Физика и философия
ModernLib.Net / Философия / Гейзенберг В. / Физика и философия - Чтение
(стр. 7)
Автор:
|
Гейзенберг В. |
Жанр:
|
Философия |
-
Читать книгу полностью
(344 Кб)
- Скачать в формате fb2
(117 Кб)
- Скачать в формате doc
(117 Кб)
- Скачать в формате txt
(19 Кб)
- Скачать в формате html
(117 Кб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
|
|
Хотя, таким образом, экспериментальный базис общей теории относительности еще довольно узок, она, однако, содержит идеи огромнейшей степени важности. В течение всего времени развития математики от античности до XIX столетия евклидова геометрия рассматривалась как самоочевидная. Аксиомы Евклида имели отношение к основаниям любой математической теории геометрического характера и представляли собой базис, который не мог быть поставлен под сомнение. Затем в XIX столетии математики Больяй и Лобачевский, Гаусс и Риман нашли, что можно построить другие геометрии, которые могут быть развиты с той же математической строгостью, что и евклидова. Поэтому вопрос о том, какая геометрия является справедливой, с этого времени становится эмпирическим. И только в трудах Эйнштейна этот вопрос смог быть поставлен как физический. Геометрия, о которой идет речь в общей теории относительности, включает в себя не только геометрию трехмерного пространства, но и четырехмерное многообразие пространства и времени. Теория относительности устанавливает связь между геометрией этого многообразия и распределением масс во вселенной. Значит, эта теория поднимает в новой форме старые вопросы пространства и времени в случае очень больших расстояний, и она предполагает ответы, которые могут быть проверены наблюдениями. Следовательно, можно снова поставить очень старые философские вопросы, занимавшие человеческий разум со времени самых ранних эпох философии и науки: конечно или бесконечно пространство? Что было до начала времени? Что будет в конце времени? Или у вре[74] мени нет ни начала, ни конца? Эти вопросы нашли различные ответы в различных религиях и философских системах. В философии Аристотеля, например, все пространство вселенной представлялось как конечное, хотя оно и было бесконечно делимо. Пространство возникает благодаря протяженности тел, оно в известном смысле растягивается телами. Поэтому там, где нет никаких тел, нет и пространства. Вселенная состоит из Земли, Солнца и звезд - конечного числа тел. По ту сторону сферы неподвижных звезд нет никакого пространства. Поэтому пространство вселенной и было конечным. В философии Канта этот вопрос принадлежал к тому, что он назвал <антиномиями>, - к числу вопросов, на которые нельзя ответить, так как два различных доказательства ведут к взаимно противоположным выводам. Пространство не может быть конечным, потому что мы не можем себе представить <конец> пространства. И какой бы точки пространства мы ни достигли, мы всегда представляем себе, что можем двигаться еще дальше. Но пространство не может быть и бесконечным, потому что пространство это нечто, что мы можем себе представить, иначе понятия пространства не возникло бы вовсе, а мы не можем представить себе бесконечное пространство В отношении этого второго утверждения доказательство Канта нельзя передать дословно. Утверждение <пространство бесконечно> означает для нас нечто негативное: мы не можем дойти до <конца> пространства. Для Канта, однако, бесконечность пространства означает нечто действительно данное, нечто, что <существует> в смысле, который мы едва ли можем выразить. Кант приходит к выводу, что на вопрос о том, конечно или бесконечно пространство, нельзя дать никакого рационального ответа, потому что вселенная в целом не может быть предметом нашего опыта. Подобное же положение возникает и относительно проблемы бесконечности времени. В исповеди Августина, например, вопрос поставлен в следующей форме: <Что делал бог до того, как он создал мир?> Августин не был удовлетворен известным ответом: <Бог был занят тем, что создавал ад для людей, задающих глупые вопросы>. Это был бы слишком дешевый ответ, полагает Августин; и он пытается рационально проанализировать проблему: только для нас время течет, только мы ожидаем его как будущее, оно протекает для нас как настоящее мгновение, и мы вспоминаем о нем, как о прошлом. Но бог не находится во времени. Тысяча лет для него - что один день, и один день - что тысяча лет. Время было создано вместе с миром, оно, стало быть, принадлежит миру, и поэтому в то время, когда не существовало вселенной, не было и никакого времени. Для бога весь ход событий во вселенной был дан сразу. Значит, не было никакого времени до того, как мир был создан богом. Правда, легко понять, что в подобных формулировках понятие <создан> тотчас же приводит к существенным трудностям. Это слово, в том виде как оно обычно употребляется, означает нечто, что возникает и чего ранее не существовало, и в этом смысле оно уже предполагает понятие времени. Поэтому в рациональных выражениях невоз[75] можно дать определение того, что можно понимать под оборотом речи <время было создано>. Это обстоятельство снова напоминает нам часто обсуждаемый урок, который необходимо извлечь из новейшего развития физики, а именно: что всякое слово или всякое понятие, каким бы ясным оно нам ни казалось, имеет все-таки только ограниченную область применения. Эти вопросы о бесконечности пространства и времени могут быть в общей теории относительности поставлены и отчасти - на основании эмпирического материала решены. Если теория правильно описывает связь четырехмерной геометрии пространства и времени с распределением масс во вселенной, то астрономические наблюдения о распределении спиральных туманностей в пространстве могут дать нам информацию о геометрии вселенной. Тогда можно будет построить по крайней мере модели вселенной, космологические картины, следствия которых могут быть сравнены с эмпирическими фактами. Наши современные астрономические познания не позволяют окончательно решить, какую из нескольких возможных моделей следует выбрать. Может оказаться, что пространство вселенной конечно. Но это не означало бы, что в каком-нибудь месте есть <конец> вселенной. Это вело бы только к тому, что если бы мы все далее и далее продвигались во вселенной в одном определенном направлении, то в конце концов должны были бы возвратиться к точке, из которой начали движение. Положение, стало быть, напоминало бы двумерную геометрию на поверхности Земли, где мы также, если будем двигаться из определенной точки все далее и далее, скажем, в восточном направлении, в конце концов возвратимся к этой точке с запада. Что касается времени, то здесь, кажется, что-то вроде <начала> имело место. Многие наблюдения указывают на то, что вселенная около 4 миллиардов лет назад имела <начало> или, во всяком случае, что в то время материя вселенной была сконцентрирована в значительно меньшем объеме пространства, чем сейчас, и что с того времени вселенная все еще продолжает расширяться из этого небольшого объема с различными скоростями. Это одно и то же время в 4 миллиарда лет все снова и снова появляется во многих различных наблюдениях, например возраста метеоритов, минералов на Земле и т. д., и поэтому было бы, вероятно, затруднительно найти этому объяснение, совершенно отличное от идеи возникновения мира 4 миллиарда лет назад. Если идея <возникновения> в этой форме окажется правильной, то это будет означать, что по ту сторону указанного момента времени - то есть ранее чем 4 миллиарда лет назад - понятие времени должно претерпеть существенные изменения. Это более осторожное заключение становится на место простой формулировки о создании мира. При современном состоянии астрономических наблюдений эти вопросы геометрии пространства-времени еще не могут быть решены с какой-нибудь степенью надежности. Но уже довольно интересно знать, что эти вопросы, возможно, позднее смогут быть решены в один прекрасный момент на прочной основе астрономических знаний. [76] Даже если дальнейшее рассмотрение ограничить более надежно обоснованной специальной теорией относительности, то можно не сомневаться, что эта теория в огромной степени изменила наши представления о структуре пространства и времени. Беспокоит в этих изменениях, пожалуй, не столько их особенная природа, сколько тот факт, что они вообще оказались возможны. Структура пространства и времени, которую Ньютон математически установил в качестве основы своего описания природы, не содержала никаких внутренних противоречий, была проста и очень точно соответствовала употреблению понятий пространства и времени, к которому мы привыкли в повседневной жизни. Соответствие фактически было столь близким, что ньютоновские определения можно было рассматривать просто как точную математическую формулировку этих понятий пространства и времени повседневной жизни. До теории относительности считалось само собой разумеющимся, что процессы могут быть упорядочены во времени независимо от их расположения в пространстве. Мы знаем, что в повседневной жизни это впечатление возникает потому, что скорость света значительно больше каких угодно других скоростей, с которыми имеют дело в повседневной жизни. В то время это ограничение, естественно, никто не представлял себе отчетливо. Но даже при условии, что сейчас мы знаем об этом ограничении, едва ли можно себе представить, что порядок событий во времени должен зависеть от их пространственного расположения, то есть от места, в котором они происходят. Философия Канта позднее привлекла внимание к тому факту, что понятия пространства и времени включаются в наши отношения с природой, а не только принадлежат природе самой. Мы не можем описывать природу, не пользуясь этими понятиями. Поэтому в известном смысле эти понятия априорны, они представляют собой прежде всего условие опыта, а не результат опыта, и потому вообще предполагается, что они не могут быть изменены новым опытом. Ввиду этого необходимость изменения оказалась большой неожиданностью. Ученые в первый раз ощутили, какая необходима осторожность при попытках применить понятия повседневной жизни к усовершенствованному на базе новейшей экспериментальной техники опыту. Даже точная и непротиворечивая формулировка этих понятий на математическом языке ньютоновской механики или их тщательный анализ в философии Канта не дали никакой гарантии от необходимости их критического анализа, который стал возможен позднее благодаря исключительно точным измерениям. Это предупреждение позднее оказалось для развития новейшей физики чрезвычайно полезным, и понять квантовую теорию было бы наверняка значительно труднее, если бы успех теории относительности не предостерег физиков от некритического применения понятий, которые заимствованы из повседневной жизни или классической физики.
[77] VIII. КРИТИКА И КОНТРПРЕДЛОЖЕНИЯ В ОТНОШЕНИИ КОПЕНГАГЕНСКОЙ ИНТЕРПРЕТАЦИИ КВАНТОВОЙ ТЕОРИИ
Копенгагенская интерпретация квантовой теории далеко увела физиков от простых материалистических воззрений, господствующих в естествознании XIX столетия. Так как эти воззрения были не только самым тесным образом связаны с естествознанием того времени, но и очень обстоятельно проанализированы в некоторых философских системах и благодаря этому очень глубоко проникли в само мышление человечества, то вполне понятно, что было предпринято много попыток подвергнуть копенгагенскую интерпретацию критике и заменить ее другой, более соответствующей представлениям классической физики и материалистической философии. Эти попытки предпринимаются с позиций, которые можно разделить на три различные группы. Представители первой группы хотя и принимают полностью копенгагенскую интерпретацию экспериментов, по крайней мере поскольку это касается экспериментов, проведенных до настоящего времени, но не удовлетворены используемым при этом языком, то есть лежащей в основе ее философией, и заменяют ее другой. Другими словами: они пытаются изменить философию, не меняя при этом физики. В некоторых работах представителей этой первой группы согласие с копенгагенской интерпретацией ограничивается экспериментальными предсказаниями этой интерпретации относительно всех экспериментов, которые были до сих пор проведены или которые только имеют отношение к обычной физике электронов. Представители второй группы ясно представляют себе, что копенгагенская интерпретация является единственно приемлемым истолкованием, если экспериментальные данные действительно повсюду согласуются с предсказаниями этой интерпретации. Поэтому в работах этой группы делаются попытки в определенных критических пунктах изменить квантовую теорию. Наконец, представители третьей группы просто выражают свою общую неудовлетворенность квантовой теорией, не выдвигая при этом определенных контрпредложений, будь они физического или философского характера. К представителям этой группы можно причислить Эйнштейна, Лауэ и Шредингера. Исторически возражения против копенгагенской интерпретации выдвигались прежде всего этой группой. [78] Все оппоненты квантовой теории едины, однако, в одном пункте. Было бы желательно, по их мнению, возвратиться к представлению о реальности, свойственному классической физике, или, говоря на более общем философском языке, к онтологии материализма, то есть к представлению об объективном, реальном мире, мельчайшие части которого существуют столь же объективным образом, что и камни и деревья, независимо от того, наблюдаем мы их или нет. Но как разъяснено в одной из предыдущих глав, это невозможно или, во всяком случае, вследствие природы атомных явлений, возможно не полностью. Нашей задачей не может являться высказывание пожеланий относительно того, какими должны быть, собственно говоря, атомные явления. Нашей задачей может быть только понимание их. Когда разбирают работы представителей первой группы, то важно с самого начала иметь в виду, что толкования, содержащиеся в этих работах, не могут быть опровергнуты экспериментом, так как они ведь только повторяют копенгагенскую интерпретацию на другом языке. Со строго позитивистской точки зрения можно было бы даже сказать, что здесь мы имеем дело совсем не с контрпредложениями, выдвинутыми против копенгагенской интерпретации, а с их точным повторением на другом языке. Поэтому можно только спорить о целесообразности этого языка. Эта группа контрпредложений использует идею <скрытых параметров>. Так как законы квантовой теории предсказывают результаты эксперимента, вообще говоря, только статистически, то, основываясь на классической точке зрения, можно было бы предположить, что существуют скрытые параметры, которые, будучи ненаблюдаемы в любом обычном эксперименте, в действительности определяют результат эксперимента, как это всегда считалось ранее в соответствии с принципом причинности. Поэтому в некоторых работах была предпринята попытка изобрести такие параметры внутри рамок квантовой механики. В этом плане выдвинул, например, свои контрпредложения против копенгагенской интерпретации Бом, идеи которого недавно были до некоторой степени поддержаны также де Бройлем 10. Интерпретация Бома разработана вплоть до деталей. Поэтому она может служить здесь основой обсуждения. Бом рассматривает частицы как объективно существующие структуры, подобно материальным точкам классической механики. Волны в конфигурационном пространстве являются в его интерпретации также <объективно существующими>, подобно электрическим полям. Правда, конфигурационное пространство представляет собой пространство многих измерений, относящихся к различным координатам всех принадлежащих систем частиц. В связи с этим возникает первая трудность: что имеют в виду, когда называют волны в конфигурационном пространстве <реально существующими>? Конфигурационное пространство представляет собой очень абстрактное пространство. Слово же <реальное> происходит от латинского слова
и означает <предмет>, <вещь>. Но вещи существуют в обычном, трехмерном, а не в абстрактном конфигура[79] ционном пространстве. Рассмотрение волн в конфигурационном пространстве в качестве объективных имело бы оправдание лишь в том случае, если бы мы этим рассмотрением хотели сказать, что эти волны не зависят от наблюдателя Но все же их вряд ли можно назвать действительно существующими, или реальными, если мы только .не хотим произвольно менять значение слов Бом определяет затем линии, пересекающие поверхности постоянной фазы под прямым углом, как возможные траектории частиц. Какая из этих линий окажется действительной траекторией частицы, зависит, по мнению Бома, от истории системы и свойств измерительного прибора, и решить этот вопрос, не зная о системе и измерительном приборе больше того, что фактически может быть известно, нельзя. Эта история (системы и прибора) фактически содержит в таком случае <скрытые параметры>, а именно реальную траекторию электрона до того, как эксперимент начался. Одним из следствий этой интерпретации, как подчеркнул Паули, является то, что электроны многих атомов в стационарном состоянии должны покоиться, что они, стало быть, не должны совершать никаких движений по орбитам вокруг атомного ядра Это кажется на первый взгляд противоречащим эксперименту, так как измерения скоростей электронов в основном состоянии (например, с помощью Комптон-эффекта) всегда дают в итоге некоторое распределение электронов основного состояния по скоростям, которое в соответствии с правилами квантовой механики дается квадратом волновой функции в пространстве скоростей (импульсов). В этом случае, однако, Бом может ответить, что измерение не подлежит больше рассмотрению на основании прежних законов. Поэтому хотя при обычной оценке результата измерения в качестве распределения по скоростям будет получаться квадрат волновой функции в пространстве скоростей (импульсов), но если при рассмотрении измерительной аппаратуры принимать во внимание квантовую теорию и особенно введенные Бомом ad hoc квантово-механические потенциалы, то вывод - в действительности электроны в стационарном состоянии всегда покоятся - был бы всетаки допустим. Этому соответствует тот факт, что введенные Бомом в этой связи квантовые потенциалы имеют очень странные свойства: например, они отличны от нуля на любом сколь угодно большом расстоянии. Такой ценой Бом надеется получить возможность утверждать: <Для нас нет необходимости отказываться в области квантовой теории от точного, рационального и объективного описания индивидуальных систем> Но такое объективное описание разоблачает себя при этом как разновидность идеологической надстройки, только в очень малой степени связанной с непосредственной физической реальностью. Ибо ведь скрытые параметры в интерпретации Бома таковы, что они никогда не могут встретиться в описании реальных процессов, поскольку квантовая теория остается неизменной. Чтобы избежать этой трудности, Бом высказал надежду, что в будущих экспериментах (например, на расстояниях, меньших 10-13 см) [80] скрытые параметры все-таки еще будут иметь физический смысл, и тем самым квантовая теория может оказаться ложной. Бор по поводу высказывания таких надежд обычно говорит> что по структуре они подобны приблизительно такому утверждению: <Можно надеяться, что впоследствии окажется, что в некоторых случаях 2Х2 ==5, ибо это было бы выгодно для наших финансов>. На самом деле исполнение надежд Бома лишило бы почвы не только квантовую механику, но тем самым и интерпретацию Бома. Конечно, в то же время необходимо подчеркнуть, что приведенная аналогия, хотя она и представляется полной, не является с точки зрения логики неотразимым аргументом против возможного будущего изменения квантовой теории в предлагаемом Бомом направлении. Ибо в принципе можно себе представить, что, например, последующее развитие математической логики может придать определенный смысл утверждению, что в исключительных случаях 2Х2 может быть равно 5 и что в таком случае эта обобщенная математика, возможно, даже будет использоваться для вычислений в области экономики. И все же на основании фактов, не прибегая даже к убедительным логическим аргументам, мы убеждены, что такие изменения в математике ничем не смогут помочь нашим финансам. Поэтому непонятно и то, как могут быть применены для описания физических явлений те математические идеи, на которые Бом указывает как на возможное осуществление своих надежд. Если отвлечься от этого возможного изменения квантовой теории, то язык Бома, как уже отмечалось, не говорит в отношении физики ничего иного, чем язык копенгагенской интерпретации. В таком случае остается только вопрос о целесообразности этого языка. Наряду с тем, что мы уже отмечали о траекториях частиц, когда рассматривали эти рассуждения как ненужную идеологическую надстройку, следует также отметить, что язык Бома разрушает присущую квантовой теории симметрию координат и скоростей, или, точнее говоря, координат и импульсов. Так как свойства симметрии всегда имеют отношение к сокровеннейшей физической сущности теории, то остается непонятным, что мы выиграем от устранения их в соответствующем языке. Подобное же возражение в несколько другой форме можно привести и против статистической интерпретации Боппа и несколько отличной от нее интерпретации Феньеша. Бопп принимает в качестве основного квантовомеханического процесса возникновение и уничтожение частиц, которые являются реальными в классическом смысле слова, а именно в смысле материалистической онтологии, и законы квантовой механики рассматриваются как особый случай корреляционной статистики, которая здесь применяется к процессам возникновения и порождения частиц. Такая интерпретация может быть проведена, как показал Бопп, без противоречий, и она проливает свет на интересные связи между квантовой теорией и корреляционной статистикой. С физической точки зрения она ведет к тем же самым выводам, что и копенгагенская интерпретация. В позитивистском [81] смысле она, следовательно, опять же изоморфна этой интерпретации, так же как и интерпретация Бома. Однако в ее языке нарушается симметрия волн и частиц, являющаяся обычно особенно характерной чертой математической схемы квантовой теории. Уже в 1928 году Иордан, Клейн и Вигнер показали, что эта математическая схема может быть истолкована не только как квантование движения частиц, но и как квантование трехмерных материальных волн. Нет, следовательно, основания считать волны материи менее реальными, чем частицы. Симметрия волн и частиц могла бы в интерпретации Боппа сохраниться, пожалуй, в том случае, если бы соответствующая корреляционная статистика была развита и в применении к материальным волнам в пространстве и времени и если бы, таким образом, можно было оставить открытым вопрос о том, частицы или волны следует считать настоящей реальностью11. Предположение о реальном в смысле материалистической онтологии существовании частиц всегда необходимо ведет к попыткам считать, что по крайней мере в принципе возможны отклонения от соотношения неопределенностей. Например, Феньеш утверждает, что существование соотношения неопределенностей, которое он также связывает с определенными статистическими соотношениями, никоим образом не исключает возможность одновременного и сколь угодно точного измерения координат и скорости. Однако Феньеш не указывает, как такие измерения должны практически выглядеть, и поэтому его соображения, повидимому, остаются абстрактно-математическими. Вейцель, предложения которого родственны предложениям Бома и Феньеша, связывает искомые скрытые параметры с новым, придуманным ad hoc сортом частиц, зеронами, которые никаким способом невозможно наблюдать. Представление такого рода таит в себе опасность, что взаимодействие реальных частиц с зеронами приведет к рассеянию энергии по большому числу степеней свободы поля зеро-нов, так что вся термодинамика превратится в хаос. Вейцель не объяснил, как он сможет преодолеть эту опасность. Точку зрения, из которой исходили в критике копенгагенской интерпретации все группы рассмотренных до сих пор физиков, вероятно, можно лучше всего охарактеризовать, если вспомнить дискуссию, посвященную специальной теории относительности. Те, кто не был удовлетворен устранением Эйнштейном абсолютного пространства и абсолютного времени, могли аргументировать примерно следующим образом. Специальная теория относительности никоим образом не доказала, что не существует абсолютное пространство и абсолютное время. Она только показала, что истинное пространство и истинное время во всех обычных экспериментах себя не проявляют. Но если правильно учесть соответствующие законы природы и таким образом ввести для движущихся систем координат правильные кажущиеся времена, то ничто не будет говорить против предположения об абсолютном пространстве. Было бы даже правдоподобно предположить, что центр тяжести нашей Галактики (по крайней мере [82] приближенно) покоится в абсолютном пространстве. Критик специальной теории относительности мог еще добавить, что можно надеяться, что в будущем измерения сделают определение абсолютного пространства, так сказать <скрытого параметра> теории относительности, возможным и тем самым теория относительности будет опровергнута. Эту аргументацию нельзя, как это сразу видно, опровергнуть экспериментально, так как при этом не делается никаких утверждений, отличающихся от утверждений специальной теории относительности. Но такая интерпретация теории относительности нарушала бы, по крайней мере на применяемом языке, как раз важнейшее свойство симметрии теории относительности, а именно инвариантность относительно преобразований Лоренца, и поэтому ее следует считать неприемлемой. Аналогия обсуждений специальной теории относительности с обсуждениями квантовой теории очевидна. Законы квантовой механики таковы, что введенные ad hoc скрытые параметры никогда нельзя будет наблюдать. Кроме того, важнейшие свойства симметрии были бы нарушены, если бы мы ввели в интерпретацию теории скрытые параметры в качестве фиктивных величин. Возражения, которые содержатся в работах Блохинцева и Александрова, по самой постановке довольно отличны от обсужденных выше. Эти возражения с самого начала ограничиваются исключительно философской стороной вопроса. В физическом плане Блохинцев и Александров без всяких оговорок соглашаются с копенгагенской интерпретацией. Тем более резкими оказываются внешние формы полемики: <Среди самых разнообразных идеалистических направлений в современной физике так называемая <копенгагенская школа> - наиболее реакционная. Разоблачению идеалистических и агностических спекуляций этой школы вокруг коренных проблем квантовой механики и посвящена данная статья>, - пишет Блохинцев во введении к одной из своих статей. Резкость полемики показывает, что здесь идет речь не только о науке, но и о веровании. Цель критики высказана в заключение статьи цитатой из сочинения Ленина: <Как ни диковинно с точки зрения <здравого смысла> превращение невесомого эфира в весомую материю и обратно, как ни <странно> отсутствие у электрона всякой иной массы, кроме электромагнитной, как ни необычно ограничение механических законов движения одной только областью явлений природы и подчинение их более глубоким законам электромагнитных явлений и т. д. - все это только лишнее подтверждение диалектического материализма> 12. Хотя, стало быть, предпосылки работ Блохинцева и Александрова лежат вне области естествознания, все же обсуждение их аргументов весьма поучительно. В данном случае главная задача заключается в спасении материалистической онтологии, поэтому атакам подвергается прежде всего введение в интерпретацию квантовой теории наблюдателя. Александров пишет: <Поэтому под результатом измерения в квантовой меха[83] нике нужно понимать объективный эффект взаимодействия электрона с подходящим объектом. Разговоры о наблюдателе нужно исключить и иметь дело с объективными условиями и объективными эффектами. Физическая величина есть объективная характеристика явления, а не результат наблюдения>. Волновая функция характеризует, согласно Александрову, объективное состояние электрона. В своем изложении Александров упускает, что взаимодействие системы с измерительным прибором в том случае, когда прибор и система считаются изолированными от остального мира и в целом рассматриваются в соответствии с квантовой механикой, как правило, не ведет к определенному результату (например, к почернению фотопластинки в определенной точке). Когда против этих заключений выдвигают утверждение: <Но в действительности пластинка после взаимодействия всетаки почернела в определенном месте>, то тем самым от квантово-механического рассмотрения изолированной системы, состоящей из электрона и пластинки, отказываются. В этом заключается фактический характер события, которое может быть описано с помощью понятий повседневной жизни, в математическом формализме квантовой теории непосредственно не содержится и в копенгагенскую интерпретацию входит благодаря введению представления о наблюдателе. Конечно, не следует понимать введение наблюдателя неправильно, в смысле внесения в описание природы каких-то субъективных черт. Наблюдатель выполняет скорее функции регистрирующего <устройства>, то есть регистрирует процессы в пространстве и времени; причем дело не в том, является ли наблюдатель аппаратом или живым существом; но регистрация, то есть переход от возможного к действительному, в данном случае, безусловно, необходима и не может быть исключена из интерпретации квантовой теории. В этом пункте квантовая теория самым тесным образом связана с термодинамикой, поскольку всякий акт наблюдения по всей своей природе является необратимым процессом. Только посредством таких необратимых процессов формализм квантовой теории может быть непротиворечивым образом связан с действительными процессами в пространстве и времени. С другой стороны, необратимость, если ее снова перевести на язык математического изображения событий, является следствием неполноты знаний, которые наблюдатель имеет о системе, и поэтому не является все-таки чем-то вполне объективным. Формулировки Блохинцева несколько иные, чем Александрова. <В квантовой механике состояние частицы характеризуется действительно не <само по себе>, а принадлежностью частицы тому или иному ансамблю (смешанному или чистому). Эта принадлежность имеет совершенно объективный характер и не зависит от сведений наблюдателя>. Такие формулировки уводят на самом деле уж очень далеко (даже слишком далеко) от онтологии материализма. Дело в том, что, например, в классической термодинамике положение иное. При определении температуры системы наблюдатель подразумевает, что система представляет собой только один образец, выбранный [84] из канонического ансамбля, и он, следовательно, может считать, что система, по-видимому, обладает различными энергиями. Однако в действительности система имеет в классической физике в определенный момент времени только определенное значение энергии, все другие значения не реализуются. Наблюдатель, следовательно, впадет в ошибку, если будет считать возможным, что в данный момент существует другое значение энергии. Отсюда канонический ансамбль содержит высказывания не только о самой системе, но и о неполноте сведений наблюдателя о системе.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
|
|