Современная электронная библиотека ModernLib.Net

Зоопсихология: конспект лекций

ModernLib.Net / Животные / Филипьечев Алексей / Зоопсихология: конспект лекций - Чтение (стр. 7)
Автор: Филипьечев Алексей
Жанр: Животные

 

 


      Наряду с этим Кардош четко определил границы познавательных возможностей животного при решении задач. Здесь, на его взгляд, имеются две возможности: локомоторное и манипуляционное познавание. При локомоторномпознавании животное изменяет свое пространственное положение в среде, не изменяя при этом саму среду. При манипуляционномпознавании происходит активное изменение среды животным.
      Манипуляционное познавание осуществляется при формировании инструментальных навыков. Кардош провел исследования, в которых показал, что животное (в опыте – крысу) можно научить выбирать в лабиринте разные пути, приводящие к одной точке, а затем двигаться дальше по-разному, например в одну или в другую сторону. Это может служить примером локомоторного познавания. Однако, по Кардошу, никакое животное (кроме человекообразных обезьян) нельзя обучить тому, что в зависимости от выбора одного из двух путей передвижения произойдут вполне определенные изменения в окружающей среде. В эксперименте, например, пищу заменяли другим подкреплением – водой. Л. Кардош пишет: «...человек же удивился бы, найдя в одном и том же месте разные предметы, когда он подходил справа и слева, но он обучился бы после первого же опыта. Развитие именно здесь делает скачок... Человек полностью может освободиться от направляющего воздействия пространственного порядка, если временно-причинные связи требуют другого».

4.3. Научение и общение. Подражание у животных

      Роль подражания в формировании поведения у высших животных трудно переоценить. Явление подражания не всегда относится к процессу научения, оно может принадлежать и к инстинктивному поведению. Примером такого подражания может послужить аллеломиметическое поведение(взаимная стимуляция), когда выполнение действий (видотипичных) одними животными побуждает других к выполнению таких же действий (например, одновременный сбор пищи). При этом определенный род действий, присущий всем особям вида, поощряется.
      Научение путем подражания получило название «имитационное научение».Суть этого процесса состоит в том, что у животного индивидуально формируются новые формы поведения путем непосредственного восприятия действий других животных. Иными словами, в основе такого научения лежит общение с другими особями. Имитационное научение можно разделить на облигатное и факультативное.
      В процессе облигатногоимитационного научения его результат целиком укладывается в рамки определенного видового стереотипа. Путем подражания особи учатся выполнять жизненно важные действия. Все эти действия присущи обычному поведенческому «репертуару» вида. Облигатное научение наиболее характерно для молодых животных. Примером может служить формирование защитной реакции на хищника в виде бегства у молодняка стайных видов рыб. При этом они подражают поведению взрослых рыб, например при виде поедания хищником других членов стаи. По мнению Л.А. Орбели, такое имитационное поведение чрезвычайно важно, «оно служит главным охранителем вида, ибо громадное преимущество заключается в том, что зрители, присутствующие при акте повреждения члена их же стада или их сообщества, вырабатывают рефлекторные защитные акты и таким образом могут в будущем избежать опасности».
      Облигатное имитационное научение служит также важным элементом реакции следования и распознавания молодняком млекопитающих пищевых объектов. Молодые особи таких животных, как птицы и человекообразные обезьяны (шимпанзе), приобретают путем облигатного имитационного научения опыт в гнездостроении.
      Простейшее факультативноеимитационное научение проявляется в имитации движений, не присущих данному виду. При этом имитация происходит на основе аллеломиметического стимулирования. Например, при содержании человекообразных обезьян в условиях, когда животные могут постоянно контактировать с людьми, обезьяны начинают производить разнообразные действия с предметами быта, имитируя действия человека. Это поведение уже не будет видотипичным: формируются новые приемы манипуляционной активности. Такие действия получили название «невидотипичное имитационное манипулирование».
      При факультативном имитационном научении решение задач происходит в более сложной форме. Одно животное выполняет определенные действия по решению задачи, другое (животное-зритель) лишь наблюдает за его действиями, а навык вырабатывается у него в ходе наблюдения. Способность к такому научению отмечена у разных млекопитающих: крыс, собак, кошек, низших и человекообразных обезьян, однако особенно важную роль играет оно у последних. На основе наблюдений в природе А.Д. Слоним сделал вывод о том, что формирование условных рефлексов в обезьяньем стаде происходит преимущественно на основе подражания.
      Но не все навыки могут образовываться у животных путем факультативного имитационного научения. Таким способом не формируются инструментальные навыки. Это подтверждают опыты американского исследователя Б. Б. Бека. В его опытах были использованы павианы, которые наблюдали за использованием сородичами орудий при решении задач. Павианы-зрители не приобрели инструментальных навыков, однако они чаще и интенсивнее, чем до этих опытов, совершали манипуляции орудиями, за использованием которых наблюдали. Этот пример доказывает, что при выработке сложных навыков в условиях общения важную роль играет аллеломиметическое поведение и невидотипичное имитационное манипулирование.
      Подражание захватывает также область сигнализации и коммуникации. Примером может служить звукоподражание птиц. В этом случае происходит стимуляция видотипичной акустической сигнализации (например, такие явления, как «хоры» птиц). Подражание птиц чужим звукам и песням можно определить как невидотипичное имитационное манипулирование. Освоение птенцами видотипичных звуков путем подражания пению взрослых особей относится к облигатному имитационному научению.
      К исследованию процесса подражания у животных может быть применено два принципиально различных подхода.
      1. При изучении амеломиметжескогоповедения животные изолируются друг от друга и обучаются раздельно, лишь затем их сводят вместе. Животных можно обучить реагировать на один и тот же сигнал по-разному, добиваясь при этом противоположной реакции. После сведения животных и предъявления им этого сигнала можно выяснить, что преобладает у данной группы животных: взаимная стимуляция или результаты обычного научения каждого животного. Результаты позволят судить о силе аллеломиметической реакции у данных животных, т. е. о силе подражания.
      2. Если изучается имитационноенаучение, животным с начала экспериментов обеспечивается общение. При этом одна особь (животное-актер) обучается исследователем за определенное подкрепление на глазах у остальных особей (животные-зрители). О факультативном имитационном научении можно говорить в случае, если особи, которые не обучались экспериментатором и не получали за решение задачи поощрения, научатся решать эту задачу правильно и без собственных упражнений, на основе лишь наблюдения. Например, когда обезьянам кидают один банан, его всегда получает вожак стаи. Однако вскоре на определенный сигнал начинают собираться все особи стаи, хотя банан по-прежнему получает только вожак. Таким образом формируются навыки у всех животных («зрителей»), что помогает решить задачу и в отсутствие вожака («актера»).
      Явления подражания в естественных условиях среды довольно тесно и сложно переплетаются с внутригрупповыми отношениями животных. Так, в сообществах, помимо взаимного стимулирования к совместному выполнению определенных действий, существует и противоположный фактор – подавление «доминантными» особями действий остальных членов сообщества. Например, в описанном выше опыте обезьяны боялись даже подойти к установке, в которую клали банан, а тем более не решались взять его. Однако у обезьян есть и особые, как бы «умиротворяющие», сигналы. Цель этих сигналов – уведомить доминирующую особь (вожака) о готовности остальных членов стаи только наблюдать. Эта возможность обеспечивает осуществление аллеломиметического поведения и имитационного научения.
      Научение на разных этапах поведенческого акта. Любая поведенческая реакция животного начинается с внутреннего стимула (потребности). Этот стимул активизирует животное, побуждает его к началу активной поисковой деятельности. Начальная фаза, само поисковое поведение и завершающая фаза всегда четко генетически фиксированы, однако путь, по которому животное достигнет завершающей фазы поведения, может изменяться. Он зависит от процесса научения, от того, насколько изменчиво поведение животного, в какой степени оно способно к правильной ориентации в условиях изменчивой среды.
      У высших животных главным средством достижения завершающей фазы поведенческого акта является факультативное научение. Его успешность зависит от совершенства механизма ориентировки животного в пространстве и во времени. Чем совершеннее эта ориентировка, тем успешнее будет преодоление преграды, т. е. условий, в которых дан объект. Совершенство ориентировочных реакций животного напрямую зависит от уровня его психической деятельности. Наиболее важны здесь высшие психические функции – интеллектуальные возможности. Они придают поведению животного гибкость и вариабельность, тем самым обеспечивая адаптивные возможности поведенческих реакций.

Тема 5
Развитие психической деятельности животных в онтогенезе

5.1. Развитие психической деятельности в пренатальном периоде

      Одна из центральных проблем зоопсихологии – вопрос о врожденных и приобретенных компонентах поведения животного. Этот вопрос тесно соприкасается с изучением онтогенеза поведения. Важно оценить, какие элементы поведения передаются особи по наследству (а значит, генетически закреплены), а какие – приобретаются в ходе индивидуального развития. Над этой проблемой работали многие ученые-зоопсихологи, все они высказывали различные мнения о взаимоотношениях элементов поведения в ходе онтогенеза. Так, известный английский зоопсихолог К. Ллойд-Морган писал, что «деятельность, являющаяся результатом координирования 10 % первоначально бессвязных движений, есть новый продукт, и этот продукт есть результат усвоения, приобретения, а не наследуется в качестве определенного, координированного действия. Как скульптор создает статую из куска мрамора, так усвоение создает действие из массы данных случайных движений. Приобретается определенное, координированное, реактивное или ответное действие. Но есть известные действия, которые определены с самого дня рождения, которые наследуются готовыми и сочетание или координирование которых тотчас после рождения уже отличается полным совершенством. Определенность и координирование действий в данном случае не индивидуальны, а заимствованы от предков».
      Ученый указывает на тот факт, что многие действия животных могут быть совершены ими без дополнительной информации. Например, птенец водоплавающей птицы смело входит в воду в первый раз. Существовало и противоположное мнение, согласно которому на развитие поведения оказывает влияние только один из факторов (внутренний – инстинкт или внешний – научение). Приверженцами механистических взглядовна развитие поведения (без действия внутренних факторов) были Г.Е. Когхилл и Цин Янг Куо, в России – В.М. Боровский. Они считали, что все поведение является результатом только научения, которое происходит у животного, начиная с эмбрионального периода развития. Эта концепция сформировалась в противовес теории об изначальной запрограммированности поведения.
      В настоящее время сложилось понимание онтогенеза поведения как совокупностивзаимодействующих внешних и внутренних факторов, сочетания безусловно– и условно-рефлекторной деятельности. Л.В. Крушинский предложил термин «унитарная реакция» для обозначения актов поведения, имеющих сходное внешнее выражение при различных способах формирования. В унитарной реакции объединяются условные и безусловные поведенческие элементы. Такие поведенческие акты направлены к «выполнению определенного акта поведения, имеющего разные пути осуществления и в то же время определенный шаблон конечного исполнения».
      Таким образом, унитарные реакции направлены на выполнение одиночного действия, которое имеет приспособительное значение. При этом безусловный и условный компоненты могут находиться в различном соотношении.
      Онтогенез поведения тесно соприкасается с морфофункциональными изменениями организма, так как врожденные движения являются функцией «рабочих» органов. Зоолог Б.С. Матвеев показал, что в ходе онтогенеза изменяется отношение организма к факторам среды. Это обусловливает различные формы приспособления особей к среде в процессе индивидуального развития. На ранних стадиях онтогенеза адаптации могут привести к изменениям в морфологической (строение организма) и функциональной (функции организма) сферах. При этом в первую очередь изменяются «рабочие» органы, а затем происходят изменения во всем организме.
      На ход онтогенеза поведения оказывает влияние степень зрелорожденияживотного. Данные особенности тесно связаны с историческим развитием вида животных, со средой их обитания и с образом жизни. В зависимости от этого у новорожденных наблюдается разная степень самостоятельности сразу после рождения.
      Кроме того, на онтогенез поведения влияют и такие особенности развития животных, как наличие или отсутствие в их жизненном цикле личиночной формы. Зачастую личинка отличается от взрослой особи образом жизни, особенностями передвижения, питания и т. д. Особенно четкие отличия можно наблюдать у беспозвоночных животных, хотя определенные различия отмечаются и у позвоночных. При метаморфозе (превращении личинки во взрослое животное) происходят сложнейшие морфологические и функциональные перестройки организма, которые неизбежно приводят к изменениям в поведении.
      К. Фабри предлагает следующую периодизацию онтогенеза поведения:
      • ранний постнатальный период;
      • ювенильный (игровой) период (выделяется только у животных, которые проявляют игровую активность).
       Пренатальный (эмбриональный)период – время развития животного от момента образования эмбриона до рождения (или вылупления из яйца). Поведение животного в этом периоде имеет большое значение для развития поведения в целом. Эмбрионы как позвоночных, так и беспозвоночных животных производят в пренатальном периоде онтогенеза ряд движений («эмбриональные движения»). На данной стадии развития они еще не имеют функционального значения, так как организм не связан в этот период со средой обитания. Однако отмечено, что эмбриональные движения являются своего рода элементами будущих двигательных актов, которые организм осуществляет на более поздних стадиях онтогенеза, – именно тогда эти движения и приобретут адаптационное (приспособительное) значение.
      По данным А.Д. Слонима, эмбриональные движения могут оказывать влияние на физиологические процессы, связанные с мышечной деятельностью животного. Они позволяют еще во внутриутробном периоде развития подготовить животное к условиям среды. Такие «тренировочные» движения характерны, например, для детенышей копытных млекопитающих, которые сразу после рождения способны подняться на ноги и быстро передвигаться, следуя за стадом. Способность детенышей осуществлять активную деятельность сразу после рождения определяется двигательными упражнениями в пренатальном периоде. Отмечено, что эмбрионы этих животных совершают движения ногами, напоминающие ходьбу. К моменту рождения у животного складывается хорошая координация всех физиологических функций, включая вегетативные (например, регуляция частоты дыхания).
      Формирование поведения определяется сложными и разнообразными морфофункциональными сооношениями. Русский зоолог и морфолог, известный своими работами в области сравнительной анатомии позвоночных, И.И. Шмальгаузен (1884–1963, «Пути и закономерности эволюционного процесса», «Факторы эволюции») выделил так называемые «эргонтические корреляции», т. е. соотношения между органами, обусловленные функциональными зависимостями между ними. Имеются в виду типичные функции органов, например функции печени или сердца животного. Шмальгаузен приводит в качестве примера эргонтических корреляций взаимосвязь развития нервной системы и органов чувств. Если удалить у эмбриона какие-либо органы чувств, то элементы нервной системы, которые получают от них информацию, не развиваются в полной мере.
      Советский физиолог П.К. Анохин (1898–1974) обратил внимание на взаимную согласованность морфофункциональных изменений (изменений структуры и функций) в онтогенезе. Он писал: «Развитие функции идет всегда избирательно, фрагментарно в отдельных органах, но всегда в крайней согласованности одного фрагмента с другим и всегда по принципу конечного создания работающей системы».
      При изучении эмбрионального развития млекопитающих ученый отметил, что отдельные структуры организма развиваются несинхронно. При этом «в процессе эмбриогенеза идет ускоренное созревание отдельных нервных волокон, которые определяют жизненные функции новорожденного, ибо для его выживания „система отношений“ должна быть полноценной к моменту рождения».
      Понятие о значении эмбрионального поведения животных для их поведения во взрослом состоянии относительно. Общие закономерности и направление развития функций организма ограничены исторически сложившимися и генетически фиксированными факторами. Однако на развитие эмбриона и его поведенческие реакции оказывают определенное влияние и условия жизнедеятельности взрослого животного.
       Эмбриональное научение. Врезультате изучения поведения животных в эмбриогенезе было отмечено, что оно может включать в себя фрагменты движений, которые влияют на процесс развития животного. С этим связано понятие «эмбриональное научение». В качестве примера можно рассмотреть работы Цин Янг Куо. Этот ученый изучал развитие поведения у куриных эмбрионов. Он показал, что в процессе эмбриогенеза у животных происходит накопление двигательного «эмбрионального» опыта.Опыт накапливается за счет упражненийзачатков будущих органов. В ходе таких упражнений двигательные функции совершенствуются и получают дальнейшее развитие.
      Куо разработал способ, который позволял ему проводить наблюдения за движениями эмбрионов, не нарушая их естественного развития. Ученый делал в скорлупе яйца отверстие, вставлял в него окошко и наблюдал за зародышем. Куо заметил, что куриный эмбрион подвергается воздействию различных факторов как извне, так и возникающих внутри яйца благодаря активности самого эмбриона. Первоначальные движения зародыша пассивны, например движения головы из-за ритмичных сокращений сердца. Первые активные движения эмбрион начинает осуществлять на третий-четвертый день развития. Это движения головы к груди и от нее, которые сопровождаются энергичными открываниями и закрываниями клюва. Некоторые исследователи считают, что таким образом куриный зародыш учится клевательным движениям. На шестые—девятые сутки такие движения заменяются новыми: теперь голова поворачивается из стороны в сторону. Такая смена движений может быть связана с отставанием роста шейной мускулатуры от роста размеров головы, а также с положением головы зародыша по отношению к скорлупе, расположением желточного мешка, сердцебиением и даже движениями пальцев ног.
      В результате после вылупления цыпленок обладает рядом поведенческих реакций, которые были выработаны у него в процессе пренатального развития. При этом реакции вырабатываются не на определенный раздражитель, а на целую группу раздражителей, вызывающих одну поведенческую реакцию. Движения отдельных частей организма еще не разработаны, двигается в основном все тело, причем движения очень неэкономичны. Таким образом, согласно выводам Куо для нормального проявления всех поведенческих реакций животное должно пройти процесс научения, а следовательно, врожденного поведения не существует. Имеются лишь определенные наследственные предпосылки формирования поведенческих реакций, но развиваются эти реакции в зависимости от внешних условий.
      Врожденный компонент поведения нельзя полностью игнорировать. В процессе филогенеза накапливается грандиозный опыт вида, он и реализуется в онтогенезе конкретной особи за счет научения. Научение необходимо, потому что онтогенез поведения не может идти только в видотипичном направлении. Он должен быть биологически полезным для любого животного и соответствовать условиям его жизнедеятельности.
      Некоторые элементы поведения, однако, проявляются у животного без эмбрионального научения. В этом случае исключается возможность совершенствования функции органа путем упражнений, а само движение развивается исключительно за счет реализации врожденной программы. Примером такой реакции, которая не требует научения, является реакция поиска соска у детенышей млекопитающих и последующие сосательные движения.
      У незрелорожденных детенышей (например, у детеныша кенгуру) также проявляются врожденные поведенческие реакции. Новорожденный кенгуру находится на стадии развития, которую можно приблизительно соотнести с эмбрионом высшего млекопитающего. Однако новорожденный кенгуренокуже проявляет целый спектр двигательных реакций и способностей к ориентировке. При этом он выполняет целую последовательность врожденных движений, которые всегда производятся одно за другим. Кенгуренок самостоятельно поднимается к сумке матери, заползает в нее, отыскивает сосок, захватывает его губами. Поскольку эмбриональный период у кенгуренка чрезвычайно короток, он не мог научитьсядаже отдельным актам из этой цепи поведенческих реакций, не говоря обо всей последовательности действий. Есть предположение, что при отыскивании сумки матери детеныш ориентируется на сухость шерсти, по которой он должен ползти. В противоположной стороне шерсть кенгуру, смоченная родовыми водами, влажная. Кенгуренок проявляет отрицательное гидротаксическоеповедение. Это поведение не могло сформироваться у него внутри родовых оболочек, поскольку там эмбрион находился во влажной среде.
      Существовали предположения, согласно которым все поведение животного является только результатом созреванияврожденных элементов поведения. При этом полностью исключается упражнение органов. У данной точки зрения были свои приверженцы, например американский ученый Л. Кармайкл, который считал поведение практически полностью врожденным. Однако в настоящее время врожденные и приобретенные элементы в онтогенезе поведения не противопоставляются, а воспринимаются как взаимосвязанные элементы.
      Ниже дается обзор пренатального развития двигательной активности зародышей разных групп животных.
       Беспозвоночные.Известно, что зародыши головоногих моллюсков на ранних стадиях эмбриогенеза вращаются внутри яйца вокруг оси со скоростью один оборот в час. Кроме того, они передвигаются между полюсами яйца. Все движения осуществляются с помощью ресничек. Этот способ передвижения широко распространен среди личинок морских беспозвоночных.
      К концу эмбриогенеза у беспозвоночных некоторые жизненно важные инстинктивные реакции формируются окончательно. Так, мизиды (ракообразные) к моменту вылупления из яиц уже обладают реакцией уклонения от неблагоприятных воздействий. При этом первоначально у эмбриона наблюдаются рефлекторные «вздрагивания» в ответ на прикосновение к икринке.
      У морских козочек (морские ракообразные) с 11-го по 14-й день эмбрионального развития наблюдаются спонтанные и ритмичные движения частей эмбриона. Впоследствии на основе этих движений формируются специфические двигательные реакции.
      У взрослой дафнии для плавания служат антенны. Антенны эмбриона начинают двигаться на средних этапах эмбриогенеза. Ближе к его окончанию они поднимаются и принимают положение, необходимое для выполнения плавательных движений, а затем начинают двигаться особенно интенсивно. Таким образом, рефлекторный ответ постепенно формируется на основе движений, обусловленных внутренними процессами, а затем связывается с внешними раздражителями.
       Рыбы.Аналогично возникают и двигательные реакции рыб. Они развиваются на эндогеннойоснове (т. е. зависят от внутренних процессов в организме). Движения рыб развиваются в зависимости от созревания соответствующих нервных связей. После развития органов чувств на поведение зародыша начинают влиять и внешние факторы, которые сочетаются с врожденными движениями.
      Ко времени окончания эмбриогенеза у костистых рыб можно отметить дрожание, подергивание отдельных частей тела, змеевидное изгибание тела и вращение. Непосредственно перед вылуплением у рыб появляются своеобразные «клевательные» движения и изгибание туловища, облегчающие выход из яйцевидной оболочки.
       Амфибии.Эмбриональное поведение амфибий в общих чертах сходно с поведением зародышами рыб. Вначале появляются изгибательные движения тела, затем на этой эндогенной основе формируются плавательные движения и движения конечностей.
      Интересен ход развития жабы Eleutherodactylus martinicensis.Ее личинка развивается внутри яйцевых оболочек, однако выполняет все движения, свойственные головастикам других бес – хвостых амфибий. Вначале у нее появляются общие изгибательные движения тела, затем на их основе формируются плавательные движения. Первоначально они еще соединены с общим изгибанием тела, но через сутки уже можно вызвать одиночные рефлекторные движения конечностей независимо от движений мышц туловища. Позднее в строгой последовательности появляются согласованные движения всех четырех конечностей и развиваются скоординированные плавательные движения. Любопытно и то, что на данном этапе личинка еще ни разу не побывала в водной среде, потому что заключена в яйцевые оболочки.
      Для эмбрионов хвостатых амфибий (на примере амбистомы) показано, что они производят плавательные движения задолго до вылупления из икринок. Затем появляются движения ног, типичные для сухопутного передвижения взрослой амбистомы. Л. Кармайкл доказал, что этот механизм созревает без научения. Эмбриона амбистомы вырастили в анестезирующем растворе, зародыш был полностью обездвижен, однако нормально рос и развивался. Эмбриональная тренировка в таких условиях была невозможна, но локомоторные способности выросшей амбистомы были нормально развиты. Это позволило Кармайклу сделать вывод о том, что формирование способности к плаванию зависит только от анатомического развития животного и не нуждается в научении. Этот вывод оспорил польский зоопсихолог Я. Дембовский. Он утверждал, что у подопытных эмбрионов подавлялась возможность накопления двигательного эмбрионального опыта, но соответствующие процессы в нервной системе все равно протекали. Ее функционирование и послужило своего рода упражнением для развития поведения зародыша.
      Для доказательства влияния на формирование двигательной активности зародышей внутренних факторов были проделаны опыты на эмбрионах саламандр. Им пересаживали зачатки конечностей, повернутые в обратную сторону. Если бы процесс определялся эмбриональным научением, то в ходе эмбриогенеза произошла бы коррекция, восстановившая способность саламандры к нормальному поступательному движению. Однако вылупившиеся животные пятились от раздражителей, которые у нормальных особей вызывают реакцию движения вперед.
      Таким образом, у низших позвоночных формирование в эмбриогенезе локомоторных движений (движений конечностей) происходит не под решающим влиянием внешних факторов, а в результате эндогенного созревания внутренних структур.
       Птицы.Материалом для исследования эмбрионального поведения птиц послужили наблюдения за развитием куриных зародышей. Период инкубации у них длится около трех недель, а двигательная активность начинается примерно на четвертый день инкубации. Вначале она представлена движениями переднего конца тела зародыша, постепенно место двигательной активности смещается на задний конец тела. Несколько позднее начинаются спонтанные самостоятельные движения конечностей, головы, клюва, хвоста и глазных яблок.
      Выше уже упоминались работы Ц.Я. Куо, который установил значение эмбрионального научения для развития поведения птиц, отрицая врожденный компонент развития. Куо обратил внимание на следующую закономерность: эмбрион проявляет максимальную двигательную активность именно в тот момент времени, когда начинает двигаться амниотическая оболочка зародыша. Ученый предположил, что именно пульсирующие движения амниона определяют момент начала движений зародыша. Р.В. Оппенгейм на основе экспериментов показал, что здесь существует обратная зависимость: движения зародыша определяют движения амниотической оболочки.
      Куо указал и на важную роль изменений в окружающей среде для развития эмбрионального поведения. Например, желток с 11-го дня инкубации надвигается на брюшную сторону зародыша, мешая движениям ног, которые становятся как бы зафиксированными в согнутом положении, одна над другой. После рассасывания желтка та нога, которая расположена выше, получает возможность двигаться, однако вторая по-прежнему скована и начинает проявлять активность, лишь после того как первая нога отодвинется. По мнению Куо, это объясняет тот факт, что вылупившийся цыпленок передвигается не прыжками, а шагает, переставляя ноги попеременно.
      Исследования развития эмбрионального поведения птиц проводил и В. Гамбургер со своими сотрудниками. Было установлено, что первые эмбриональные движения куриных зародышей вызываются спонтанными внутренними процессами в нервных структурах. На протяжении первых двух или двух с половиной недель развития на движения зародыша не оказывает практически никакого влияния тактильная стимуляция (прикосновения). Иными словами, на первых этапах эмбриогенеза птиц двигательная активность не возникает в ответ на внешние факторы, а вызывается только факторами внутренними. Эти предположения были подтверждены опытами. В первый день инкубации у куриного зародыша перерезали зачатки спинного мозга, таким образом была нарушена целостность нервных структур зародыша. После этой операции у куриного эмбриона наблюдалось рассогласование движений зачатков передних и задних конечностей, которые в норме должны двигаться синхронно. Однако при этом сохранилась ритмичность двигательных актов, а это означает, что процессы двигательной активности в отдельных участках спинного мозга автономны.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13