Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ЗО)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ЗО) - Чтение (стр. 7)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  Для осуществления контейнерной З. п. на твёрдой загрузке, помещенной в контейнер, создаётся небольшой расплавленный участок, называемый зоной, который перемещается вдоль загрузки. При этом на одной поверхности раздела твёрдой и жидкой фаз (фронт кристаллизации) происходит кристаллизация материала, а на другой (фронт плавления) - подпитка зоны исходным материалом. Контейнерная З. п. применяется для очистки материала, не взаимодействующего с материалом контейнера. Для очистки полупроводникового кремния П. Кек и М. Голей (США) в 1953 предложили метод бестигельной З. п. вертикально расположенного стержня (т. н. метод плавающей зоны). При этом расплавленная зона удерживается в основном силами поверхностного натяжения, поэтому бестигельная З. п. широко применяется для тугоплавких или активных материалов с достаточно высоким поверхностным натяжением и не очень большой плотностью в жидком состоянии (кремний, германий, молибден, вольфрам, платина, паладий, рений, ниобий и др.). После 1955 З. п. широко применяется в лабораторной и заводской практике для получения чистых материалов с содержанием примесей до 10 -7 -10 -9% (т. н. зонная очистка), для легирования и равномерного распределения примеси по слитку (т. н. зонное выравнивание), а также для выращивания монокристаллов, концентрирования примесей в аналитической практике, создания эталонов высокой чистоты, исследования диаграмм состояния и пр. Зонная очистка основана на том, что при равновесии между жидкой и твёрдой фазами растворимость примесей в жидкой и твёрдой фазах различна. Для получения чистых материалов обычно расплавленную зону перемещают по слитку несколько раз или одновременно на слитке создают несколько перемещающихся расплавленных зон с участками твёрдого материала между ними. Скорость перемещения расплавленных зон обычно 0,1-10 мм/мин,число проходов 10-15 и более. Очистку заканчивают при достижении предельного (конечного) распределения примеси, которое не может быть изменено последующими перемещениями зон.

  Эффективность зонной очистки материала от примеси зависит от коэффициента распределения этой примеси - отношения концентрации примеси в твёрдой фазе к концентрации в жидкой фазе, от количества проходов и скорости перемещения зоны, от отношения длины слитка к длине зоны. Зонное выравнивание заключается в том, что в первую зону помещается легирующая добавка, которая при многократном перемещении зоны по слитку равномерно распределяется по его длине. Иногда для равномерного распределения примеси по слитку применяют попеременное движение зоны от начала к концу слитка и обратно. З. п. может быть использована одновременно с очисткой и для получения монокристаллов. Для этого применяется затравочный кристалл - монокристаллический зародыш, ориентированный в заданном кристаллографическом направлении. В месте стыка затравочного кристалла со стержнем, подлежащим З. п., создаётся первая расплавленная зона, причём расплавляется часть стержня и часть затравки. На границе раздела фаз «затравка - расплав» создаются тепловые условия, обеспечивающие при затвердевании расплава со стороны затравки контролируемую кристаллизацию в обусловленном затравкой направлении. Особый вид  - З. п. с температурным градиентом (метод изготовления р-nпереходов, получения фосфидов и арсенидов галлия и индия). В этом случае между границами жидкой зоны создаётся разность температур и концентраций. В связи с различной растворимостью компонентов системы при различной температуре происходит перемещение зоны в направлении градиента температур. Обычно скорости перемещения зоны 0,1-1,0 мм/ч,температурная разность до 80 град/мм.

 В зависимости от назначения, условий проведения процесса и производительности для З. п. применяется разнообразная аппаратура. По способу осуществления различают контейнерные и бестигельные установки, которые в свою очередь делятся по характеру процесса на периодические, методические и непрерывные; по расположению плавящегося материала - на горизонтальные и вертикальные; по способу перемещения зоны - на установки с перемещающимся слитком или нагревателем; по способу нагрева зоны - на установки, использующие нагреватели сопротивления (для материалов с температурой плавления до 1500°С), индукционный нагрев (для плавки веществ с хорошей электропроводностью в вакууме или инертной газовой среде), электроннолучевой нагрев для плавки в вакууме материалов с высокой температурой плавления), радиационный нагрев (для материалов с низкой температурой плавления), нагрев теплопроводностью, джоулевым теплом и пр.; по способу перемешивания зоны (конвентивное, механическое, электромагнитное); по составу атмосферы (вакуум, инертный или защитный газ). Аппаратура контейнерной З. п. ( рис. 1 ) представляет собой горизонтальную трубу 1,в которой перемещается контейнер 2с очищаемой загрузкой 4.Нагреватели 3устанавливаются снаружи трубы и нагревают либо загрузку, либо контейнер. Зонноочищенные слитки олова достигают 60 кг,германия - 10 кг,арсенида галлия - 1 кг.Бестигельная З. п. ( рис. 2 ) осуществляется в вертикальной трубе 1, в которой устанавливается подлежащий очистке стержень 2.Нагреватель 3располагается вокруг стержня снаружи или внутри трубы. Диаметр зонноочищенных слитков кремния достигает 35-50 мм,бериллия, железа - 25 мм,ванадия -15 мм.

 Контейнерная З. п. развивается в направлении создания установок и процессов непрерывной З. п. (зоннопустотный, зоннотранспортный, электродинамические методы и др.), увеличения интенсивности очистки, уменьшения неоднородности получаемых кристаллов, увеличения степени их чистоты. Развитие бестигельной З. п. осуществляется по пути увеличения размеров монокристаллов (диаметр 55-65 мм), интенсификации процесса очистки, достижения однородности распределения примесей и дефектов структуры. Разработка оптимальных режимов, создание более совершенной аппаратуры, автоматизация процесса, применение методов программирования характеризуют общую тенденцию развития З. п.

  Лит.:Парр Н., Зонная очистка и её техника, пер. с англ., М., 1963; Зонная плавка, сб.. под ред. В. Н. Вигдоровича, М., 1966; Романенко В. Н., Получение однородных полупроводниковых кристаллов, М., 1966; Вигдорович В. Н., Очистка металлов и полупроводников кристаллизацией, М., 1969; Пфанн В. Дж., Зонная плавка, пер. с англ., М., 1960.

  К. Н. Неймарк.

Рис. 2. Схема бестигельной зонной плавки.

Рис. 1. Схема контейнерной зонной плавки.

Зонная теория

Зо'нная тео'риятвёрдого тела, раздел квантовой механики,рассматривающий движение электронов в твёрдом теле. Свободные электроны могут иметь любую энергию - их энергетический спектр непрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии (см. Атом ). В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешенных зон, разделённых зонами запрещенных энергий.

  З. т. является основой современной теории твёрдых тел. Она позволила понять природу и объяснить важнейшие свойства металлов, полупроводникови диэлектриков.Подробнее см. Твёрдое тело.

Зоннеберг

Зо'ннеберг(Sonneberg), город в ГДР, на южной окраине Тюрингенского Леса, в округе Зуль. 29,8 тыс. жителей (1970). Старинный центр производства игрушек (с 17 в.). Электротехническая, керамическая промышленность, производство пластмасс, крупногабаритных часов, учебных пособий по анатомии. Астрономическая обсерватория. Музей игрушек.

Зонненталь Адольф фон

Зо'нненталь(Sonnenthal) Адольф фон (21.12.1834, Будапешт, - 4.4.1909, Прага), австрийский актёр. Дебютировал в 1851 в театре Темешвара. В 1856-1908 играл в труппе венского «Бургтеатра». Внешние данные, элегантность, тонкая поэтичность обеспечили З. успех в пьесах А. Дюма-сына, В. Сарду. Но З. стремился к созданию образов философски мыслящих личностей, полных благородства, нравственной силы, ясной гармонии. Исполнение ролей Уриэля Акосты («Уриэль Акоста» Гуцкова), маркиза Позы, Фердинанда («Дон Карлос», «Коварство и любовь» Шиллера) выдвинуло его в число первых актёров «Бургтеатра». Играл в современных пьесах немецких авторов, с большим драматизмом сыграл Геншеля («Возчик Геншель» Гауптмана). Создал ряд значительных образов в классическом репертуаре: Натан Мудрый («Натан Мудрый» Лессинга), Фауст («Фауст» Гёте), Гамлет, Отелло, Король Лир («Гамлет», «Отелло», «Король Лир» Шекспира), Ракитин («Месяц в деревне» Тургенева).

  Соч.: Briefwechsel, hrsg. von Н. von Sonnenthal, Bd 1-2, Stuttg. - В., 1912.   И. Я. Новодворская.

Зонное плавление

Зо'нное плавле'ние,гипотетический процесс выплавления и дегазации вещества мантии Земли, аналогичный механизму зонной плавки,который приводит к образованию оболочек Земли (литосферы, гидросферы и атмосферы). Гипотеза З. п. предложена советским учёным А. П. Виноградовым (1955) для объяснения оболочечного строения планеты и закономерностей распределения химических элементов в земной коре. Советские учёные В. А. Магницкий (1964), А. Н. Тихонов и др. (1969) дали физико-математическое обоснование процесса. Согласно этой гипотезе, на ранней стадии эволюции Земли в мантии (близкой по составу к каменным метеоритам), на различных её глубинах, преимущественно в астеносфере,в результате разогревания теплом, генерируемым радиоактивными элементами, возникают отдельные расплавленные магматические очаги, дальнейшая химическая дифференциация которых в соответствии с законами зонной плавки приводит к разделению первичного вещества на фазы - тугоплавкую и легкоплавкую. Легкоплавкая фаза перемещается вверх к поверхности Земли по принципу зонной плавки. Физической причиной перемещения расплавленного вещества вверх является конвективная неустойчивость протяжённых в радиальном направлении расплавленных масс в гравитационном поле планеты. Эта неустойчивость приводит к возникновению конвективных течений в жидкости. Следствием этих движений является усиленный перенос тепла в пределах расплавленного очага снизу вверх, что приводит к относительному переохлаждению расплава и его кристаллизации в нижних частях очага и относительному перегреву и плавлению пород кровли в верхних частях. Перемещение расплавленного вещества вверх по принципу зонной плавки сопровождается изменением состава расплава с обогащением его элементами и соединениями, понижающими температуру плавкости системы («легкоплавкими» компонентами, в том числе «летучими»). Остаточная твёрдая фаза (которая может и не проходить стадии полного плавления) обогащается «тугоплавкими» элементами и соединениями, повышающими температуру её плавкости. Т. о., подъём расплава вверх приводит к химической дифференциации вещества мантии и выносу к поверхности Земли веществ, концентрирующихся в земной коре, гидросфере и атмосфере. В соответствии с физико-химическими законами кристаллизации силикатных систем выносимые из недр Земли расплавы, формирующиеземную кору, относительно обогащены Si, A1, К, Na, Са, U, Th, Sr, Ba, Rb и многими др. (литофильными) элементами. Остаточное («тугоплавкое») вещество мантии сложено главным образом силикатами Mg и Fe, а также соединениями Ni, Cr и некоторых др. элементов. Геохимические закономерности распределения химических элементов в породах земной коры (гранитах и базальтах), в дунитах и перидотитах, слагающих дифференцированную мантию, и в силикатной фазе каменных метеоритов (хондритов) соответствуют распределению элементов в процессе З. п. первичной недифференцированной мантии хондритового состава.

  Лит.:Виноградов А. П., Химическая эволюция Земли, М., 1959; его же, Происхождение оболочек Земли, «Изв. АН СССР. Серия «геологическая», 1962, №11; Магницкий В. А., Зонная плавка как механизм образования земной коры, там же, 1964, №11; Виноградов А. П., Ярошевский А. А., О физических условиях зонного плавления в оболочках Земли, «Геохимия», 1965, №7; Тихонов А. Н., Любимова Е. А., Власова В. К., Об эволюции зон плавления в термической истории Земли, «Докл. АН СССР», 1969, т. 188, №2.

  А. А. Ярошевский.

Зонтаг Генриетта

Зо'нтаг(Sontag) Генриетта [настоящие имя и фамилия Гертруда Вальпургис 3оннтаг (Sonntag); по мужу графиня Росси (Rossi)] (3.1.1806, Кобленц, - 17.6.1854, Мехико), немецкая певица (колоратурное сопрано). В 1816-21 училась в Пражской консерватории. Дебютировала на оперной сцене в Праге (1821). В 1824-30 после гастролей во многих городах Европы, в том числе в Петербурге и Москве, приобрела известность. В 1838-43 жила в Петербурге, концертировала. В 1848 возобновила выступления в опере. З. - одна из выдающихся европейских певиц 1-й половины 19 в. Обладала звучным, гибким голосом красивого тембра, безупречной музыкальностью. Партии З.: Сюзанна, Донна Анна («Свадьба Фигаро», «Дон Жуан» Моцарта), Эврианта, Агата («Эврианта», «Вольный стрелок» Вебера), Розина («Севильский цирюльник» Россини) и др.

  Лит.:Pirchan Е., Н. Sontag, W., 1946; Kьhner Н., GroЯe Sдngerinnen der Klassik und Romantik, Stuttg., 1954; Генриетта Зонтаг, «Пантеон и репертуар», 1850, т. 3, кн. 6, с. 11-18.

Зонтик

Зо'нтик(umbella), соцветие растений, в котором цветоножки всех цветков одинаковой длины и выходят как бы из верхушки укороченной главной оси. Цветки поэтому располагаются почти на одном уровне (например, у вишни, первоцвета, астранции). В З. начинают распускаться сначала периферические цветки, затем внутренние. У растений чаще бывают сложные З., в которых на длинных осях, выходящих из верхушки главной оси, располагаются не цветки, а мелкие З. с короткими цветоножками. Такие мелкие З. называют зонтичками, а оси, на которых они сидят, - лучами. Сложные З. присущи почти всем растениям из семейства зонтичных (морковь, укроп, дудник и др.).

Зонтик: 1 - простой; 2 - сложный.

Зонтичная огнёвка

Зо'нтичная огнёвка,бабочка семейства огнёвок, вредитель зонтичных культур; то же, что бледный луговой мотылёк.

Зонтичные

Зо'нтичные(Apiaceae, Umbelliferae), семейство двудольных растений, близкое к аралиевым. Травянистые растения, редко (в тропиках и субтропиках) кустарники и невысокие деревья, с очередными, большей частью сильно рассеченными влагалищными листьями. Стебли часто полые. Соцветия - сложные, реже простые зонтики или головки. Цветки мелкие, большей частью обоеполые, правильные. Чашечка в виде 5 мелких зубчиков у вершины завязи, часто незаметна или, редко, хорошо развита. Лепестков и тычинок по 5. Лепестки большей частью с загнутой внутрь верхушкой. Пестик с полунижней двугнёздной завязью и с развитыми массивными нектарниками. Плод - вислоплодник, обычно распадающийся на сухие односемянные половинки (мерикарпии), висящие на цельной или, чаще, двураздельной колонке (карпофоре). Семя с эндоспермом и маленьким зародышем, обычно срастается с околоплодником. Во всех органах развиты вместилища эфирных масел и смол. В семействе более 280 родов (около 3 тыс. видов). Распространены почти по всему земному шару, особенно во внетропических областях Северного полушария. В СССР - 140 родов (около 750 видов). Среди З. много полезных растений: пищевых (морковь, петрушка, сельдерей, укроп, пастернак, тмин, кориандр и др.), эфирномасличных (кориандр, анис, фенхель, тмин, ажгон и др.), лекарственных, технических. Некоторые З. сильно ядовиты (болиголов, вех, собачья петрушка и др.). Ряд видов - сорняки посевов.

  Лит.:Флора СССР, т. 16-17, М. - Л., 1950-53.

  В. Н. Тихомиров.

Зоны физико-географические

Зо'ны фи'зико-географи'ческие,природные зоны суши, крупные подразделения географической (ландшафтной) оболочки Земли, закономерно и в определенном порядке сменяющие друг друга в зависимости от климатических факторов, главным образом от соотношения тепла и влаги. В связи с этим смена зон и поясов происходит от экватора к полюсам и от океанов в глубь континентов. Обычно вытянуты в субширотном направлении и не имеют резко выраженных границ. Каждой зоне присущи типические особенности составляющих её природных компонентов и процессов (климатического, гидрологического, геохимического, геоморфологического, почвенного и растительного покрова и животного мира), свой тип исторически сложившихся между ними взаимосвязей и господствующий тип их сочетаний - зональных природных территориальных комплексов. Многим З. ф.-г. название традиционно даются по наиболее яркому индикатору - типу растительности, отражающему важнейшие особенности большинства природных компонентов и процессов (лесные зоны, степные зоны, зоны саванн и др.). Название этих зон нередко присваивается и отдельным компонентам: тундровая растительность, тундрово-глеевые почвы, полупустынная и пустынная растительность, почвы пустынь и др. Внутри зон, обычно занимающих обширные полосы, различают более узкие подразделения - подзоны физико-географические. Например, зона саванн в целом отличается сезонным ритмом развития всех природных компонентов, обусловленным сезонным поступлением атмосферных осадков. В зависимости от количества последних и продолжительности дождливого периода внутри зоны различают подзоны влажных высокотравных, типичных сухих и опустыненных саванн; в зоне степей - сухие и типичные степи; в зоне лесов умеренного пояса - подзоны тайги (иногда её считают самостоятельной зоной), смешанных и широколиственных лесов и т.п.

  З. ф.-г., если они формируются в более или менее сходных геолого-геоморфологических (азональных) условиях, повторяются в общих чертах на разных материках при аналогичном географическом положении (широте, положении по отношению к океанам и др.). Поэтому различают типы зон, которые являются типологическими единицами территориальной классификации географической оболочки (например, тропические западно-приокеанические пустыни). В то же время местные особенности той или иной территории (рельеф, состав пород, палеогеографическое развитие и др.) придают индивидуальные черты каждой зоне, в связи с чем конкретные З. ф.-г. рассматриваются как региональные единицы (например, пустыня Атакама, Перуанская береговая пустыня, пустыня Намиб, западная береговая Сахара и др.). В Физико-географическом атласе мира (1964) принято выделение 13 географических поясов, основывающееся на климатической классификации Б. П. Алисова : экваториальный пояс и по два (для обоих полушарий) субэкваториальных, тропических, субтропических, умеренных, субполярных и полярных (сторонники термического фактора, как основного в формировании зональности, ограничиваются выделением лишь пяти и даже трёх поясов). Внутри поясов возможно выделение подпоясов, или полос.

  Каждому поясу и каждому его крупному долготному отрезку - сектору (приокеаническим, континентальному и переходным между ними) свойственны свои зональные системы - свой набор, определенная последовательность и простирание горизонтальных зон и подзон на равнинах, свой набор (спектр) высотных зон в горах. Так, зона лесотундры присуща только субполярному (субарктическому) поясу, подзона тайги - умеренному, «средиземноморская» подзона - западно-приокеаническому сектору субтропического пояса, подзона муссонных смешанных лесов - его восточно-приокеаническому сектору, лесостепные зоны существуют только в переходных секторах. Лесотундровый спектр высотных зон характерен только для умеренного пояса, а гилейнопарамосный - только для экваториального (см. Высотная поясность ). В зависимости от положения в том или ином секторе или на той или иной морфоструктурной основе внутри зон и подзон могут быть выделены более мелкие таксономические единицы - типологические: западно-приокеаническая темнохвойная тайга, континентальная светлохвойная тайга и т.д., или региональные: Западно-Сибирская тайга, Центральноякутская тайга. Западносибирская лесостепь и т.п.

  Поскольку З. ф.-г. определяются в основном соотношением тепла и влаги, постольку это соотношение может быть выражено количественно (впервые физическую и количественную основу зональности сформулировали в 1956 А. А. Григорьев и М. И. Будыко ). Для этой цели используют различные гидротермические показатели (чаще всего показатели увлажнения). Применение этих показателей помогает прежде всего разработке теоретических вопросов зональности, выявлению общих закономерностей, объективному уточнению характеристик зон и их границ. Например, при значениях радиационного индекса сухости Будыко менее 1 (избыточное увлажнение) господствуют влажные зоны лесов, лесотундры и тундры, при значениях более 1 (недостаточное увлажнение) - сухие зоны степей, полупустынь и пустынь, при значениях, близких к 1 (оптимальное увлажнение), - зоны и подзоны лесостепей, лиственных и светлых лесов и влажных саванн. Определение и дальнейшее уточнение количественных показателей имеют и большое практическое значение, например для применения различных агрокультурных мероприятий в различных секторах, зонах, подзонах. При этом очень важно учитывать не просто сходство итоговых показателей, но и из каких именно величин в данных условиях они складываются. Так, устанавливая «периодический закон зональности», А. А. Григорьев отмечал периодическое повторение одинаковых значений радиационного индекса сухости в зонах различных поясов (например, в тундре, субтропическом гемигилее и экваториальных лесных болотах). Однако при общности индекса и годовой радиационный баланс, и годовая сумма осадков в этих зонах резко различны, как различны и все природные процессы и комплексы в целом.

  Наряду с зональными факторами на формирование и структуру зональных систем большое влияние оказывает и ряд азональных факторов (помимо первичного распределения суши и океанов, обусловливающего в значительной степени циркуляцию, течения и перенос влаги). Прежде всего существует полярная асимметрия ландшафтной оболочки Земли, выражающаяся не только в большей океаничности Южного полушария, но и в наличии, например, свойственной только ему субтропической подзоны гемигилей и, напротив, в отсутствии в нём многих зон и подзон Северного полушария (тундры, лесотундры, тайги, широколиственных лесов и др.). Кроме того, значительную роль играют конфигурация и величина площади суши в каких-либо широтах (например, широкое распространение тропических пустынь в Северной Африке и Аравии или Австралии и их ограниченная территория в занимающих меньшую площадь тропических поясах Северной Америки или Южной Африки). Весьма влияет и характер крупных черт рельефа. Высокие меридиональные хребты Кордильер и Анд усиливают континентальность и обусловливают наличие соответствующих полупустынных и пустынных зон на внутренних плоскогорьях субтропических и тропических поясов. Гималаи способствуют непосредственному соседству высокогорных пустынь Тибета и влажнолесного зонального спектра южных склонов, а Патагонские Анды даже являются первопричиной наличия на В. умеренного пояса зоны полупустынь. Но обычно воздействие региональных факторов лишь усиливает или ослабляет общие зональные закономерности.

  Разумеется, зональные системы претерпевали существенные изменения в процессе палеогеографического развития. Поясные и секторные различия установлены уже для конца палеозоя. Позднее происходили изменения в распределении суши и моря, макроформах рельефа, климатических условиях, в связи с чем в формировавшихся зональных системах одни зоны исчезали и замещались другими, варьировалось простирание зон. Современные зоны разновозрастны; вследствие огромной роли, которую сыграло в их формировании плейстоценовое оледенение, наиболее молодыми являются зоны высоких широт. Кроме того, усиление контраста температур между полюсами и экватором в плейстоцене увеличило число З. ф.-г. и значительно усложнило их систему. Большое влияние, в частности на границы зон, оказывало и воздействие человека.

  На карте наглядно показано распределение зон по поясам и секторам и различия в проявлении зональности в высоких и средних широтах Северного и Южного полушарий. В поясах высоких широт (полярных, субполярных и северной части северного умеренного пояса - бореальном подпоясе, отсутствующем на суше в Южном полушарии) наблюдаются относительно небольшие изменения в соотношениях тепла и влаги и почти повсеместно избыточное увлажнение. Природная дифференциация связана главным образом с изменениями тепловых условий, т. е. с увеличением радиационного баланса с уменьшением широты. Следовательно, и зоны полярных пустынь, тундры, лесотундры и тайги простираются субширотно, а секторные различия выражены слабо (ледяные пустыни в Атлантическом секторе Арктики обусловлены в основном региональными особенностями). Вместе с тем наиболее резко выступает полярная асимметрия зональных спектров, вызванная контрастами в распределении суши и океанов в разных полушариях. В суббореальных подпоясах при ещё более увеличивающемся поступлении тепла возрастает и роль влаги. Её увеличение определяется преобладанием западных ветров, а на В. - внетропическими муссонами. Индексы увлажнения существенно изменяются как по широте, так и по долготе, с чем связано и разнообразие зон и подзон и различия в их простирании. Приокеанические секторы заняты влажными лесами, переходные - лесами, лесостепями и степями, континентальные - преимущественно полупустынями и пустынями. Наиболее яркое проявление указанных зональных особенностей наблюдается в субтропических поясах, внутри которых ещё велики широтные различия радиационных условий, а влага поступает и с З. (только зимой) и с В. (преимущественно летом). В поясах низких широт (тропических, субэкваториальных и экваториальном) асимметрия полушарий сглажена, радиационный баланс достигает максимальный показателей, причём различия его по широте выражены слабо. Ведущая роль в изменениях соотношения тепла и влаги переходит к последней. В тропических (пассатных) поясах поступление влаги происходит только с В. Этим объясняется наличие относительно влажных зон (тропических лесов, саванн и редколесий), простирающихся субмеридионально в восточных секторах, полупустынь и пустынь, заполняющих континентальные и западные секторы. Субэкваториальные пояса получают влагу преимущественно с экваториальными муссонами, т. е. её количество быстро уменьшается от экватора к тропикам. Соответственно секторность почти не выражена, а зоны и подзоны лесов и саванн многочисленны и субширотны. Напротив, в экваториальном поясе влага и тепло постоянны, повсеместны и обильны; в этом поясе и выражена одна зона - гилей.

  Явление зональности было известно ещё учёным Древней Греции. З. ф.-г. как на равнинах, так и в горах отмечались А. Гумбольдтом.Закономерное деление суши Земли на зоны и формулировка планетарного закона зональности впервые были осуществлены В. В. Докучаевым в 1898. В дальнейшей разработке его учения участвовал ряд учёных, главным образом русских: А. И. Воейков, Н. М. Симбирцев, Г. Н. Высоцкий, А. Н. Краснов, Г. И. Танфильев, Л. С. Берг, И. М. Крашенинников, А. А. Григорьев, А. И. Яунпутнинь, из зарубежных - Э. Дригальский (Германия), О. Норденшельд (Швеция), К. Тролль (ФРГ) и др.

  В СССР эти вопросы разрабатываются на географических факультетах Московского, Ленинградского, Воронежского и др. университетов (А. М. Рябчиков, С. В. Калесник, А. Г. Исаченко, Ф. Н. Мильков и др.). В отношении выделения зон и подзон у ряда авторов отмечаются некоторые расхождения, обусловленные различиями в подходе к отдельным аспектам рассматриваемой проблемы.

  Е. Н. Лукашова.

  Лит.:Яунпутнинь А. И., К вопросу о географическом районировании, «Известия Всесоюзного географического общества», 1946, т. 78, в. 1; Докучаев В. В., Учение о зонах природы, М., 1948; Берг Л. С., Географические зоны Советского Союза, т. 1-2, М., 1947-52; Физико-географический атлас мира, лист 75, М., 1964; Григорьев А. А., Закономерности строения и развития географической среды, М., 1966, с. 227-310; Лукашова Е. Н., Основные закономерности природной зональности и её проявление на суше Земли, «Вестник МГУ. Сер. географич.», 1966, № 6; Мильков Ф. Н., Географические пояса и периодическая система географических зон, «Землеведение», 1969, т. 8; Калесник С. В., Общие географические закономерности Земли, М., 1970; Исаченко А. Г., Системы и ритмы зональности, «Известия Всесоюзного географического общества», 1971, т. 103, в. 1; Будыко М. И., Климат и жизнь, Л., 1971.

Зоны Френеля

Зо'ны Фре'неля,участки, на которые можно разбить поверхность световой (или звуковой) волны для вычисления результатов дифракции света (или звука). Впервые этот метод применил О. Френель в 1815-19. Суть метода такова. Пусть от светящейся точки Q ( рис. ) распространяется сферическая волна и требуется определить характеристики волнового процесса, вызванного ею в точке Р.Разделим поверхность волны S на кольцевые зоны; для этого проведём из точки Рсферы радиусами PO, Pa= PO + l/ 2; Pb= Pa+ l/ 2 , Pc= Pb + l/ 2, (О - точка пересечения поверхности волны с линией PQ; l - длина световой волны). Кольцеобразные участки поверхности волны, «вырезаемые» из неё этими сферами, и называется З. Ф. Волновой процесс в точке Рможно рассматривать как результат сложения колебаний, вызываемых в этой точке каждой З.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12