме некой перестройки конформации, своих сложных молекул – например, при их растяжении молекулярные клубки растягиваются в спирали, в полимерах происходит хладотечение, т.е. молекулярные фрагменты полимеров рывками могут сдвигаться относительно друг друга, что кроме этого изменения формы таких макромолекул, в них обязательно и закономерно рвутся и химические связи. Довольно-таки прочные химические связи.
Мы предположили, что, по сути дела, в воде происходит нечто подобное. Но если в полимерах происходит деструкция, т.е. необратимое разрушение молекул, то в воде – это диссоциация. Молекулы воды рвутся… Теперь покажите первую картинку, если можно. Они рвутся вот по какой схеме. Они рвутся так, что образуются радикалы. Радикалы в данном случае – это нейтральные частицы, электрически нейтральные, но страшно химически активные: гидроксил – радикалы и атомы водорода…
В.В. Дмитрий, я на секунду прерву, потому что мне всё-таки приходится много в разных местах рассказывать, чем отличаются радикалы от молекул. А поскольку не все в нашей аудитории кончали химфаки…
Д.С. Мне, в общем, тоже приходится рассказывать.
В.В. Пожалуйста, чем тогда радикалы отличаются от молекулы надо сказать.
Д.С. Ну, это может потом, а сейчас…. Здесь нарисована, конечно же, схема. На самом деле всё происходит, конечно же, гораздо сложнее. Эта сложность отражена пометочкой «аква» – это значит, что всё это происходит в воде, что они там запечатаны в каких-то структурах, что и молекулы воды и получающиеся радикалы живут как бы в некоторых клетках, образованных из молекул воды же…Мы вообще-то довольно мало знаем о свойствах этих структурных водных образований. Знаем только, что эти образования, видимо, достаточно большие и рыхлые при сравнительно низких температурах – около нуля. И что где-то к градусам 60-70 они уже становятся гораздо меньше по размерам и несколько более плотными, чем те, которые получаются сразу после таяния льда.
Что же здесь является в некотором смысле парадоксальным? Дело в том, что отдельная молекула воды, не взаимодействующая с другими молекулами воды, например, в мономолекулярном паре, весьма прочна. Для того чтобы её порвать, нужно приложить к ней довольно-таки приличную энергию – 5,2 электрон/вольт. Это соответствует ультрафиолету, как Володя говорил, это 50 тысяч градусов по другой шкале, в другом формате. Вот так… И кажется странным, чтобы такой процесс диссоциации воды всё-таки шёл при заведомо меньших плотностях энергии.
Тем не менее, оказалось, и мы показали это в своих опытах, что такой процесс диссоциации воды всё-таки идёт.
А.Г. То есть вода диссоциирует.
Д.С. Да…Модели этого явления – такой модели, которую, как это считается, нужно бы иметь, и по которой можно было бы всё рассчитать – у нас, конечно же, нет. Но подход к воде как к полимероподобной среде для нас сразу же внёс ясность в некоторые процессы. Мы смогли сказать заранее, как, например, будет зависеть диссоциация воды от температуры, как она будет зависеть от концентрации растворённых в воде веществ. Как она будет зависеть от усилий, прилагаемых к этой воде, допустим, при её перемешивании или, например, при пропускании звука. Мы многие типы воздействия на воду перепробовали.
После того как вода продиссоциирует, сразу же начинают протекать реакции рекомбинации. Ну, и естественно, основная часть радикалов рекомбинирует, сваливаясь вновь в воду. Видите, там стрелки туда и обратно. Т.е. при диссоциации некоторых молекул воды появляются радикалы, и в чистой воде, где нет для них акцепторов, они в основном образуют вновь воду. Так это, в основном, и происходит, в 90% случаев – именно снова воду. Но случаются и другие события: находят друг друга атомы Н, и в воде возникает растворённый молекулярный водород. Это, по сути, инертный газ в наших условиях. При этом излучается квант света уже в фиолетовой области. Между собой рекомбинирует и гидроксил-радикал, и получается пероксид водорода. Он тут помечен красным вот почему. Этот процесс, вообще, исследовать довольно сложно, потому что уж очень малы концентрации этих радикалов, т.е. мала эффективность этого процесса диссоциации воды. Поэтому нужны довольно-таки высокие чувствительности измерений. Можно, конечно же, измерять и выход молекулярного водорода. И в некоторых опытах так и делают, когда достаточно интенсивно на воду чем-нибудь воздействуют. Либо сильным звуком, либо её интенсивно перемешивают в специальных растворах. И есть такие результаты, где измеряют выход водорода после воздействия на воду. Но это уже косвенное свидетельство диссоциации воды: появились из воды радикалы, и потом уже появился водород. Пока, все же, методики определения водорода не очень чувствительны.
А вот появление перекиси водорода в воде, как оказалось, можно измерять с очень высокой чувствительностью. В общем, мы разогнали некую методику, поработали с ней, и единообразным образом, измеряя появление перекиси водорода, все свои опыты и проводили. Мы воздействовали на воду так или иначе, а измеряли всегда, насколько в ней увеличивается содержание пероксида водорода – перекиси водорода.
А дело-то в том, что в природе перекись водорода всегда в воде есть, во всех водах, и в океане, и вместе с водами дождей она поступает, и когда тает лёд, – в талой воде много перекиси водорода. И конечно же, до нас появление перекиси водорода в этих случаях объясняли. Как правило, процессами, в которых макропотоков энергии хватало для диссоциации молекул воды. Например, фотолизом, электрическими разрядами, локальным повышением температуры.
Например, очень есть интересное явление – так называемый сонолиз и сопровождающая его сонолюминесценция. То есть в воду посылают звук, и через некоторое время в этой воде образуется перекись водорода. При этом плотность энергии звука на 5, 6 или даже 7 порядков ниже, чем нужно для того, чтобы порвать связь Н-ОН. Тем не менее, эффект есть, и перекись водорода возникает. Объясняли и объясняют и до сих пор диссоциацию воды при действии звука кавитацией, схлопыванием пузырьков, высокими температурами. Мы показали, что это не так, что диссоциация происходит в жидкой воде.
Опыты наши были достаточно тщательные, потому что перекись – это же неустойчивое соединение. Тем более что и образовывалось её очень мало. Когда мы вышли на уровни содержания перекиси менее 10-9 моля на литр, то есть менее чем миллиардные доли моля на литр, то выяснилось, что все, вообще-то, очень грязное. И вода очень грязная, и она сама содержит достаточно катализаторов разложения перекиси. И все сосуды выделяют из стенок вещества, разлагающие получающуюся перекись водорода…Эффект диссоциации воды поэтому был нами зафиксирован не сразу. В общем – была некая проблема, но мы её преодолели и измерили очень тщательно во многих случаях выход перекиси водорода при разных воздействиях на воду.
Вот, например… Покажите ещё один слайд, следующий.
Здесь результаты наших опытов по переконденсации воды. Каждый кружочек – это опыт, довольно длительный, когда воду испаряли при какой-то температуре и конденсировали при 2 градусах Цельсия. В конденсате измеряли концентрацию перекиси водорода. Этот результат хорошо укладывается в нашу гипотезу. То есть эффективность процесса диссоциации воды при испарении-конденсации уменьшается при повышении температуры испарения воды. Кстати, этот результат можно приложить к глобальным оценкам того, что происходит на Земле.
Сейчас, быть может, Володя расскажет немного про то, такие формы имеют по современным представлениям эти объединения молекул воды – ассоциаты…
В.В. всё-таки я бы хотел пояснить, если мы вернёмся назад к радикалам, насколько это важные и существенные вещи. Все молекулы, которые нас окружают, имеют чётное число электронов. Их может быть 2, их может быть 4, 6, 8 на тех внешних оболочках, с помощью которых эти молекулы взаимодействуют с другими. А радикалы – это частицы, у которых нечётное число электронов, на один меньше или на один больше, то есть либо у молекулы оторвался один, либо к ней присоединился откуда-то ещё электрон. И эти частицы, радикалы, всегда стремятся заполнить свою оболочку до чётного числа, то есть откуда-то взять ещё один дополнительный электрон. Именно поэтому вода – это устойчивая структура, а вот разорванная на две половинки Н и ОН, где у атома водорода один электрон и у второго остатка, гидроксил-радикала, тоже один электрон, это две очень энергичные частицы.
Д.С. На внешней орбите.
В.В. На внешней, естественно, орбитали. Здесь речь идёт о химии. И даже тот сам по себе факт, что если они рекомбинируют обратно, то есть воду порвали на атом водорода и гидроксил, а потом они соединились вновь, и снова получилась вода, имеет не тривиальные следствия. Результат очень существенный, очень важный. Потому что порвали эту воду с помощью звука, а когда она соединилась назад, то вспыхнул микроимпульс…
А.Г. Испустился свет.
В.В. Да, испустился свет. Конечно, он может не высветиться, но возник импульс энергии, который несопоставим по своей плотности с тем самым звуком, которым вода была разорвана. В этом смысле вода выступает в роли трансформатора энергии. Энергию низкой плотности, так сказать, тепло, которое нас окружает, она, вообще говоря, превращает в свет.
А.Г. А каков механизм этого? Резонансный механизм?
В.В. Чтобы ответить, надо снова вернуться к тому, почему звук может рвать воду. Из всех мыслимых возможностей это может происходить, только если в воде есть примерные структуры, как показано на этой картинке. На этой картинке показаны представления многих расчётчиков, квантовых химиков, которые, когда они стали уже исходить из того, что в воде есть полимеры, предложили, как они могут выглядеть. Это последних лет работы. Вот, обратите внимание, какие, так сказать, замечательные по своей красоте получаются структуры.
Д.С. Надо всё-таки сказать ещё раз, что это умозрительные структуры.
В.В. Так я же сказал, что это расчётные вещи.
А.Г. А что мешает наблюдению этих структур?
В.В. А наблюдению этих структур мешает следующее. Во-первых, судя по всему, в воде разнообразных полимеров очень много. То есть, если бы был какой-то один класс полимеров, тогда можно было бы их выделить, посмотреть. А в воде наверняка представлены самые разные формы. Скажем, по одной из английских работ, здесь наверху три таких сравнительно небольших кластера, и эти кластеры могут объединяться друг с другом, или разъединяться друг от друга и давать самые разнообразные полимеры. Химики, которые стремятся что-то определённое выделить, всё-таки хотят, чтобы данного вещества было достаточно много и оно было однородным. И более того, чтобы оно не было таким лабильным. То есть в процессе…
А.Г. То есть, чтобы время его существования было достаточным.
Д.С. Здесь можно много чего сказать. Но ты упомянул время существования – это действительно интересно. Вообще-то, считается, что продукты диссоциации воды – эти радикалы Н и ОН в чистой воде, где ничего другого нет, что они очень короткоживущие, потому что они, действительно, очень активные и диффундируют довольно быстро. Но оказалось, что они довольно долго могут существовать в воде. А долго они могут существовать, только если они как бы запечатаны в «клетках» структур воды. Их долгое существование – это хорошее свидетельство того, что в воде есть структуры, есть такие клетки, такие клатраты, такие пещерки, составленные из молекул воды, в которых радикалы сохраняются буквально часами. Этот результат опытов был для нас совершенно удивительным и приятным… Например, талая вода продолжает генерировать перекись водорода в течение суток, по сути дела. То есть там…
А.Г. То есть радикалы там присутствуют…
Д.С. Да, они там, образовавшись, остаются отчасти как бы временно запечатанными, и они ещё какое-то время находят друг друга, и из-за этого концентрация перекиси ещё долго нарастает после растаивания льда.
В.В. Сегодня уже можно даже найти объяснение, почему. Всё здесь оказывается взаимосвязанным. Наличие структур в воде, полимерных структур, даёт возможность образованию радикалов. И то же самое наличие структур даёт возможность их длительного времени жизни. Почему? Потому что радикал может, условно говоря, прилипать к этой структуре. И тогда тот самый электрон, который стремится получить откуда-то дополнительный электрон, он как бы размазывается по всей этой структуре. Этот электрон попадает в общую электронную систему этого кластера, и поэтому вероятность оторвать или отдать такой электрон уже существенно снижается. Уменьшение этой вероятности, это, соответственно, увеличение времени жизни.
Д.С. А то все ищут, ищут, а найти не могут…
В.В. Да, совершенно верно. А это увеличение линии жизни.
Д.С. Я тут сделал прикидки и получил, что каждый акт таяния льда приводит к тому, что одна триллионная молекула, т.е. из триллиона молекул льда при таянии, одна молекула воды диссоциирует. Действительно, почти неуловимые эффекты, совсем небольшие. Но в глобальном смысле следствия оказываются довольно велики, и результаты оценок приводят к очень к красивым результатам.
В.В. Поскольку у нас время ограничено, давай переходить к следствиям.
Д.С. Есть ещё время, и мне бы хотелось, чтобы все мы как-то по-новому глянули на эти процессы. У меня есть некая заготовка – клип. Может быть, сейчас его посмотрим, и я прокомментирую чуть-чуть.
А.Г. Пожалуйста. Если мы готовы, давайте дадим. Пока готовят клип, у меня ещё один вопрос, на который вы можете потом ответить. Почему вода расширяется при замерзании?
Д.С. Предполагается, что весь лёд на Земле имеет одну и ту же структуру – 1Н, эта структура подобна графиту. Вообще-то эта структура более рыхлая, чем вода, и при её организации происходит увеличение объёма вещества, а при таянии существует возможность уплотнения, и объём уменьшается…
А.Г. Вот пошёл клип.
Д.С. Смотрите, тут в облаках всё время происходят акты испарения и конденсация воды. И всякий раз это сопровождается диссоциацией воды. А здесь внутренние волны бегут в атмосфере. И это сопровождается образованием вертикальных колонн облаков. Здесь, при переконденсации воды в атмосфере диссоциация воды происходит слабее – уже 1 молекула из 1015, претерпевших переконденсацию диссоциирует при каждом акте. Но всё равно процессы так интенсивны, что в таких ситуациях, поскольку эта переконденсация происходит неоднократно, заготавливается много перекиси водорода. В конечном итоге в воде дождей её может накопиться до 10-4 моля на литр.
И здесь в потоках воды, в водопадах, в любой реке, в любом ручье, в ключах всё время происходит диссоциация воды. Раньше не предполагалось, что это следствия действия одного и того же механизма, это нельзя было оценить заранее. А вот море, в нём тоже всё пронизано процессами диссоциации воды. В море, в общем-то, достаточно много перекиси водорода. В море есть и свои механизмы образования перекиси. Однако в основном в море перекись поступает с дождями. Перекись водорода – быстро распадающееся вещество, и его присутствие означает, что его количество всё время пополняется. Такой, оказывается, этот мир, в нём из-за очень многих причин всё время генерируются радикалы из воды. И это страшно интересно: наличие радикалов приводит к тому, что, как оказалось, в природе протекают реакции, осуществление которых ранее не учитывалось. Например, утилизируется азот атмосферы. А начало всему – это то, что перекись водорода, распадаясь, даёт кислород. Причём наш расчёт показывает, что этот кислород настолько быстро продуцируется… Вот, смотрите какая красотища, какая волна…. Во всех этих движениях и трансформациях воды всё время происходит диссоциация воды. Кстати, в пене гребней волн она происходит на несколько порядков быстрее, чем, допустим, просто в волновых колебаниях воды.
В.В. Ну и сколько же образуется кислорода?
Д.С. В пене волн диссоциация протекает на несколько порядков эффетивней, чем при сонолизе. То есть всякие мифы о Венере…
В.В. Афродите…
Д.С. …розовопенной, по-моему, что-то такое рациональное в себе содержат…
А.Г. Так всё-таки, возвращаясь к вопросу, какое количество кислорода при этом образуется. Это может повлиять на биогенную точку зрения образования нашей кислородной атмосферы?
Д.С. Конечно. Биогенная гипотеза происхождения кислородной атмосферы представляется вообще малосостоятельной.
В.В. Да, если чуть-чуть ускорить наш процесс, то имеет смысл сказать следующее. Как только есть жидкая вода, сразу, исходя из тех процессов, о которых было сказано, идёт её распад. Как говорилось, в пене идёт интенсивный распад воды, потому что вода там формирует тонкие плёнки, и степень её структурированности, полимерности много выше, чем в объёме. Есть ещё один процесс, и они его изучали, – это фильтрация. То есть громадное количество воды на Земле фильтруется, фильтруется через очень тонкопористые структуры. И при этом распад идёт очень эффективно. Ведь распад воды тем более эффективен, чем более вода связана.
Почему при фильтрации этот процесс идёт чрезвычайно эффективно? Потому что стенки пор гидратированы, и там очень много фактически полимерной воды. А капиллярные силы эту воду рвут, и поэтому там получается очень большой выход радикалов. А перекись водорода, о которой говорил Дмитрий, выступает здесь как промежуточный продукт, потому что природа имеет дело не с абсолютно химически чистой водой, естественно, и абсолютно химически нейтральными сосудами, в которых эта вода находится. А она имеет дело именно с растворами, содержащими катализаторы, которые приводят практически к немедленному разрушению перекиси водорода. Поэтому она и не накапливается в больших количествах. А на что она распадается? Она распадается на кислород и воду тоже, естественно.
И вот оценки этого говорят …
Д.С. Вообще, когда эта идея о механохимической диссоциации воды была сформулирована, нам сразу стало ясно, что вот мы и нашли источник кислорода в атмосфере. До этого практически единственным рассматриваемым физическим источником был фотолиз паров воды в верхних слоях атмосферы. Там действительно такой распад воды происходит, но уже давно было ясно, что производительность этого процесса невелика…
В.В. Ну поэтому никто и не принимал его во внимание, все прекрасно знали…
Д.С. На этом рисунке наши оценки… Вот фотолиз, а вот испарение и конденсация, ось внизу даёт порядки величин. То есть испарение-конденсация дают кислорода более чем на два порядка больше, примерно, по сравнению с фотолизом. Кстати, весьма приличную долю вносит замерзание-таяние, в общем-то, на уровне фотолиза. Очень эффективны падения капель дождей, эти удары капель, и я хотел вам показать ещё потом клип под конец, если можно, это красиво. Просачивание воды в почву тоже заметный механизм для диссоциации воды в природе. При этом в такой уже минеральной, по сути, воде формируются разнообразные особые свойства, о чём сейчас и расскажет Володя. Ну и океан в целом, его течения, волнения…
Мы оценили следствия этих процессов, т.е сколько перекиси водорода появляется заново за год, а ведь примерно столько же выделяется и кислорода в результате распада этой перекиси, т.к. если столько-то приходит перекиси, то столько же её и распадается. И получается, что в нынешних условиях, с тем зеркалом воды и с этой температурной обстановкой. Вернадский вообще-то говорил, что температурная обстановка на Земле этак 4 с половиной миллиарда лет не меняется, может быть, чуть трендирует, да и не трендирует, а варьируется, дышит. Да, так вот, у нас получается, что за несколько миллионов лет такую кислородную атмосферу этот механизм может создать…
А.Г. И поддерживать?
Д.С. Естественно… Тут один из оппонентов нам сразу сказал: как же так? куда кислород-то уходит излишний? почему кислород на таком уровне в атмосфере поддерживается? Этот последний вопрос хорош: не знаем пока, почему он поддерживается на существующем уровне.
А.Г. То есть, погодите. Если сегодня всё, что содержит хлорофилл, с земной поверхности исчезнет, вырубят все леса, на что…
Д.С. О-о, красивая и стандартная позиция оппонентов. Но леса нам не только этим ценны…
А.Г. Это я знаю, да. Но всё же – состав атмосферы не изменится?
В.В. Кардинальным образом он не изменится.
Д.С. Вернадский писал: жизнь на планете «могла появиться, как только температура, давление, химическая обстановка стали отвечать необходимым для жизни изучаемых нами организмов условиям».
Это означает, что в самом начале геологического существования Земли сначала создалась эта оранжерея, то есть создался слой почвы, который можно было назвать плодородным, потому что он был насыщен утилизированным азотом и многими другими необходимыми добавками. Была кислородная атмосфера, был оторвавшийся слой озона – крыша этой оранжереи. И кто-то дунул, или что-то там произошло, и жизнь как пожар…
Вернадский прекрасно доказал, что не могло быть зарождения жизни в геологические времена существования Земли…
В.В. Дмитрий, это немножко уже по моей части. всё-таки Вернадский величайший учёный, но он творил…
А.Г. Платон мне друг, но истина дороже.
Д.С. Вернадский – это Вернадский.
В.В. Совершенно верно. Никто не подвергает…
А.Г. Какие у вас возражения, интересно?
В.В. Возражений практически нет. Возражения только к термину «думал…» …
Д.С. Ну не надо, это же не о воде.
В.В. Только к этому слову…
А.Г. То есть вы хотите сказать, что в начале эволюционного процесса на Земле сразу появились организмы, которые были, по сути дела, адекватны сегодняшним по потреблению кислорода.
Д.С. Да, совершенно верно, могу ещё процитировать Вернадского: «На протяжении всех геологических веков на Земле существовала жизнь, одинаковым образом отражавшаяся на химических процессах в земной коре». Каково?
В.В. Замечательно, всё совершенно правильно, только это надо уточнить сейчас уже на совершенно конкретных новых материалах, которые получены не только вами. Тут следует сказать, что часто многие оппоненты говорят: «А, это единичные работы, никто другой такого больше не показал». На самом деле, по поводу того, что вода может диссоциировать с образованием водорода и кислорода, в последние годы появились работы и абсолютно независимые. Например, есть такой «Джорнел оф кемикл коммьюникейшнс», в котором японцы в 98-м, потом в 99 году представили работы чисто технологические, где они показали, что в присутствии простейших катализаторов… Я свою точку зрения могу высказать?
Д.С. Это ты про работы группы профессора Икеды? И без ссылок на нас. А мы это же, практически, опубликовали в 93 году…
В.В. Печатайтесь на японском – и будут ссылки на вас. Итак, они показали, что в присутствии простейших катализаторов, окислов железа, марганца, меди, просто перемешивание воды приводит к интенсивному освобождению водорода. Их-то там интересовал водород по совершенно понятным причинам, а не кислород. К такому интенсивному освобождению, что в принципе эту методику можно использовать для получения водорода. Понятное дело, что если из воды получается водород, то, извините, кислород тоже куда-то должен деваться.
Д.С. У них пока КПД получился как у паровоза примерно. Но и то… Ну, у нас тоже получалось нечто вроде.
В.В. Есть и другие работы, которые тоже говорят о появлении кислорода в результате абиогенных процессов. Например, движения материков. И отсюда чрезвычайно важное следствие. Следствие, просто кардинально меняющее все наши представления о ходе биологической эволюции. Если кислород был в начале, до того как появились оформленные организмы, они всё-таки появились не мгновенно, я не большой сторонник идеи креационизма о том, что сразу хлоп – и всё было уже сформировано так, как мы сейчас наблюдаем. Так вот, если в начале был кислород, то, соответственно, весь процесс, не эволюции, а назовём её развитие системы организмов на земле, фактически развитие биосферы, он, конечно, шёл совершенно не по тем путям, которые сейчас пытаются описать.
Что касается анаэробов. Анаэробы есть и сейчас, когда, слава тебе, господи, хватает кислорода в атмосфере. Потом, что такое анаэроб – это, как правило, микроорганизм, который погибает при уже чрезвычайно низких концентрациях кислорода в среде. И основную свою энергию получает за счёт окислительно-восстановительных процессов, связанных не с молекулярным кислородом. Но у этого самого анаэроба есть всегда ферменты, которые имеют дело с теми активными формами кислорода, которые всегда получаются из воды, при диссоциации воды. Когда я познакомился с работами об абиогенной продукции кислорода, естественно, заинтересовало меня то, что сейчас в эволюционной теории очень много говорят об этих чёрных курильщиках, белых курильщиках на дне океанов, где существуют свои собственные чрезвычайно богатые биосферы.