Современная электронная библиотека ModernLib.Net

Наш коллега - робот

ModernLib.Net / Бусленко Владимир / Наш коллега - робот - Чтение (стр. 10)
Автор: Бусленко Владимир
Жанр:

 

 


      "Одномодульная" ЭВМ внутри кассового аппарата сама оформляет чеки и счета, сама, если нужно, контролирует наличные запасы товаров. В электронных стимуляторах сердечной деятельности она регулирует число ударов сердца. Она устанавливает рабочую температуру в термостатах, настраивает радиоприемники, перекачивает газ по магистральным трубопроводам, управляет режимом работы автомобильных двигателей... Ей доверяются роботы. То же самое можно сказать и о научноисследовательской аппаратуре, такой, как установка для синтеза генов. Машины теперь сумеют работать гибко и осмысленно, и это вызовет взрывообразный рост производительности труда, о котором мы потом в один прекрасный день будем, вероятно, говорить как о "второй промышленной революции".
      Еще пример - автомобильный двигатель. Оптимизируя режим его работы, микропроцессор может обеспечить экономию не менее 10 процентов горючего. С его помощью можно создать систему автоматического включения и выключения светильников в жилых помещениях и на лестничных клетках, которая реагирует на присутствие человека. Внедрение таких систем только в крупных городах может обеспечить годовую экономию не менее 1,3 миллиарда киловатт-часов электроэнергии.
      Другое перспективное направление использования микропроцессорной техники в быту - устройства, позволяющие отображать на экранах телевизоров тексты с разнообразной справочной информацией, с расписанием движения транспорта, сведения о репертуаре театров и кино, сводки погоды и т. п. Широкое применение найдет микровычислительная техника и в других бытовых радиоэлектронных приборах.
      Сейчас уже нет никаких сомнений, что микропроцессоры и микро-ЭВМ найдут широкое применение в быту, в автоматизации технологических процессов практически любой отрасли народного хозяйства, в самых разных сферах обслуживания человека. Это управление не только отдельными станками, но и сложными производственными линиями в машиностроении, в обрабатывающих отраслях промышленности и создании гибких производств с применением роботов.
      Микропроцессор преображает лицо обычных вещей.
      Мы давно привыкли к словам "АСУ заводом", "АСУ цехом", "АСУ транспортными потоками". Сейчас приходится привыкать и к таким, как "АСУ стиральной машиною", "АСУ сверлом", "АСУ лифтом", "АСУ автомобилем". Вот некоторые примеры.
      Парижская фирма "Отнс" начала производить лифты еще в прошлом веке. Словом, опыт есть. Последняя разработка - вертикальное средство транспорта со специализированной мини-ЭВМ "Элевоник" и синтезатором человеческого голоса. Говорящее устройство сообщает направление движения, предупреждает о перегрузке кабины, советует, как лучше вести себя в скоростном лифте. Всего предусмотрено 110 фраз, включая и приветствие. Но основная функция ЭВМ - экономить энергию.
      Блок логики учитывает этажи здания, где больше всего входит людей, и около них держит свободные кабины.
      Радиотелефон в автомобиле - далеко не новость.
      Финские и шведские инженеры установили в такси еще и небольшой ящичек, в котором скрыто печатающее устройство, заимствованное у компьютерных систем телеобработки данных. Теперь водитель получает радиозаказ на вызов в виде напечатанного текста с точным адресом и фамилией, временем необходимого прибытия и маршрутом. Это гораздо удобнее, чем самому записывать, держа одну руку на баранке руля и приживая трубку плечом к уху. Дальность такой связи 25 километров.
      Роль микропроцессора, печатающего текст телеграммы, на этом не кончается. Он служит еще и электронным счетчиком, и сверхбыстрым бухгалтером. В конце рабочего дня он сам подсчитывает всю выручку, количество посадок, километраж пробега, часы простоя, расход бензина, среднюю скорость за день. Водитель нажимает кнопку, получает чек с отпечатанными данными и отправляется в диспетчерскую.
      Инженеры комбината РФТ (ГДР) снабдили свою новую АТС электронной машиной третьего поколения. Тем самым и весь телефонный узел перешел в разряд третьего поколения. Электроника уменьшила габариты АТС и увеличила число абонентов. Она на 40 процентов экономит электроэнергию по сравнению с прежними типами и берет на себя весь анализ неисправностей, сообщая на центральный пульт координаты места повреждения.
      Что касается выгод для абонентов, то их даже трудно перечислить. К примеру, можно, набрав вечером код на домашнем телефонном аппарате, заказать на утро акустический сигнал, заставляющий вас проснуться. Когда вы разговариваете с одним человеком, а вам звонит другой, ЭВМ обращает ваше внимание на это, вызывая предупреждающее постукивание. Не вешая трубку, вы можете попрощаться с первым и начать переговоры со вторым абонентом. А потом нажатием одной кнопки снова вызвать первого.
      Дрель - инструмент универсальный, им пользуются люди самых разных профессий, не говоря уже об умельцах. Западногерманский завод механизированного инструмента "Фаин" первым снабдил электродрель компактным микропроцессором. Что же это дает, кроме удорожания?
      Прежде всего чудеса электроники повышают долговечность этого ручного инструмента, и высокая цена быстро окупается. Дело в том, что маленький компьютер как бы чувствует сопротивление материала - четко отличает, например, бетон от древесины, пластмассу от алюминия и бесступенчато регулирует обороты и величину вращательного момента. Это особенно важно, когда отверстие сверлится в нескольких наложенных друг на друга деталях из разных материалов. Кроме того, он экономит электроэнергию. Если вы дрелью завинчиваете шурупы, то мотор автоматически отключается при малом усилии, то есть при холостом ходе в конце операции.
      Такие "интеллектуальные" машины теперь смогут работать гибко и осмысленно, и это вызовет взрывообразный рост производительности труда, о котором в один прекрасный будущий день мы, вероятно, будем говорить как о "второй промышленной революции". Такой рост производительности делает экономически выгодным использование устаревших, казалось бы, безвозвратно канувших в Лету машин, например паровоза, парусника и ветряных мельниц. Трудно в это поверить, но ветряная мельница с микропроцессором или паровоз, или паруса, управляемые мини-ЭВМ, - это не шутка.
      Вот характерные примеры. Голландия - классическая страна ветряных мельниц. Еще около ста лет назад там насчитывалось десять тысяч деревянных ветряных мельниц, которые и зерно мололи, и выкачивали воду с полей, расположенных ниже уровня моря. Теперь в стране осталось около 900 этих ветеранов, но они не столько работают, сколько служат украшением ландшафта на радость туристам. Между ними жужжат уже своими пропеллерами тысячи новых мельниц, современных, экономичных, предназначенных только для выработки электроэнергии. Владельцы теплиц и небольших предприятий охотно пользуются теперь ветряками, чтобы не платить электроконцернам огромные деньги за энергию. Эксперты полагают, что в Голландии можно установить до 400 тысяч небольших ветряков с диаметром крыльев 10 метров. Идут разговоры о создании "парков ветряных мельниц", где несколько десятков ветряков, управляемых компьютерами с гидравлически переставляемыми пропеллерами, могли бы использовать энергию ветра самым эффективным образом. А в городке Паттен недавно вступила в строй опытная ветротурбина высотою 22 метра, ее роторные пропеллеры имеют в диаметре 25 метров.
      Многие попытки возродить "эру парусов" на морях продиктованы лишь ностальгией по быстроходным - клиперам прошлого. Но есть и другие мотивы. Одна из английских фирм начала разработку парусной оснастки для современных торговых судов в качестве вспомогательной "силовой установки". По заявлению руководства фирмы при проектировании используются последние достижения в аэрокосмической промышленности и судостроении. Ставится цель создать систему парусов, полностью управляемую ЭВМ, что обеспечит постоянную наивыгоднейшую их установку с помощью сервомоторов.
      Таким образом, не потребуется большой команды для ее обслуживания. По расчетам, внедрение этой системы позволит судовым компаниям экономить до 20 процентов топлива.
      Уже год на регулярных торговых линиях в Китайском море ходит танкер "Син Аитоку мару" с автоматизированными парусами и двигателем. Обследованы разные комбинации скорости танкера и мощности двигателя - паруса всегда оказывались выгодными. Так, по одной из записей в вахтенном журнале: при скорости 20,4 км/ч при убранных парусах от двигателя требовалась мощность 612 кВт (834 лошадиные силы), при поднятых - скорость повышалась на 2,8 км/ч, а мощность уменьшалась на 73,5 кВт, то есть на 12 процентов. Топлива за год сэкономлено на 180 тысяч долларов.
      Две мощные железнодорожные компании США - "Берлингтон Нортерн" и "Чесси Систем Рейлроуд" - в настоящее время серьезно заняты проблемой внедрения паровозов нового поколения на угольном топливе в качестве перспективной альтернативы дизелям и электровозам. В основе такой переоценки поездной тяги лежат два соображения: высокая стоимость нефти и техническая возможность создания совершенно новых паровозов с использованием автоматики и электроники.
      Новый локомотив "АСЕ 3000" будет иметь мощность 2200 киловатт, длину пробега без пополнения топливом 800 километров, скорость 130 километров в час. Он не будет дымить, как прежде. Это будет достигнуто благодаря двухступенчатому циклу с применением оптимального четырехцилиндрового парового двигателя и управлению процессом сжигания топлива с помощью микропроцессора. Так удастся избежать потерь пара, тепла, а значит, и потерь энергии. Существующие паровозы даже при благоприятных условиях имели к.п.д. 7 процентов. У нового он будет достигать 13.
      РОБОТЫ ВНУТРИ НАС
      Несколько лет назад 22-летняя Нэн Дэвис из Детройта, штат Огайо (США), попала в автомобильную катастрофу, следствием которой стал поперечный миелит.
      Нэн была обречена на неподвижность, сообщает журнал "Изобретатель и рационализатор" (1983, No 6). "С помощью компьютера д-р Дж. Петровский вновь научил девушку ходить. К ножным мускулам были прикреплены 30 электродов и сенсорных датчиков. Электрические импульсы, посылаемые компьютером, стимулируют мышцы. С мускулов сигналы снова возвращаются на ЭВМ, чтобы машина могла координировать движения ног. Сейчас изобретатель работает над компактным компьютером размерами не больше 25X15 сантиметров, чтобы больной мог носить его с собой на спине. В дальнейшем д-р Петровский собирается вживлять микропроцессоры непосредственно в мышцы больных".
      Идея создания искусственных "запчастей" к организму человека для замены больных или поврежденных органов не нова. Но только в наши дни тесное сотрудничество специалистов различных областей - от химии полимеров и аэрокосмической техники до микроэлектронной роботологии и биологии позволило предоставить медикам набор технических "чудес": искусственную кожу, искусственную кость и искусственную кровь, управляемые микропроцессором конечности, внутриглазные линзы, миниатюрные насосы, заменяющие поджелудочную железу, искусственные почки и кровеносные сосуды.
      Здесь робототехническое моделирование человеческой природы становится опять самой природой.
      Однако то, что выглядит легким в теории, на практике часто оказывается неимоверно трудным. Сердце, например, - это, попросту говоря, обыкновенный насос.
      Однако он "обслуживает" около ста тысяч километров кровеносных "трубопроводов", делая по сто тысяч ударов ежедневно все 365 дней в году. И так в продолжение семидесяти лет и более! Несмотря на два десятилетня интенсивных и дорогостоящих исследовательских работ, достойное искусственное сердце все еще не стало реальностью. В университете штата Юта было разработано полностью искусственное сердце "Джарвик", насос из полиуретана и алюминия, приводимый в движение воздухом, но применяться на практике оно сможет самое раннее после 1987 года.
      "К 1996 году бегуны на марафонские дистанции, снабженные "высокоэффективными искусственными сердцами, могут быть дисквалифицированы из-за своего несправедливого преимущества над остальными", - говорит доктор У. Колф из университета штата Юта.
      Появились и другие не менее интересные изделия.
      Электрокардиостимуляторы (электронные стимуляторы сердечной деятельности) уже носят в себе сотни тысяч пациентов, которым их вживили в организм для регулирования сердечных сокращений. Искусственные кровеносные сосуды из полиэфирного волокна используются для помощи пациентам, страдающим сужением просвета артерий. Многим делается замена больного тазобедренного сустава искусственным. Эта операция теперь почти всегда проходит успешно после того, как начали применяться конструкционные материалы из акриловой пластмассы и высокопрочных сплавов. Другим общеупотребительным устройством является искусственное стремечко из нержавеющей стали и тефлона (фторопласта) для замены крохотной ушной косточки, по форме похожей на стремя и располагающейся внутри среднего уха. С его помощью восстанавливают слух больным, страдающим глухотой из-за отосклероза (патологического разрастания костной ткани).
      С появлением микроэлектроники стали возможными революционные изменения в области создания искусственных конечностей. У истоков кибернетического протезирования стояли советские специалисты. Первая биоэлектрическая рука, созданная А. Кобринским, с успехом демонстрировалась на многих международных конференциях. Развитие этого направления в наши дни также не остается незамеченным. Оно воплощено в новом изобретении студентов и молодых инженеров МВТУ имени Н. Баумана, получившем премию Ленинского комсомола за 1981 год, - механической руке, управляемой биопотенциалами мышц. Рука послушно и точно повторяет движение своего повелителя-оператора. Тот, в свою очередь, при перегрузке робота ощущает электрические сигналы. Почувствовав, что машине приходится слишком тяжело, оператор может вовремя уменьшить нагрузку.
      Это уже второе, очувствленное поколение биорук.
      Активно ведутся эксперименты по созданию запчастей человеческих конечностей и за рубежом. Были разработаны так называемые "рука из Юты" и "бостонский локоть" (в создании которого участвовали четыре университета и исследовательских центра города Бостона).
      Эти искусственные конечности, имеющие привод, изготовлены преимущественно из легких композитных материалов на основе графита и пластмасс. Они снабжены аккумуляторными батареями, микроэлектронными схемами и наборами электродов, которые прикрепляются к плечевым мышцам. Люди с ампутированными руками учатся управлять этими устройствами в значительной мере так же, как естественными конечностями, - используются биологические обратные связи. Мозг посылает мышцам команду двигаться. Сокращаясь в ответ на эти сигналы, мышцы вырабатывают импульсы биотоков, которые можно зарегистрировать с помощью электродов на поверхности кожи. Отсюда сигналы передаются к искусственной конечности и преобразуются в движения.
      Чтобы поднять тяжелый предмет, весящий, скажем, 20 килограммов, инвалид просто напрягает мышцу.
      "С помощью этой руки нельзя играть на фортепиано или на скрипке, говорит разработчик "руки из Юты" С. Джекобсен, - однако многим она эффективно заменяет утраченную конечность".
      Инженеры-биомеханики создали также управляемый ЭВМ коленный сустав с голенью, известный под названием "колено МТИ" (МТИ - Массачусетский технологический институт). Внутри его имеется встроенный микропроцессор, осуществляющий приспособление устройства к индивидуальной походке человека.
      Быстрый прогресс микроэлектроники является причиной революции в медицинской технике, которая приведет к созданию новых искусственных органов. Программируемые "инсулиновые насосы", которые носятся на ремне или вживляются в организм, заменяют поджелудочную железу, контролируя уровень сахара в крови у диабетиков. Также создано экспериментальное "электронное ухо" для больных, страдающих некоторыми разновидностями глухоты. Во внутреннее ухо им вживляются электроды, которые соединяются с крошечным микрофоном и интегральной схемой, носимыми на теле. Звук, преобразованный в электросигналы, возбуждает слуховой нерв, посылая в мозг электрический образ, воспринимаемый им в виде речи.
      Но для более сложных органов даже современной техники недостаточно. Имплантируемое искусственное легкое, например, появится не скоро. Самое совершенное, чего удалось достичь на пути к искусственному легкому, - это клиническая плазмофоретическая установка для очистки крови от токсических веществ. Тем не менее некоторые специалисты убеждены, что большинство важных органов тела получит в конечном счете свои искусственные "двойники". "К исходу века каждый значительный орган, за исключением мозга и центральной нервной системы, будет иметь искусственные замейители", говорит доктор У. Добелл. Его институт искусственных органов в Нью-Йорке проводит работы по замене поджелудочной железы, сердца, уха и глаза.
      Один из самых интригующих экспериментов связан с электронным зрением. Исследователи из университета Западного Онтарио вживляли электроды в зрительную зону коры головного мозга. ЭВМ, соединенные с электродами, затем передавали в мозг электрические импульсы, и пациенты "видели" звездообразные образы, носящие название фосфенов. У. Добелл, который был пионером этих работ, говорит, что они, возможно, и не приведут к созданию "электронного глаза", но он представляет себе будущую модификацию подобного устройства с сотнями электродов, вживленных в мозг, с миниатюрной телекамерой внутри искусственного глазного яблока и с микро-ЭВМ, размещенной внутри оправы очков.
      Но пока до этого еще далеко, во многих странах ведутся работы по созданию портативных переносных радарных устройств, чтобы облегчить слепым ориентирование в окружающем пространстве.
      Уже созданные конструкторами аппараты действуют в ультразвуковом или микроволновом диапазонах, которые не воспринимаются человеческим ухом. Основная трудность создания подобного зрительного аппарата состоит в разработке устройства, способного четко и однозначно сообщить слепому результаты измерений, так как вся информация должна быть передана лишь в виде слуховых или осязательных сигналов. Ученые института визуализации данных в городе Сан-Франциско (США) работают над тем, чтобы расшифровку схематической "картинки", получаемой с помощью телекамеры, возложить на микропроцессор. Разработанное ими устройство способно распознавать воспринимаемое телеглазом изображение и трансформировать полученную информацию в синтезированную человеческую речь. Компьютер называет характер опознанного препятствия, его угловое положение относительно пути следования человека и расстояние до него.
      Чтобы уличный шум не заглушил голосовую информацию, она дублируется с помощью вмонтированного в специальный пояс электромеханического вибратора.
      Легкое постукивание о тело сообщает о направлении на объект. В первом опытном образце компьютерного зрения миниатюрную телеустановку носят за плечами.
      Изображение в числовом коде обрабатывается процессором. Например, две близко расположенные параллельные вертикальные контурные линии обозначаются термином "столб". Это и дерево, и фонарь, и труба. Связанные между собой вертикальные и горизонтальные контуры обозначаются термином "куб". Это и автобус, и почтовый ящик, и ларек. Микропроцессор формулирует соответствующую условную фразу и возбуждает в поясе один из шестнадцати вибрирующих элементов, расположение которого соответствует направлению, а высота тона - расстоянию. Согласно заложенной программе микропроцессор сообщает данные о препятствиях на пути каждые полсекунды, то есть при нормальной скорости пешехода через каждые полметра.
      Кажется, что создание "искусственного человека" не такая уж далекая перспектива. Тогда окажется, что ситуация, описанная в рассказе Рэя Брэдбери "Судебный процесс", не так уж фантастична. Там шла речь о том, что фирма, занимающаяся протезированием, допротезировалась до того, что в ее клиенте, известном гонщике, уже не осталось ни одной "живой части", и так как он не оплатил в срок задолженность, фирма настаивала, что он теперь является ее собственностью.
      По крайней мере "полноразмерные" копии человека, созданные в настоящее время, ведут себя, на зависть Анри Дро, совершенно "естественно". Вот, например заметка из парижской газеты "Интернешнл геральд трибюн" под названием "Роботы из семейства Мицуно".
      Посреди лаборатории стоит С. Мицуно, а рядом с ним кукла в человеческий рост, точное подобие Мэрилин Монро - блондинка, с томными голубыми глазами, в платье с глубоким вырезом. Подобно заботливому отцу, С. Мицуно любовно разглаживает ее локоны, поправляет колье. Но вот "Мэрилин", как по волшебству, оживает. Она лучезарно улыбается, отвешивает поклон и, подыгрывая себе на гитаре, начинает петь. В такт дыханию у куклы поднимаются и опускаются розовые плечи, а когда она поет о чем-то грустном, то прикрывает глаза. Кончив петь, "Мэрилин" игриво подмигивает.
      С. Мицуно, 44-летний художник и изобретатель, создал, кроме нее, еще девять кукол-роботов.
      Первым его творением был "Томас Эдисон". За ним последовали "двойники" Джона Ф. Кеннеди, знаменитого артиста театра Кабуки Томасабуро Бандо и неизвестной японки, потом появилась целая семья фантастических существ феи, русалки и свирепый самурай.
      "Семейка С. Мицуно" мгновенно завоевала популярность. С середины 1970-х годов его куклы регулярно появляются на всех промышленных ярмарках и на экранах телевизоров. А токийский универмаг Кобэ взял "Мэрилин Монро" напрокат на все лето, чтобы привлекать покупателей.
      Изготовлением роботов С. Мицуно начал заниматься в 60-х годах, когда японская электроника переживала бум. В ту пору уже существовали радиороботы. Но, по его мнению, они были "слишком медлительны и примитивны". С. Мицуно решил сконструировать своего робота, и через восемь лет появился "Томас Эдисон". Больше всего времени, как ни странно, потребовалось для воссоздания искусственной кожи, которая, по замыслу автора, не должна была отличаться от человеческой.
      С. Мицуно занялся химией и наконец получил мягкую, эластичную кожу из винила, которую он запатентовал.
      Внутри "Мэрилин Монро" действует 80 соленоидов, "Именно столько мускулов занято в движениях живого человеческого тела и лица, которые кукла имитирует", - поясняет С. Мицуно.
      Разумеется, до человеческого уровня этим игрушкам еще далеко, они всего лишь искусно копируют механические движения человека, однако свойства программируемоеT на ту или иную "манеру поведения" позволяют вполне оправданно относить их к роботам первого поколения.
      Совсем другое дело - кибер, разработанный группой исследователей одной из токийских лабораторий робототехники. Это человекоподобный робот с руками, ногами, зрительным, слуховым и речевым аппаратом и обладающий "интеллектуальными" способностями на уровне двух-трехлетнего ребенка. Он может, в частности, выполнить просьбу отыскать что-либо в помещении и принести, а также отвечать на вопросы. Здесь, как читатель, вероятно, сумеет сам разобраться, мы имеем типичный пример робота третьего поколения, однако его антропоморфность ставит перед нами некоторые дополнительные философские проблемы.
      ЗАВОДЫ - РОБОТЫ
      ЧТО ТАКОЕ СОВРЕМЕННОЕ ПРЕДПРИЯТИЕ?
      С точки зрения человека неискушенного, предприятие будущего представляется этакой "вещью в себе". Что мы знаем о нем? Мы можем лишь утверждать, что это напичканный электроникой и автоматикой завод, у проходной которого висит незамысловатая табличка: "Людям вход строго воспрещен!"
      Относительно прочих свойств этого завода будущего мы многого сказать не сможем, это и не удивительно, ведь речь идет о заводе будущего, а мы живем в настоящем. Здесь нам следует без стеснения обращаться к специалистам, профессиональный долг которых состоит, в частности, и в том, чтобы заглядывать в это будущее. Но, обратившись к ним, не стоит удивляться, если их ответы и мнения покажутся нам не совсем понятными, порой странными и претенциозными.
      - Современное предприятие должно работать так, чтобы его эффективность не зависела от величины партий, которыми выпускается изделие!
      - Современное предприятие - это такое, где материалы практически не лежат без движения!
      - Современное предприятие начинается там, где человек покидает непосредственное производство!
      Попробуем разобраться в этом конгломерате суждений. Специалисты утверждают, что самая характерная черта современного "завода будущего" это то, что его эффективность не зависит от величины партии, то есть ему одинаково удобно и выгодно производить и миллион одинаковых шестеренок, и миллион совершенно разных.
      И тут мы должны вспомнить, что самая характерная черта недавнего прошлого - это ужасающая тенденция к единообразию массового производства, зародившаяся еще в недрах промышленной революции. Только предельная массовость дает максимальную выгоду. Представьте себе, например, что вам нужно отчеканить тысячу одинаковых значков. Сначала следует изготовить штамп - форму для чеканки. Готовится он из твердого металла, и сделать его поэтому довольно непросто, но зато, когда он наконец закончен, дальнейшее представляется удивительно простым, - шлепай медные или алюминиевые кружочки, и порядок. Чем больше мы продадим наших значков, тем быстрее вернется к нам и сумма, заплаченная за изготовление штампа, и тем большую прибыль мы получим.
      Представьте себе, что значки наши предназначены не для самой широкой публики, а изготавливаются для какого-нибудь учреждения, скажем, вуза, которому нужна небольшая партия. Может оказаться, что величина этой партии не в состоянии окупить цену, заплаченную за изготовление штампа. Что делать? Поднять цену на единичное изделие и за счет этого добиться рентабельности?
      Так обычно и делается. Ну а если нужно изготовить всего, скажем, пять значков? Представляете, какую цену нужно заломить за каждый, чтобы "не вылететь в трубу"?
      Так вот, современное предприятие, например, по производству значков, должно настолько легко перестраиваться с одного значка на другой, чтобы ему было одинаково выгодно делать и большие и маленькие партии, и даже отдельные экземпляры, и даже все вперемежку: вкрапливать отдельные значки или мелкие партии в поток массового заказа. Возможно ли такое? Нет! скажет неинформированный пессимист. Да! -ответит вдумчивый читатель, поверивший в возможности роботизации. Нужно поручить изготовление штампов роботу, а процесс программирования робота отдать на откуп ЭВМ.
      Это и будет современная производственная система, которую мы по праву окрестили заводом-роботом. Итак, гибкость - свойство завидное и очень выгодное. Что еще характерно для завода-робота?
      "Предприятия, которые сократят время нахождения материалов без движения, впервые можно будет назвать современными предприятиями", утверждают организаторы производства. Как это без движения? Давайте заставим материалы все время двигаться, добьемся ли мы звания современного завода? Нет! Что же это за проблема?
      Оказывается, очень серьезная.
      Время, затрачиваемое сейчас на предприятии на переработку материалов и обработку деталей, составляет всего лишь от 1 до 2,5 процента общего времени, протекающего от получения заказа до отгрузки готовой продукции. Большая часть времени уходит на перемещение материалов или на то, что они лежат без движения на полу. Утверждают, что, в свою очередь, и из этого мизерного времени обработки и сборки время действительной обработки на станках составляет порядка 15-20 процентов. Пожалуй, специалисты, которые сократят время нахождения материалов без обработки, впервые создадут современное предприятие. Естественно, мощный рычаг процесса сокращения потерь времени - комплексная роботизация.
      Роботизация позволяет успешно бороться и с пресловутой "незавершенкой". По данным американских специалистов, 95 процентов своего времени заготовка проводит в ожидании очередной обработки или в транспортировке, а из того, что остается, то есть из пяти процентов, сам процесс обработки на станке занимает менее 30 процентов. Таким образом, для непосредственного изготовления детали используются лишь 1,5 процента времени нахождения ее на заводе. Поэтому, например, одним из центральных элементов японской производственной философии служит концепция "делать все вовремя".
      Речь идет о системе, при которой материалы и компоненты доставляются в цехи лишь по мере надобности, а не накапливаются там. При этом достигается существенная экономия, так как обычно одна треть заводских площадей используется для хранения материалов и продукции.
      Наконец, рассмотрим последний "нечеловеческий" фактор.
      Сегодня мы нередко сталкиваемся с ситуацией, когда человек в силу своих ограниченных физических и психических качеств становится тормозом на пути развития производства, вынуждает оплачивать свое присутствие у печи или в цехе круглой суммой на создание приемлемых условий труда. Роботизация снимает эти ограничения и тем самым открывает пути к качественным преобразованиям в сфере производства, В цехах "безлюдного" завода можно установить станки, не нуждающиеся в эстетическом оформлении, без всяких гладких обводов, которые так "радуют глаз". Эго почти на треть сократит себестоимость станков. Понадобится значительно меньше металла, пластмасс, других материалов. Оператор, удаленный от станка, будет находиться в комфортабельных условиях, станки тогда можно располагать прямо на полу, а не поднимать их на "уровень человека", на что сейчас идет немало металла.
      В автоматическом цехе можно не только снизить общие чисто человеческие требования к эстетическому оформлению, но и к воздушной среде цеха, существенно сократить и реорганизовать его площадь и объем. Такой цех совсем не обязательно не только проветривать (вспомним дорогостоящую систему вентиляторов), но и освещать - ведь робот может использовать ультразвуковое или инфракрасное зрение.
      Все это приведет к резкому сокращению затрат и сроков строительства, сэкономит от 25 до 40 процентов цемента, железобетона, металлоконструкций, электроэнергии и других ресурсов. Резкое сокращение числа рабочих и служащих предприятия уменьшит затраты на соцкультбыт и другие элементы инфраструктуры, как правило, превышающие затраты на строительство предприятий в несколько раз.
      Подобный завод-робот можно просто отключить, как пылесос или радиоприемник, когда в нем нет нужды, и снова включить - когда нужда появится. Так на производственную сцену стали выходить участки, цехи и заводы, даже относительно названия которых нет пока единого мнения.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14