Современная электронная библиотека ModernLib.Net

Основы зоопсихологии

ModernLib.Net / Фабри Курт / Основы зоопсихологии - Чтение (стр. 15)
Автор: Фабри Курт
Жанр:

 

 


      Равным образом только на высоких уровнях эволюционного развития, когда уже существует предметное восприятие и сенсорные действия животных обеспечивают возникновение образов, психическое отражение становится способным полноценно ориентировать и регулировать поведение животного с учетом предметности компонентов внешней среды. Такое отражение имеет, в частности, первостепенное значение для выделения преград (в узком и широком смысле слова), что, как мы видели, является необходимым условием для появления самых лабильных форм индивидуального поведенческого приспособления к меняющимся условиям среды - навыков и, у наиболее высокоразвитых животных, интеллекта.
      Признаки наиболее глубоких качественных изменений, которые претерпела психика в процессе эволюции животного мира, Леонтьев положил в основу выделенных им стадий психического развития. Четкая, наиболее существенная грань проходит между элементарной сенсорной и перцептивной психикой, знаменуя собой основную веху грандиозного процесса эволюции психики. Поэтому в дальнейшем изложении мы будем основываться на этом делении.
       Элементарную сенсорную психикуЛеонтьев определяет как стадию, на которой деятельность животных «отвечает тому или иному отдельному воздействующему свойству (или совокупности отдельных свойств) в силу существенной связи данного свойства с теми воздействиями, от которых зависит осуществление, основных биологических функций животных. Соответственно отражение действительности, связанное с таким строением деятельности, имеет форму чувствительности к отдельным воздействующим свойствам (или совокупности свойств), форму элементарного ощущения». Стадия же перцептивной психики,по Леонтьеву, «характеризуется способностью отражения внешней объективной действительности уже не в форме отдельных элементарных ощущений, вызываемых отдельными свойствами или их совокупностью, но в форме отражения вещей». Деятельность животного определяется на этой стадии тем, что выделяется содержание деятельности, направленное не на предмет воздействия, а на те условия, в которых этот предмет объективно дан в среде. «Это содержание уже не связывается с тем, что побуждает деятельность в целом, но отвечает специальным воздействиям, которые его вызывают».
      Однако для наших целей этого подразделения недостаточно, и поэтому следует как в пределах элементарной сенсорной, так и в пределах перцептивной психики выделить существенно различающиеся уровни психического развития: низший и высший, допуская при этом существование и промежуточных уровней (рис. 25). Важно отметить, что крупные систематические таксоны животных не всегда и не вполне укладываются в эти рамки. Это неизбежно, так как в пределах крупных таксонов (в данном случае подтипов или типов) всегда имеются животные, стоящие на смежных уровнях психического развития. Объясняется это тем, что качества высшего психического уровня всегда зарождаются на предшествующем уровне.
      Кроме того, расхождения между психологической и зоологической классификациями обусловлены тем, что морфологические признаки, на которых построена систематика животных, отнюдь не всегда определяют особенности и степень развития психической деятельности последних. Поведение животных представляет собой совокупность функций эффекторных органов животных. А в процессе эволюции именно функция первично определяет форму, строение организма, его систем и органов.
      
      Рис. 25. Родословное дерево и уровни психического развития животных (по Фабри):1 - простейшие: II - губки; III - кишечнополостные; IV- плоские черви; V- круглые черви;
      VI - кольчатые черви; VII -членистоногие; VIII -моллюски; IX -иглокожие; Х - позвоночные. I -первичные жгутиковые; 2 -современные жгутиковые; 3 - корненожки (амебы); 4 - инфузории; 5- гидроидные; 6 - медузы; 7- ленточные черви; 8 -ресничные черви (планарии); 9 - малощетинковые черви; 10 -пиявки; II -многощетинковые черви; 12 -ракообразные: 13 -паукообразные; 14 -многоножки; 15-насекомые; 16-двустворчатые моллюски; 17 -брюхоногие моллюски; 18 -головоногие моллюски; 19 -морские лилии; 20 -морские звезды; 21 -оболочники; 22 -бесчерепные (ланцетник); 23 -круглоротые; 24 -рыбы; 25 -земноводные; 26 -пресмыкающиеся; 27 -птицы; 28 -млекопитающие
      И лишь вторично строение эффекторов, их двигательные возможности определяют характер поведения животного, ограничивают сферу его внешней активности.
      Этот диалектический процесс, однако, осложняется еще возможностями многопланового решения задач (по меньшей мере у высших животных) и компенсаторными процессами в области поведения. Это означает, что если животное в данных условиях лишено возможности решить биологически важную задачу одним путем, оно, как правило, имеет в своем распоряжении еще другие, резервные возможности. Так, одни эффекторы могут замениться другими, т.е. разные морфологические структуры могут служить для выполнения биологически однозначных действий. С другой стороны, одни и те же органы могут выполнять разные функции, т.е. осуществляется принцип мультифункциональности. Особенно гибки морфофункциональные отношения в координационных системах, прежде всего в центральной нервной системе высших животных.
      Итак, с одной стороны, образ жизни определяет развитие приспособлений в эффекторной сфере, а с другой стороны, функционирование эффекторных систем, т.е. поведение, обеспечивает удовлетворение жизненных потребностей, обмена веществ в ходе взаимодействия организма с внешней средой. Изменения условий жизни порождают необходимость изменения прежних эффекторных функций (или даже появления новых функций), т.е. изменения поведения, а это затем приводит к соответствующим морфологическим изменениям в эффекторной и сенсорной сферах и в центральной нервной системе. Но не сразу и даже не всегда функциональные изменения влекут за собой морфологические. Более того, у высших животных зачастую вполне достаточными, а иногда даже наиболее результативными являются чисто функциональные изменения без морфологических перестроек, т.е. адаптивные изменения только поведения (А.Н.Северцов). Поэтому поведение в сочетании с мультифункциональностыо эффекторных органов обеспечивает животным наиболее гибкую адаптацию те новым условиям жизни.
      Указанные функциональные и морфологические преобразования определяют качество и содержание психического отражения в процессе эволюции. О них, о диалектических взаимоотношениях между образом жизни (биологией) и поведением, необходимо всегда помнить, когда мы говорим о примате двигательной активности, деятельности животных, в развитии психического отражения.
      Уместно еще раз напомнить и о том, что, вопреки еще бытующему представлению, врожденное и приобретаемое поведение не являются последовательными ступенями на эволюционной лестнице, а развиваются и усложняются совместно, как два компонента одного единого процесса. Следовательно, не было и нет такого положения, чтобы у низших животных имелись лишь одни инстинкты (или даже рефлексы), на смену которым у высших приходят навыки, а инстинкты все больше сходят на нет. На самом деле, как уже было показано, прогрессивному развитию именно инстинктивного, генетически фиксированного поведения соответствует прогресс в области индивидуально-изменчивого поведения. Инстинктивное поведение достигает наибольшей сложности как раз у высших животных, и этот прогресс влечет за собой развитие и усложнение у этих животных форм научения.
      Мы здесь можем, разумеется, дать только самый общий обзор эволюции психики, и то лишь по некоторым его направлениям и на немногих примерах, совершенно не вскрывая всего многообразия путей развития психики в мире животных.

Глава 1 ЭЛЕМЕНТАРНАЯ СЕНСОРНАЯ ПСИХИКА

Низший уровень психического развития

 
      На низшем уровне психического развития находится довольно большая группа животных; среди них встречаются и такие животные, которые стоят еще на грани животного и растительного мира (жгутиковые), а с другой стороны, и сравнительно сложно устроенные одноклеточные и многоклеточные животные. К наиболее типичным представителям рассматриваемой здесь группы животных относятся простейшие, на примере которых здесь будет дана характеристика низшего уровня элементарной сенсорной психики. Правда, некоторые высокоорганизованные простейшие (из числа инфузорий) поднялись уже на более высокий уровень элементарной сенсорной психики. В этой связи следует напомнить, что филогенез простейших шел в известной мере параллельно развитию низших многоклеточных животных, а это, в частности, нашло свое отражение в формировании у простейших аналогов органов таких животных. Эти аналоги получили название органелл.
       Движения простейших
      Движения простейших отличаются большим разнообразием, причем в этом типе простейших животных встречаются способы локомоции, которые совершенно отсутствуют у многоклеточных животных. Это своеобразный способ передвижения амеб при помощи «переливания» плазмы из одного участка тела в другой. Другие представители простейших, грегарины, передвигаются своеобразным «реактивным» способом - путем выделения из заднего конца тела слизи, «толкающей» животное вперед. Существуют и простейшие, пассивно парящие в воде.
      Однако большинство простейших передвигаются активно с помощью особых структур, производящих ритмичные движения, - жгутиков или ресничек. Эти эффекторы представляют собой плазматические выросты, совершающие колебательные, вращательные или волнообразные движения. Жгутиками, длинными волосовидными выростами обладают уже упомянутые примитивные простейшие, получившие свое название благодаря этому образованию. С помощью жгутиков тело животного (например, эвглены) приводится в спиралевидное поступательное движение. Некоторые морские жгутиковые, по данным норвежского ученого И.Трондсена, вращаются при движении вокруг оси со скоростью до 10 оборотов в секунду, а скорость поступательного движения может достигнуть 370 микрон в секунду. Другие морские жгутиковые (из числа динофлягеллят) развивают скорость от 14 до 120 микрон в секунду и больше. Более сложным эффекторным аппаратом являются реснички, покрывающие в большом числе тело инфузории. Как правило, реснитчатый покров располагается неравномерно, реснички достигают на разных участках тела различной длины, образуют кольцевидные уплотнения (мембранеллы) и т.п.
      Примером такой сложной дифференциации могут служить инфузории из рода стилонихия. Своеобразные органеллы этих животных позволяют им не только плавать, но и «бегать» по твердому субстрату, причем как вперед, так и назад. Установлено, что координация этих способов и направлений локомоции, как и их «переключение», осуществляется специальными механизмами, локализованными в трех центрах и двух осях градиентов возбуждения в цитоплазме.
      Жгутики и реснички приводятся в движение сокращениями миофибрилл, которые образуют волоконца, мионемы, соответствующие мышцам многоклеточных животных. У большинства простейших они являются основным двигательным аппаратом, причем имеются они даже у наиболее примитивных представителей типа жгутиковых. Мионемы располагаются в строгом порядке, чаще всего в виде колец, продольных нитей или лент, а у высших представителей и в виде специализированных систем. Так, у инфузории Caloscolex имеются специальные системы мионем околоротовых мембранелл, глотки, задней кишки, ряд ретракторов отдельных участков тела и т.д.
      Интересно отметить, что, как правило, мионемы имеют гомогенную структуру, что отвечает гладкой мускулатуре многоклеточных животных, однако иногда встречаются и поперечно исчерченные мионемы, сопоставимые с поперечно-полосатой мускулатурой высших животных. Все сократительные волоконца служат для выполнения быстрых движений отдельных эффекторов (у простейших - игловидных выростов, щупальцевидных образований и т.п.). Сложные системы мионем позволяют простейшим производить не только простые сократительные движения тела, но и достаточно разнообразные специализированные локомоторные и нелокомоторные движения.
      У тех простейших, у которых нет мионем (у амеб, корненожек, споровиков, за одним исключением, и некоторых других простейших), сократительные движения совершаются непосредственно в цитоплазме. Так, при передвижении амебы в наружном слое цитоплазмы, в эктоплазме, происходят подлинные сократительные процессы. Удалось даже установить, что эти явления имеют место всякий раз в «задней» (по отношению к направлению передвижения) части тела амебы.
      Таким образом, еще даже до появления специальных эффекторов перемещение животного в пространстве совершается путем сокращений. Именно сократительная функция, носителем которой являются у простейших мионемы, а у многоклеточных мышцы, обеспечивала все разнообразие и всю сложность двигательной активности животных на всех этапах филогенеза.
       Кинезы
      Локомоция простейших осуществляется в виде кинезов - элементарных инстинктивных движений. Типичным примером кинеза является ортокинез - поступательные движение с переменной скоростью. Если, например, на определенном участке существует температурный градиент (перепад температур), то движения туфельки будут тем более быстрыми, чем дальше животное будет находиться от места с оптимальной температурой. Следовательно, здесь интенсивность поведенческого (локомоторного) акта непосредственно определяется пространственной структурой внешнего раздражителя.
      В отличие от ортокинеза при клинокинезе имеет место изменение направления передвижения. Это изменение не является целеустремленным, а носит характер проб и ошибок, в результате которых животное в конце концов попадает в зону с наиболее благоприятными параметрами раздражителей. Частота и интенсивность этих изменений (следовательно, и угол поворота) зависят от интенсивности воздействующего на животное (отрицательного) раздражителя (или раздражителей). С ослаблением силы действия этого раздражителя уменьшается и интенсивность клинокинеза. Таким образом, животное и здесь реагирует на градиент раздражителя, но не увеличением или уменьшением скорости передвижения, как при ортокинезе, а поворотами оси тела, т.е. изменением вектора двигательной активности.
      Как мы видим, осуществление наиболее примитивных инстинктивных движений - кинезов - определяется непосредственным воздействием градиентов интенсивности биологически значимых внешних факторов. Роль внутренних процессов, происходящих в цитоплазме, заключается в том, что они дают поведенческому акту «первый толчок», как и у многоклеточных животных.
       Ориентация
      Уже на примерах кинезов мы видели, что градиенты внешних раздражителей выступают у простейших одновременно как пусковые и направляющие стимулы. Особенно наглядно это проявляется при клинокинезах. Однако изменения положения животного в пространстве еще не являются здесь подлинно ориентирующими, поскольку они носят ненаправленный характер. Для достижения полного биологического эффекта клинокинетические, как и ортокинетические, движения нуждаются в дополнительной коррекции, позволяющей животному более адекватно ориентироваться в окружающей его среде по источникам раздражения, а не только менять характер движения при неблагоприятных условиях.
      Ориентирующими элементами являются у представителей рассматриваемого типа и у других низших беспозвоночных, стоящих на данном уровне психического развития, простейшие таксисы. В ортокинезах ориентирующий компонент - ортотаксис - проявляется в изменении скорости передвижения без изменения его направления в градиенте внешнего раздражителя. В клинокинезах этот компонент называется клинотаксисом и проявляется в изменении направления движения на определенный угол.
      
      Рис. 26. Клинотаксисное поведение инфузории в температурном градиенте. Попав в теплую зону (вверху), инфузория уходит в более прохладную (внизу) (по Дженнингсу)
      Как мы уже знаем, под таксисами понимают генетически фиксированные механизмы пространственной ориентации двигательной активности животных в сторону благоприятных (положительные таксисы) или в сторону от неблагоприятных (отрицательные таксисы) условий среды. Так, например, отрицательные термотаксисы выражаются у простейших, как правило, в том, что они уплывают из зон с относительно высокой температурой воды, реже - из зон с низкой температурой. В результате животное оказывается в определенной зоне термического оптимума (зоне предпочитаемой температуры). В случае ортокинеза в температурном градиенте отрицательный ортотермотаксис обеспечивает прямолинейное удаление от неблагоприятных термических условий. Если же имеет место клинокинетическая реакция (рис. 26), то клинотаксис обеспечивает четкое изменение направления передвижения, ориентируя тем самым случайные клинокинетические движения в градиенте раздражителя (в нашем примере - в термическом градиенте).
      Зачастую клинотаксисы проявляются в ритмичных маятникообразных движениях (на месте или при передвижении) или в спиралевидной траектории плывущего животного. И здесь имеет место регулярный поворот оси тела животного (у многоклеточных животных это может быть и только часть тела, например голова) на определенный угол.
      Клинотаксисы обнаруживаются и при встрече с твердыми преградами. Вот пример соответствующего поведения инфузории (туфельки). Наткнувшись на твердую преграду (или попав в зону с другими неблагоприятными параметрами среды), туфелька останавливается, изменяется характер биения ресничек, и животное отплывает немного назад. После этого инфузория поворачивается на определенный угол и снова плывет вперед. Это продолжается до тех пор, пока она не проплывет мимо преграды (или не минует неблагоприятную зону).
      
      Рис. 27. Зависимость поведения инфузории от угла встречи с преградой (по Розе).Пояснения см. в тексте
      Согласно новым данным (В. Розе), инфузории, однако, не всегда ведут себя подобным образом. Клинотаксисы наблюдаются лишь при встрече с преградой под углом в 65-85° (рис. 27, 1). Если же встреча произойдет под прямым углом, инфузория переворачивается через поперечную ось тела и «отскакивает» назад (рис 27, 2). Если же животное встречается с преградой по касательной, оно проплывает мимо, свернув в сторону (рис. 27, 3).
      Клинотаксисы хотя встречаются и у более высокоорганизованных животных, относятся к примитивным видам таксисов. Тропотаксисов у простейших нет, поскольку тропотаксисы предполагают наличие симметрично расположенных органов чувств.
      В приведенных примерах описывались реакции простейших (в данном случае инфузорий) на температуру и тактильный раздражитель (прикосновение). Речь шла, следовательно, о термо- и тигмотаксисах, в последнем случае - об отрицательном тигмоклинотаксисе, возникающем в ответ на сильное тактильное раздражение (соприкосновение с твердой поверхностью объекта).
      Если же, наоборот, туфелька натыкается не на твердое препятствие, а на мягкий объект (например, растительные остатки, фильтровальная бумага), она реагирует иначе: при такой слабой тактильной стимуляции инфузория останавливается и прикладывается к этой поверхности так, чтобы максимальный участок тела соприкасался с поверхностью объекта (положительный тигмотаксис). Аналогичная картина наблюдается и при воздействиях других модальностей на направление движения, т.е. положительный или отрицательный характер реакции зависит от интенсивности раздражения. Как правило, простейшие реагируют на слабые раздражения положительно, на сильные - отрицательно, но в целом простейшим больше свойственно избегать неблагоприятных воздействий, нежели активно искать положительные раздражители.
      Возвращаясь к тигмотаксисам, важно отметить, что у инфузорий обнаружены специальные рецепторы тактильной чувствительности - осязательные «волоски», которые особенно выделяются на переднем и заднем концах тела. Эти образования служат не для поиска пищи, а только для тактильного обследования поверхностей объектов, с которыми животное сталкивается. Раздражение этих органелл и приводит в описанном примере к прекращению кинетической реакции.
      Особенностью тигмотаксисной реакции является то, что она часто ослабевает, а затем и прекращается после прикасания к объекту максимальной поверхностью тела: приставшая к объекту туфелька в возрастающей мере начинает реагировать на иной раздражитель и все больше отделяется от объекта. Затем, наоборот, вновь возрастает роль тактильного раздражителя и т.д. В результате животное совершает возле объекта ритмичные колебательные движения.
      Четко выражена у туфельки и ориентация в вертикальной плоскости, что находит свое выражение в тенденции плыть вверх (отрицательный геотаксис - ориентация по силе земного притяжения). Поскольку у парамеции не были обнаружены специальные органеллы гравитационной чувствительности, было высказано предположение, что содержимое пищеварительных вакуолей действует у нее наподобие статоцистов* высших животных. Обоснованность такого толкования подтверждается тем, что туфелька, проглотившая в опыте металлический порошок, плывет уже не вверх, а вниз, если над ней поместить магнит. В таком случае содержимое вакуоли (металлический порошок) уже давит не на нижнюю ее часть, а, наоборот, на верхнюю, чем, очевидно, и обусловливается переориентация направления движения животного на 180°
      * Статоцист - орган чувства равновесия, основная часть которого состоит из замкнутой полости с включенным в нее статолитом - «камешком» (минеральной конкрецией).
      Кроме упомянутых таксисные реакции установлены у простейших также в ответ на химические раздражения (хемотаксисы), электрический ток (гальванотаксисы) и др. На свет часть простейших реагируют слабо, у других же эта реакция выражена весьма четко. Так, фототаксисы проявляются у некоторых видов амеб и инфузорий в отрицательной форме, а инфузория Blepharisma снабжена даже светочувствительным пигментом, но, как правило, инфузории не реагируют на изменения освещения. Интересно отметить, что у слабо реагирующих на свет простейших отмечались явления суммации реакции на механические раздражения, если последние сочетались со световыми раздражениями. Такое сочетание может увеличить реакцию в восемь раз по сравнению с реакцией на одно лишь механическое раздражение.
      В отличие от инфузорий у многих жгутиковых, особенно у эвглены, положительный фототаксис выражен весьма четко. Биологическое значение этого таксиса не вызывает сомнений, так как аутотрофное питание эвглены требует солнечной энергии. Эвглена плывет к источнику света по спирали, одновременно, как уже упоминалось, вращаясь вокруг собственной оси. Это имеет существенное значение, так как у эвглены, как я у некоторых других простейших, сильно и положительно реагирующих на свет, имеются хорошо развитые фоторецепторы. Это пигментные пятна, иногда снабженные даже отражающими образованиями, позволяющими животному локализовать световые лучи. Продвигаясь к источнику света описанным образом, эвглена поворачивает к нему то «слепую» (спинную) сторону, то «зрячую» (брюшную). И каждый раз, когда последняя (с незаслоненным участком «глазка») оказывается обращенной к источнику света, производится корректировка траектории движения путем поворота на определенный угол в сторону этого источника. Следовательно, движение эвглены к свету определяется положительным фотоклинотаксисом, причем в случае попадания ее под воздействие двух источников света попеременное раздражение фоторецептора то слева, то справа придает движению эвглены внешнее сходство с тропотаксисным поведением двусторонне-симметричных животных, обладающих парными глазами (рис. 28), о чем пойдет речь ниже.
      «Глазки» описаны и у других жгутиковых. Например, массивный ярко-красный глазок имеет Collodictyon sparsevacuolata - своеобразный протист с 2-4 жгутиками и амебоидным обликом, способный быстро передвигаться как с помощью жгутиков, так и с помощью ложноножек. Особую сложность фоторецепция достигает у жгутикового Pauchetia (Dinoflagellata), у которого имеются уже аналоги существенных частей глаза многоклеточных животных, пигментное пятно снабжено не только светонепроницаемым экраном (аналог пигментной оболочки), но и све-топроницаемым образованием в форме сферической линзы (аналог хрусталика). Такой «глазок» позволяет не только локализовать световые лучи, но и собирать, в известной степени фокусировать их.
      
      Рис. 28. Траектория передвижения эвглены под воздействием двух одинаково интенсивных источников света (по Будеру)
       Пластичность поведения простейших
      Как мы видим, и в моторной и в сенсорной сфере поведение достигает у ряда видов простейших известной сложности. Достаточно указать на фобическую реакцию (реакцию испуга) туфельки в вышеописанном примере клинотаксиса: наткнувшись на твердое препятствие (или попав в иную неблагоприятную зону), туфелька резко останавливается и принимает «оборонительное положение», т.е. «съеживается», готовясь пустить в ход ядовитые стрекательные капсулы. Одновременно меняются движения ресничек, происходит тактильное и химическое обследование объекта и т.д. У эвглены фобическая реакция выражается в том, что она, остановившись, начинает производить передним концом тела круговые движения, после чего уплывает в другом направлении (рис. 29).
      Ясно, что такая интеграция моторно-сенсорной активности возможна лишь с помощью специальных функциональных структур, аналогичных нервной системе многоклеточных животных. Однако о морфологии этих аналогов еще очень мало известно, и только относительно инфузории удалось с определенной достоверностью доказать существование специальной сетевидной системы проводящих путей, располагающейся в эктоплазме. Очевидно, проведение импульсов осуществляется у простейших и системой градиентов в самой цитоплазме.
       Рис. 29. Фобическая реакция эвглены при внезапном изменении освещения (по Джен-нингсу) Способность к индивидуальному изменению описанных генетически фиксированных форм поведения путем научения выражена у простейших слабо. Все же способность простейших к научению, хотя бы в элементарных формах, сейчас можно считать доказанной. Если, например, держать парамеции некоторое время в треугольном или квадратном (в сечении) сосуде, то они сохраняют привычный путь передвижения вдоль стенок сосуда и после их перемещения в сосуд округлой формы (рис. 30). Аналогичным образом инфузория, плававшая длительное время (около двух часов) в сосуде, имевшем форму треугольника, придерживается этой траектории затем и в квадратном сосуде большей площади (опыты немецкого ученого Ф.Брамштедта). В опытах советской исследовательницы Н. А.Т ушмаловой инфузории были подвергнуты постоянно действующему ритмичному раздражителю - вибрации. В результате животные постепенно переставали реагировать на него обычным образом (сокращением). Исследовательница усматривает в этом пример элементарных следовых реакций, представляющих собой простую форму кратковременной памяти, формирующейся на этом уровне филогенеза за счет чисто молекулярных взаимодействий.
      Подобные опыты ставились и другими экспериментаторами, применявшими различные формы воздействия. Высказывались сомнения, действительно ли в таких случаях можно говорить о каких-то формах научения, ибо сильные воздействия могли оказать хотя бы временное вредное влияние на подопытных животных. К тому же вообще в опытах с простейшими очень трудно учесть все возможные побочные факторы (особенно химические изменения среды).
      
      Рис. 30. Привыкание у парамеции (по Брамштедту).Пояснения см. в тексте
      Все же, очевидно, мы имеем здесь дело с элементарной формой научения - привыканием. Привыкание (к измененным внешним условиям), как мы уже знаем, играет немаловажную роль и в поведении высших животных, но имеет качественно иной характер уже хотя бы потому, что строится у них не только на ощущениях, но и на восприятиях. При элементарной же сенсорной психике животное может привыкать лишь к воздействию отдельных раздражителей (или их совокупностей), являющихся воплощением отдельных свойств или качеств компонентов окружающей среды. Именно это и имело место в приведенных примерах, когда наблюдалась модификация видотипичного поведения: врожденные реакции на определенные раздражители постепенно элиминируются, если при многократном повторении не наступит биологически значимый эффект. Так, в опытах Тушмаловой фобическая реакция у инфузорий со временем сводилась на нет при повторной встрече с «безобидным» раздражителем.
      Привыкание необходимо отличать от утомления, выражающегося в явлениях «истощения» животного. В опытах Тушмаловой это выражалось в неспособности инфузории к дальнейшему реагированию, если она в течение 2-3 часов подвергалась очень сильным раздражениям. Утомление связано с перерасходом энергетических ресурсов, привыкание же представляет собой активную приспособительную реакцию, значение которой состоит в экономии этих ресурсов, в предотвращении траты энергии на бесполезные для животного движения.
      Как форма научения привыкание характеризует низший уровень элементарной сенсорной психики, хотя и не теряет своего значения на всех ступенях развития психики, как это было показано при ознакомлении с онтогенезом поведения животных (см. ч. II). Однако у высших представителей простейших, возможно, уже существуют и зачатки ассоциативного научения, вообще характерного для более высоких уровней психического развития.
      Об ассоциативном научении можно говорить в тех случаях, когда устанавливается временная связь между биологически значимым и «нейтральным», точнее, биологически маловалентным раздражителем. Именно такую связь Брамштедту удалось выработать у туфельки, которая, как уже отмечалось, не реагирует заметным образом на изменение освещения, но весьма чувствительна к температурным изменениям. Если в эксперименте затенить одну половину капли воды, в которой плывут парамеции, и при этом подогреть освещенную часть капли, то вскоре инфузории соберутся в холодной темной части, но останутся там (в течение 15 минут) и после того, как температура в обеих частях капли будет уравновешена. Правда, эти опыты Брамштедта подвергались серьезной критике, так как при подогреве меняется и химизм воды (меняется растворимость содержащихся в ней газов), что не может не влиять на поведение инфузории (опыты У.Грабовского).

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28