Современная электронная библиотека ModernLib.Net

История новоевропейской философии в её связи с наукой

ModernLib.Net / Философия / Гайденко П. / История новоевропейской философии в её связи с наукой - Чтение (стр. 3)
Автор: Гайденко П.
Жанр: Философия

 

 


      Точность новой меры, как видим, не имеет ничего общего с прежним понятием точности; если для античной математики существенно было найти критерий, позволяющий сравнивать и различать конечные величины, устанавливая соотношение между ними, то для математики, как ее понимает Николай Кузанский, важно показать, что перед лицом бесконечности всякие конечные различия исчезают, и двойка становится равна единице, тройке и любому другому числу. И в самом деле, говоря об интеллектуальном (т.е. наиболее точном) знании, которое он отличает от рассудочного, лишь приблизительного знания, Кузанец замечает: "Если обратишься к единству рассудка, интеллекту, где число пять не больше числа три или числа два и нет различения четных, нечетных, больших и малых чисел, потому что всякое рассудочное число разрешается там в простейшее единство, то окажется, что равенство двух и трех пяти истинно только в сфере рассудка".
      Как видим, отождествление единого с бесконечным - это акция, далеко не безразличная для развития научного знания, поскольку она касается философских оснований науки. Для того, кто в этом пункте согласится с Кузанцем, арифметика уже не будет самой точной среди наук, как это полагали Платон, Аристотель, Евклид, Архимед. Высказывание типа 2 + 3 = 5 есть, согласно Кузанцу, лишь приблизительное знание. А не может ли столь же парадоксальным путем быть доказано, что знание, прежде считавшееся только приблизительным, на самом деле является точным? Ведь парадокс, коль скоро его впустишь как законный метод мышления в философию и науку, оказывается взрывной силой, способной совершать самые неожиданные и самые революционные преобразования. И как мы знаем, именно снятие водораздела между тем, что в античности и в средние века считали точным и приблизительным знанием, положило начало новому типу науки - науке нового времени.
      Пойдем теперь дальше. В области геометрии, как показывает Николай, дело обстоит так же, как и в арифметике. Различение рациональных и иррациональных отношений, на котором держалась геометрия древних греков, Кузанец объявляет имеющим силу только для рассудка. И это вполне понятно, коль скоро для более высокого и точного интеллектуального познания диаметр круга совпадает с окружностью и, естественно, диагональ квадрата - с его стороной. Только для рассудка, согласно Николаю, существуют иррациональные отношения, ибо рассудок не в состоянии постигнуть совпадение противоположностей.
      Как отмечает в этой связи Эрнст Кассирер, "Николай Кузанский впервые отваживается высказать положение, весьма далекое от античного метода исчерпывания: что круг по своему понятийному содержанию и бытию есть не что иное, как многоугольник с бесконечным количеством сторон. Понятие "предел" получает здесь положительное значение: предельное значение может быть определено не иначе как в силу неограниченного процесса приближения.
      Незавершенность этого процесса теперь уже не является свидетельством внутреннего, понятийного недостатка, а, напротив, является доказательством его силы и своеобразия: разум может осознать свои возможности только в бесконечном объекте, в безграничном процессе".
      Трудно, однако, согласиться с Кассирером в том, что "незавершимость этого процесса теперь уже не является свидетельством... понятийного недостатка, а, напротив, является доказательством его силы". Это уже истолкование философии Кузанца в духе неокантианской теории познания, с точки зрения которой бесконечный процесс приближения к истине свидетельствует о мощи человеческого разума. В отличие от кантианцев, Кузанец не считал, что высшим началом бытия является бесконечное становление, а бесконечное приближение к Богу - это и есть единственная форма бытия самого Бога. Такое истолкование есть результат уже очень далеко зашедшего процесса секуляризации. Кузанец же, напротив, видит в невозможности постижения Абсолюта слабость, а не мощь познающего разума. Как отмечает Рудольф Хаубст, "для Кузанца ведь еще не существовало... враждебного противостояния подчеркнуто автономного философского мышления христианской вере и христианской теологии". Поэтому, рассматривая познание как нескончаемое движение, Кузанец видел в этом не его преимущество, как Кассирер, а скорее именно его недостаток. Так же точно, как и в невозможности перейти от познания конечного мира к познанию бесконечного Бога, поскольку последний как раз и был той реальностью, которая прежде всего и занимала Николая Кузанского.
      Кузанец отлично понимает, что введенный им принцип совпадения противоположностей - единого и бесконечного, минимума и максимума отменяет, если говорить строго, математическую науку, как, впрочем, и вообще все точное знание в том смысле, как его понимала античность и средние века. "Если тебя спросят, - пишет он, - почему у любого треугольника две стороны в сумме больше третьей, или почему у квадрата квадрат диагонали вдвое больше квадрата стороны, или почему квадрат стороны треугольника, противоположной прямому углу, равен сумме квадратов других сторон и так далее, ты ответишь: на путях рассудка это необходимо потому, что иначе получилось бы совпадение противоречивого".
      Математика, по убеждению Кузанца, есть продукт деятельности рассудка; рассудок как раз и выражает свой основной принцип в виде запрета противоречия, т.е. запрета совмещать противоположности. Этот главный закон рассудка, сформулированный Аристотелем, согласно Николаю Кузанскому, составляет фундамент евклидовых "Начал", в которых подытожено развитие древнегреческой математики на протяжении нескольких веков. "Я как-то попытался доказать, - пишет Николай, - что соизмеримость диаметра и окружности недостижима и недопустима из-за необходимости избегать вышесказанного совпадения (имеется в виду совпадение противоположностей. П.Г.), и внезапно понял, чту в геометрии подлежит утверждению и чту отрицанию; как в понятиях души, так и во всех доказательствах Евклида или чьих бы то ни было при разнообразии фигур я обнаружил эту единственную причину всего". К "общим понятиям души" Кузанец относит не только аксиомы, но также и постулаты, и определения, не различая между собой эти три группы допущений.
      Согласно Кузанцу, аксиомы, так же как и базирующиеся на них доказательства, являются тем "забором", с помощью которого рассудок заботливо отгородил свою территорию от тех противоречий, которые могли бы взорвать все возводимое им здание науки. И в самом деле, если проследить историю становления античной математики, тесно связанную с развитием античной философии и логики, то можно заметить, как некоторые важнейшие аксиомы геометрии возникают из стремления преодолеть те противоречия, которые влекут за собой допущение понятия актуальной бесконечности, и тем самым создать предпосылки для построения непротиворечивой системы знания. Такова, например, аксиома Евдокса, известная также под именем аксиомы Архимеда и составляющая одно из важнейших допущений, без которых была бы невозможна евклидова геометрия. Вот как формулируется аксиома Евдокса в виде IV определения V книги "Начал": "Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга". С помощью этой аксиомы Евклид хочет найти возможность устанавливать отношения не только между соизмеримыми, но и между несоизмеримыми отрезками (величинами) и тем самым нейтрализовать те затруднения, которые были порождены открытием несоизмеримости. Но, как отмечает В. Вилейтнер, аксиома Евдокса у Евклида решает и еще одну задачу, а именно: "Евклид хочет лишить права находиться в отношении "бесконечно малые" и "бесконечно большие" образы, как, например, введенные уже древними философами (Демокрит) последние частицы (атомы, неделимые) отрезка или же всю бесконечную прямую". Греческим математикам были известны так называемые роговидные углы, т.е. углы, образованные окружностью и касательной (или же двумя кривыми). Но криволинейные и прямолинейные углы не находятся между собой ни в каком отношении роговидный угол всегда меньше любого угла. Иначе говоря, "роговидные углы по отношению к любому прямолинейному являются актуальными бесконечно малыми, или неархимедовыми, величинами". Аксиома Евдокса оказывается непосредственно связанной с необходимостью избежать парадоксов актуально бесконечного, которые были выявлены Зеноном и вызвали стремление избежать их не только у математиков - Евдокса, Евклида, Архимеда, но и у Аристотеля, положившего принцип непрерывности (аналогичный аксиоме непрерывности Евдокса) в основу античной физики.
      Как видим, намерения Николая Кузанского радикальны: он не просто ставит под сомнение основательность того фундамента, на котором строилась греческая математика и физика, - он убежден, что этот фундамент построен не с помощью высшей способности - интеллекта, но с помощью низшей - рассудка, а потому подлежит пересмотру. Николай Кузанский вновь возвращает нас к Зенону с его парадоксами бесконечности, с тем, однако, различием, что Зенон видел в парадоксах орудие разрушения (ложного знания), а Кузанец видит в парадоксе средство созидания, с помощью которого можно заново создать фундамент человеческого знания (правда, само это знание имеет парадоксальный характер - оно есть "умудренное неведение"). "Если исследуешь математику, - пишет он, - устанавливай одно более интеллектуальное (математическое) искусство, другое - как бы чувственное, а среднее - как бы рассудочное. То же в арифметике, то же в геометрии, то же в музыке".
      Критикуя тех, кто возводит в высшую норму мышления законы рассудка, Кузанец чаще всего имеет в виду Аристотеля и перипатетиков. И в самом деле, Аристотель сделал очень много для того, чтобы создать научное знание - т.е. знание достоверное и непротиворечивое - о предметах эмпирического мира: он приложил большие усилия для опровержения Платона, убежденного в том, что наука о чувственном мире, в котором все подвержено постоянному изменению, уничтожению и возникновению, принципиально невозможна.
      Может возникнуть впечатление, что, критикуя рассудочные основания античной математики, Николай Кузанский отвергает Аристотеля и обращается к традиции Платона. В действительности в своей критике оснований античной математики Кузанец оказывается едва ли не дальше от Платона, чем от Аристотеля. И в самом деле, Платон считал, что среди наук самым точным и достоверным знанием обладает математика, и прежде всего арифметика, наука о числах. Так, различение четного и нечетного, с которого начинается арифметика пифагорейцев, Платон считал столь достоверным и существенным, что не мог отнести его только к сфере рассудка как низшей интеллектуальной способности по сравнению с умом; не случайно Платон положил это различение также и в основу своей философии в виде различия самотождественного и иного, "единицы" и "беспредельной двоицы". Специфика платоновского и неоплатонического отношения к математике в том и состояла, что математическое знание у них ставилось выше всякого знания о чувственном мире, не могущего претендовать на большее, чем быть только "мнением". Математика поэтому в традиции платоновской Академии всегда выступала как "органон" философии, и ее точность (особенно это касается арифметики) была вне всякого подозрения.
      Напротив, Кузанец характеризует математическое знание, получившее свое воплощение в "Началах" Евклида, как приблизительное в принципе и объявляет различение рационального и иррационального (из которых первое имеет "природу единого", а второе - "природу иного", если говорить языком Платона, Плотина и Прокла) имеющим силу лишь для низшей познавательной способности - рассудка. Тем самым Кузанец решительно пересматривает основания платоновско-пифагорейской традиции. При этом его постоянная апелляция к числу и числовой символике отнюдь не свидетельствует о противном. Во-первых, тут мы видим еще один пример столкновения разных тенденций в мышлении Николая Кузанского: ему не удается до конца провести то переосмысление, которому он подвергает даже наиболее близких ему античных философов, в результате одни принципы он пересматривает и отменяет, но другие, хотя они и оказываются явно связанными с первыми и потому также должны подлежать пересмотру, пока остаются у него почти неизменными. Поэтому у Кузанца можно встретить и утверждения, под которыми подписался бы Плотин или Прокл, и такие утверждения, которые противоречат принципам неоплатонизма. Это относится не в последнюю очередь именно к философскому обоснованию математики. И во-вторых, само понятие числа Кузанец толкует символически. "Я убежден, - говорит он, - что они (пифагорейцы. - П.Г.), говоря о числе, имели в виду не число математическое и происходящее из нашего ума - ведь само собой понятно, что это число не есть принцип какой-нибудь вещи - но что они символически и доступным для рассудка образом (rationaliter) говорили о числе, происходящем из божественного ума, в отношении которого математическое число есть только образ".
      Как видим, Николай Кузанский хочет иметь дело с числом, происходящим из божественного ума, а потому отвергает основы прежней математики, имеющей рассудочное происхождение. Математика для Кузанца, пишет Эрнст Кассирер, становится "подлинным, единственно истинным и "точным" символом спекулятивного мышления и спекулятивного созерцания единства противоположностей... Если учение о Боге отказывается... от схоластической логики, от логики родовых понятий, подчиняющейся закону противоречия и исключительного третьего, то оно требует нового типа логики математической, которая не исключает совпадения противоположностей, а как раз нуждается в самом этом совпадении - совпадении абсолютно-наибольшего и абсолютно-наименьшего как в постоянном принципе и необходимом средстве прогрессирующего познания".
      С помощью идеи тождества единого и бесконечного и рассмотрения бесконечного как меры Кузанец, таким образом, приводит как бы во взвешенное состояние вообще всю прежнюю математическую науку, а не отдельные ее положения. Начиная с Николая Кузанского, понятие бесконечного начинает сопрягаться с понятием единицы и у самих математиков, что мы и увидим далее при рассмотрении "Геометрии неделимых" Кавальери, а также и у Галилея. Не менее существенным для становления механики и математики XVII в. было также то уравнение в правах приблизительного и точного знания, которое мы видим у Кузанца, ведь именно Кузанец объявил приблизительным математическое знание, почитавшееся издревле за точное.
      в) "Привативная" бесконечность Вселенной
      Тезис о бесконечном как мере вносит существенные преобразования также и в астрономию. Поскольку, как отмечает Кузанец в духе античной науки, "соразмерности между бесконечным и конечным не бывает", а всякое познание это (опять-таки в духе античной философии) установление соразмерности, то строгое (точное) познание чего бы то ни было, кроме "бесконечной прямизны", этой "точнейшей меры всех сущностей", абсолютно исключено (вывод, как видим, прямо противоположный смыслу античного понимания науки). Если уж геометрия и даже арифметика не могут дать нам точного знания, то что же тогда сказать об астрономии, имеющей дело не с фигурой или числом, а с движением небесных тел, а здесь уже, конечно, достичь точного знания (в его античном и средневековом истолковании) значительно труднее. И Кузанец рассуждает последовательно, в соответствии с прежними своими допущениями, что "никакое движение не может быть равно другому и одно не может быть мерой другого, раз мера неизбежно отличается от измеряемого".
      Что касается астрономии, то здесь утверждение Николая как раз не является чем-то новым и неожиданным: ни в античности, ни в средние века не утверждали, что астрономия по точности своих вычислений может сравниться с арифметикой. Поскольку астрономия прибегает к измерению и неизбежно имеет дело с измерительными приборами, то ее расчеты принципиально носят приблизительный характер. Поэтому, видимо, ни один астроном не стал бы спорить с утверждением Николая Кузанского, что "в приложении к астрономии вычислительное искусство лишено точности, раз оно исходит из предпосылки, что движением Солнца можно измерить движение всех других планет. Положение неба, будь то какое-либо место, восход или заход созвездий, возвышение полюса и подобные вещи, точно познать тоже невозможно, а поскольку и никакие два места не согласуются в точности по времени и положению, то ясно, что частные суждения на основании звезд далеки от точности".
      Но, хотя утверждение Кузанца применительно к астрономии не содержит в себе ничего необычного, тем не менее предпосылки, на которых оно построено, представляют собой нечто действительно новое. Ведь Кузанец утверждает, что приблизительность астрономических расчетов в принципе ничем не отличается от приблизительности расчетов геометрии и арифметики. А это для того времени переворот в понимании науки. И не только этот вывод по отношению к астрономии следует из допущения, что мерой конечного должно быть бесконечное. Если в области арифметики и геометрии бесконечное как мера превращает знание о конечных соотношениях в приблизительное, то в астрономию эта новая мера вносит, кроме того, еще и принцип относительности. Происходит это следующим образом. Так как точное определение размеров и формы мироздания может быть дано лишь через отнесение его к бесконечности, то в нем не могут быть различены центр и окружность. "Из-за необходимого совпадения минимума с максимумом, - пишет Николай, - такой центр мира совпадает с внешней окружностью. Значит, у мира нет и внешней окружности. В самом деле, если бы он имел центр, то имел бы и внешнюю окружность, а тем самым имел бы внутри самого себя свои начало и конец".
      Рассуждение Кузанца, помимо всего прочего, интересно и в том отношении, что оно задним числом выявляет далеко не само собой понятную связь между философской категорией единого и космологическим представлением о наличии центра мира, а тем самым - о его конечности. Отождествление единого и беспредельного, проведенное Николаем, разрушает и ту картину космоса, из которой исходили не только Платон и Аристотель, но и Птолемей и Архимед и которая просуществовала на протяжении почти всего средневековья, хотя, правда, и была несколько раз поставлена под вопрос в период зрелой схоластики. Для античной науки и большинства представителей античной философии космос был очень большим, но конечным телом. А признак конечности тела - это возможность различить в нем центр и периферию, "начало" и "конец". Согласно Кузанцу, "подобное далеко от истины. Но если невозможно, чтобы мир был заключен между телесным центром и внешней окружностью, то непостижим этот мир, и центр и окружность которого - Бог; хотя этот мир не бесконечен, однако его нельзя помыслить и конечным, поскольку у него нет пределов, между которыми он был бы замкнут!"
      Вспомним, что предел, как его понимали античные греки, - это мера. Но у Кузанца мерой, пределом является беспредельное, бесконечность. А познание с помощью такой меры тождественно невозможности познания. Поэтому "мир, его движение и его форму постичь невозможно".
      Перелом в мышлении, произведенный Николаем Кузанским по отношению к античной - в том числе и неоплатонической - философии, а также по отношению к средневековому схоластическому мышлению, особенно ориентированному на философию Аристотеля, привел к очень важным и далеко идущим последствиям. Значение этого перелома было основательно рассмотрено в интересной работе Г. Гаймсета, известного немецкого философа и историка культуры. Согласно Гаймсету, в лице Кузанца мы встречаем подлинное начало философии и науки нового времени. Однако сам Николай при этом, по убеждению Гаймсета, представляет собой средневекового мыслителя, продолжающего то направление развития средневековой теологии, которое пробивает себе дорогу уже у Дунса Скота и Мейстера Экхарта. Сущность этого направления составляют поиски адекватного понятийного выражения того содержания христианского вероучения, которое осмыслялось философски в X-XIII вв. в формах античного мышления главным образом благодаря усвоению схоластикой аристотелевской философии. Античное же мышление, с его, как пишет Гаймсет, "ценностным предпочтением конечного", не позволяет адекватно выразиться христианской идее личного Бога; христианское понятие творения не может быть согласовано с "дуализмом греческой философии".
      Таким образом, согласно Гаймсету, характерная для Кузанца тенденция к отождествлению единого и беспредельного - двух противоположных начал в философии неоплатоников и Аристотеля - вызвана стремлением христианского теолога преодолеть свойственный античному мышлению дуализм; результатом этого оказывается и "ценностное предпочтение бесконечного", к которому тяготело христианское мышление с самых первых его шагов в эпоху патристики. Отсюда, согласно Гаймсету, с неизбежностью вытекает и утверждение Кузанца о бесконечности мира.
      Однако мы знаем, что Кузанец не без оговорок признает бесконечность мира, его трактовка этой бесконечности отличается от той, которая имеет место у Джордано Бруно, Рене Декарта или Исаака Ньютона. Как следует понимать слова Николая о том, что мир не конечен, но и не бесконечен в собственном смысле? Дело в том, что Кузанец различает два вида бесконечного: негативно бесконечное и привативно бесконечное. "...Только абсолютный максимум негативно бесконечен, только он есть то, чем может быть во всей потенции. Наоборот, Вселенная, охватывая все, что не есть Бог, не может быть негативно бесконечной, хотя она не имеет предела и тем самым привативно бесконечна". Негативная бесконечность Бога - это бесконечность актуальная, то, что Кузанец чаще всего называет абсолютным максимумом. Привативная же бесконечность скорее соответствует тому, что мы сегодня называем потенциальной бесконечностью и что в античности предпочитали называть беспредельным. И в самом деле, Вселенная привативно бесконечна, так как, по словам Кузанца, она "не имеет предела". Такого рода потенциально бесконечное - это то, что всегда может быть актуально больше, но это как раз признак конечности, ибо актуальная бесконечность не может становиться больше или меньше от прибавления к ней или отнятия от нее какой бы то ни было величины.
      Как разъясняет Николай Кузанский, конечная величина не может стать бесконечной путем постепенного возрастания. Вот такого рода конечностью, могущей возрастать без предела, но никогда не могущей превратиться в актуальную бесконечность, Кузанец считает Вселенную. Она может возрастать без предела, потому что не имеет предела создавшее ее бесконечное всемогущество Бога, или, в терминах неоплатоников, которыми часто пользуется Кузанец, потому что она эманирует из абсолютного максимума.
      Итак, Вселенная потенциально бесконечна, а это значит, что у нее нет ни центра, ни окружности. Ибо центр и окружность - границы, а бесконечность, пусть даже и привативная, не может иметь никаких границ. Но из этого следует вывод, очень важный для дальнейшего развития не только философии, но и астрономии и физики: "Центр мира не более внутри Земли, чем вне ее". Таким образом, согласно учению Николая Кузанского, Земля не может быть центром мира, поскольку, во-первых, у Вселенной нет никакого центра, а во-вторых, вообще не может быть такой совершенной сферы, чтобы все точки ее периферии были одинаково удалены от центра: "Точной равноудаленности от разных мест вне Бога не найти, потому что только Он один есть бесконечное равенство". Бог, по Кузанцу, есть абсолютный центр мира и он же абсолютная окружность всего. А раз Земля не центр мира, то она "не может быть совершенно неподвижной, а обязательно движется так, что может двигаться еще бесконечно медленнее. И как Земля не центр мира, так сфера неподвижных звезд не есть его окружность, хотя при сравнении Земли с небом наша Земля и кажется ближе к центру, а небо - ближе к окружности".
      Отсюда следует немаловажный вывод, меняющий очень многое в средневековом мировоззрении: Земля ничем принципиально не отличается от других небесных тел - она не находится в центре мира, не является неподвижной, а значит, объективно нет никакого "верха" и "низа", положение небесных тел относительно и, стало быть, Землю можно считать таким же небесным телом, как Солнце или Луну. "Неверно, будто наша Земля - самая ничтожная и низменная", как это полагали до сих пор. "Земля - благородная звезда, имеющая свои особые и отличные от других звезд свет, тепло и влияние, как и любая звезда тоже отличается от любой другой светом, природой и влиянием".
      Это высказывание Кузанца противоречит предпосылкам аристотелевской физики, которая исходит из различия подлунного и надлунного миров. Он пересматривает как базисные утверждения науки о природе, господствовавшие на протяжении почти двух тысячелетий, так и вековые представления о несоизмеримо различном характере "неба" и "земли". Тем самым Кузанец подготовляет коперниканскую революцию в астрономии. При этом он идет дальше, чем то позволяют астрономические знания той эпохи. Он, например, не видит существенного различия между Землей и Солнцем. "Не доказательство низменности Земли и ее темный цвет, - пишет Николай. - Находись кто-нибудь на Солнце, оно тоже не показалось бы ему столь же сияющим, как нам. Если рассмотреть солнечное тело, оно имеет ближе к центру некую как бы землю, по окружности - некоторое как бы огненное свечение, а в промежутке - как бы водянистое облако, а также более светлый воздух. Такие же элементы есть и у Земли".
      Как видим, задолго до Коперника Кузанец формулирует целый ряд смелых утверждений (не останавливаясь перед мифологемами), подрывающих основы астрономической теории Птолемея: Вселенная бесконечна пусть и привативно, но это значит, что у нее нет предела; Земля не является центром мироздания, а потому и не остается неподвижной. Отсюда следует далее, что в небе нет неподвижных и фиксированных полюсов, согласно терминологии самого Николая Кузанского, но "любая часть мира... движется". А это значит, что не существует объективно данной точки отсчета, исходя из которой можно было бы измерять движения небесных тел. Отсюда следует, что астрономические расчеты не просто приблизительны, что допускалось в астрономии и раньше, но они могут быть грубо ошибочными - а это уже новый взгляд на астрономию. "Поскольку мы можем воспринять движение только в сравнении с чем-то неподвижным, как-то полюсами или центрами, заранее не нуждаясь в них при любом измерении движений, то очевидно, что мы ходим путями догадок (coniecturis) и относительно всего ошибаемся".
      Понятие центра мира, с точки зрения Николая Кузанского, есть не более чем субъективное допущение. Объективно центра нет нигде, или, что то же самое, он находится везде. Центром мы обычно называем, говорит Кузанец, точку зрения наблюдателя, которому свойственно считать себя в центре, где бы он ни находился, - такова иллюзия восприятия.
      Роль философии Николая Кузанского в становлении научного мышления нового времени до сих пор недостаточно оценена в нашей литературе. А между тем мы видим, как именно Кузанец подготавливает логические и онтологические предпосылки для того переворота в астрономии, который связан с именем Коперника, и того переворота в физике (прежде всего механике), который осуществил Галилей.
      И в самом деле, вдумаемся, какой серьезный тезис выдвигает Кузанец: все фиксированное, все определенное дано с конечной точки зрения, только относительность абсолютна, ибо она есть выражение бесконечности. В результате получается, что принцип определенности (высшее выражение которого - единое Платона и неоплатоников) может быть, по Кузанцу, характеристикой только низшего, рассудочного уровня бытия; все тождественное себе, включая и сам логический закон тождества (онтологическим и даже сверхонтологическим, или сверхбытийным, выражением которого была в античной философии категория единого), отныне объявляется сферой рассудочного знания, и только единое, понятое в своем тождестве с бесконечным как совпадение противоположностей, т.е. как нарушение закона тождества, представляет для Кузанца выражение высшей, божественной реальности.
      Именно Николай Кузанский положил начало той линии в новоевропейской философии, которая идет от Бруно через Спинозу и затем к Шеллингу и Гегелю и которую характеризует стремление мыслить высшее начало бытия как тождество противоположностей. Для представителей этой линии не существует двух различных начал бытия, как их мыслили античные философы - Платон и Аристотель, Прокл, Плотин, а именно единого и беспредельного, формы и материи; в этом смысле всех их можно называть монистами, противниками дуализма. Если исходить, как это делает, например, Гаймсет, из того положения, что монизм в философии представляет адекватную форму для христианского монотеизма, тогда придется согласиться с ним в том, что и патристика, и средневековая западная теология имеют неадекватную содержанию христианского вероучения форму.
      В действительности же представляется более правильным другое объяснение. Характерная для Кузанца тенденция мыслить высшее начало бытия как тождество противоположностей (единого и бесконечного) была результатом пантеистически окрашенного сближения Бога с миром, Творца с сотворенным им сущим. В результате такого сближения было нарушено важное как для неоплатоников, так и для раннехристианской патристики убеждение в непостижимости единого. Кузанец отходит как от Прокла, так и от Псевдо-Дионисия Ареопагита; он считает неприменимым по отношению к божественному первоначалу закон тождества, но полагает, что мы можем постигнуть Бога особым образом - путем нарушения основного закона мышления, который и объявляется главным принципом уже не ума, а рассудка. Ибо совпадение противоположностей требует отмены закона тождества, что постоянно подчеркивает Николай Кузанский.
      Казалось бы, что различие здесь между Григорием Нисским и Псевдо-Дионисием, с одной стороны, и Николаем Кузанским - с другой, почти неуловимо. Ведь можно возразить: поскольку Кузанец называет познание с помощью принципа совпадения противоположностей "умудренным неведением", т.е., строго говоря, даже и не знанием, а "знанием о незнании", то чем же тогда его точка зрения отличается от точки зрения на этот счет представителей прежней апофатической теологии, допустим, того же Дионисия, утверждающего, что Бог непостижим?
      А тем не менее различие здесь есть. И состоит оно в том, что Григорий и Дионисий, указывая на непостижимость божественной реальности, не делают отсюда вывода относительно того, что закон тождества, или, иначе говоря, определенности, всякого сущего в строгом смысле слова неприменим и по отношению к тварному бытию.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34