()
ModernLib.Net / / / () -
(. 18)
:
|
|
:
|
|
-
(2,00 )
- fb2
(5,00 )
- doc
(1 )
- txt
(1 )
- html
(5,00 )
- :
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
|
|
Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути восстанавливается при включении достаточно сильного магнитного поля (его называют
критическим магнитным полемН
к)
.Измерения показали, что падение сопротивления до нуля происходит на протяжении очень узкого, но конечного интервала температур.
Ширина этого интервала для чистых образцов составляет 10
-3- 10
-4К и возрастает при наличии примесей и других дефектов структуры.
Отсутствие сопротивления в сверхпроводящем состоянии с наибольшей убедительностью демонстрируется опытами, в которых в сверхпроводящем кольце возбуждается ток, практически не затухающий с течением времени. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепляется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии магнитного поля ниже температуры Т
к, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше чем 10
-20
омЧ
см(сопротивление чистых образцов меди или серебра составляет около 10
-9
омЧ
смпри температуре жидкого гелия). Однако сверхпроводник не является просто идеальным проводником, как это считалось ещё в течение более чем 20 лет после открытия С. Существование значительно более глубокого различия между нормальным и сверхпроводящим состояниями металла стало очевидным, после того как нем. физики В. Мейснер и Р. Оксенфельд (1933) установили, что слабое магнитное поле не проникает в глубь сверхпроводника. Особенно важно, что это имеет место независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магнитный поток. Это различие иллюстрирует
рис. 2
(а, б, в)
,на котором схематически изображено распределение поля вблизи односвязного металлического образца на трёх последовательных этапах опыта: а) образец находится в нормальном состоянии, внешнее поле свободно проникает в глубь металла; б) образец охлаждается ниже
Т
к,магнитное поле выталкивается из сверхпроводника (верхний рисунок), тогда как в случае идеального проводника распределение поля оставалось бы неизменным (нижний рисунок); в) внешнее поле выключается, при этом исчезает и намагниченность сверхпроводника. В случае идеального проводника поток магнитной индукции через образец сохранил бы свою величину, и картина поля была бы такой же, как у постоянного магнита.
Выталкивание магнитного поля из сверхпроводящего образца (это явление обычно называют эффектом Мейснера) означает, что в присутствии внешнего магнитного поля такой образец ведёт себя как идеальный
диамагнетик
той же формы с
магнитной восприимчивостью
c
= -1/4p
.В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле
Ноднородно и параллельно оси цилиндра, то магнитный момент, отнесённый к единице объёма, будет равен
М = -Н/4p
.Это примерно в 10
5раз больше по абсолютной величине, чем удельная намагниченность диамагнитного металла в нормальном состоянии. Эффект Мейснера связан с тем, что при
Н<
Н
кв поверхностном слое сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что магнитное поле этого тока компенсирует внешнее поле в толще сверхпроводника. Опыт показывает, что в случае больших образцов слабое магнитное поле в условиях эффекта Мейснера проникает в металл на глубину d ~ 10
-5-10
-6
см,именно в этом слое течёт поверхностный токоло
По своему поведению в достаточно сильных полях сверхпроводники подразделяются на две большие группы, т. н. сверхпроводники 1-го и 2-го рода. На
рис. 3
и
4
в несколько идеализированной форме изображены кривые намагничивания
М(
Н)
,типичные для каждой из этих групп. Кривые относятся к случаю длинных цилиндрических образцов, помещенных в поле, параллельное оси цилиндра. При такой геометрии опыта отсутствуют эффекты размагничивания, и картина поэтому является наиболее простой. Начальный прямолинейный участок на этих кривых, где
М =-Н/4p, соответствует интервалу значений
Н,на котором имеет место эффект Мейснера. Как видно из рисунка, дальнейший ход кривых
М(
Н) для сверхпроводников 1-го и 2-го рода существенно различается.
Сверхпроводники 1-го рода, которыми являются все достаточно чистые сверх-проводящие металлические элементы (за исключением V и Nb), теряют С. при поле
Н = Н
к,когда поле скачком проникает в металл и он во всём объёме переходит в нормальное состояние. При этом удельный магнитный момент также скачком уменьшается примерно в 10
5раз. Критическому полю
Н
кможно дать простое термодинамическое истолкование. При температуре
Т<
Т
ки в отсутствии магнитного поля
свободная энергия
в сверхпроводящем состоянии
F
cниже, чем в нормальном F
н. При включении поля свободная энергия сверхпроводника возрастает на величину
H
2/8p
,равную работе намагничивания, и при
Н=
Н
ксравнивается с
F
н(в силу малости магнитного момента в нормальном состоянии
F
нпрактически не изменяется при включении поля). Т. о., поле
Н
копределяется из условия равновесия в точке перехода:
F
c+
Н
2
к/8p
=
F
н. (1)
Критическое поле
Н
кзависит от температуры: оно максимально при
Т =0 и монотонно убывает до нуля по мере приближения к
Т
к. (Значения
Н
кдля некоторых сверхпроводников приведены в ст.
Сверхпроводники.) На
рис. 5
изображена фазовая диаграмма на плоскости (
Н, Т)
.Заштрихованная область, ограниченная кривой
Н
к(
Т)
,соответствует сверхпроводящему состоянию. По измеренной зависимости
Н
к(
Т) могут быть рассчитаны все термодинамические характеристики сверхпроводника 1-го рода. В частности, из формулы (1) непосредственно получается (при дифференцировании по температуре) выражение для
теплоты фазового перехода
в сверхпроводящее состояние:
, (2)
где S -
энтропия
единицы объёма. Знак Q таков, что теплота поглощается сверхпроводником при переходе в нормальное состояние. Поэтому если разрушение С. магнитным полем производится при адиабатической изоляции образца, то последний будет охлаждаться.
Скачкообразный характер фазового перехода в магнитном поле (
рис. 3
) наблюдается только в случае весьма специальной геометрии опыта: длинный цилиндр в продольном поле. При произвольной форме образца и др. ориентациях поля переход оказывается растянутым по более или менее широкому интервалу значений
Н:он начинается при
Н < Н
ки заканчивается, когда поле во всех точках образца превысит
Н
к.В этом интервале значений
Нсверхпроводник 1-го рода находится в т. н.
промежуточном состоянии.Он расслаивается на чередующиеся области нормальной и сверхпроводящей фаз, причём так, что поле в нормальной фазе вблизи границы раздела параллельно этой границе и равно
Н
к. По мере увеличения поля возрастает доля нормальной фазы и происходит уменьшение магнитного момента образца. Структура расслоения и характер кривой намагничивания существенно зависят от геометрических факторов. В частности, для пластинки, ориентированной перпендикулярно магнитному полю, расслоение начинается уже в слабом поле, гораздо меньшем, чем
Н
к.
С магнитными свойствами сверхпроводников тесно связаны и особенности протекания в них тока. В силу эффекта Мейснера ток является поверхностным, он сосредоточен в тонком слое, определяемом глубиной проникновения магнитного поля. Когда ток достигает некоторой критической величины, достаточной для создания критического магнитного поля, сверхпроводник 1-го рода переходит в промежуточное состояние и приобретает электрическое сопротивление.
К сверхпроводникам 2-го рода относится большинство сверхпроводящих сплавов. Кроме того, сверхпроводниками 2-го рода становятся и сверхпроводящие металлические элементы (сверхпроводники 1-го рода) при введении в них достаточно большого количества примесей. Картина разрушения сверхпроводимости магнитным полем является у этих сверхпроводников более сложной. Как видно из
рис. 4
, даже в случае цилиндрического образца в продольном поле происходит постепенное уменьшение магнитного момента на протяжении значительного интервала полей от
Н
к, когда поле начинает проникать в толщу образца, и до поля
Н
к, при котором происходит полное разрушение сверхпроводящего состояния. В большинстве случаев кривая намагничивания такого типа является необратимой (наблюдается магнитный
гистерезис
)
.Величина гистерезиса очень чувствительна к технологии приготовления образцов, и в некоторых случаях путём специальной обработки удаётся получить образцы с почти обратимой кривой намагничивания. Поле
Н
кчасто оказывается весьма большим, достигая сотен тысяч
эрстед
(см. статьи
Магниты сверхпроводящие
и
Сверхпроводники
)
.Что же касается термодинамического критического поля
Н
к, определяемого соотношением (1), то оно для сверхпроводников 2-го рода не является непосредственно наблюдаемой характеристикой. Однако его можно рассчитать, исходя из найденных опытным путём значений свободной энергии в нормальном и сверхпроводящем состояниях в отсутствии магнитного поля. Оказывается, что вычисленное таким способом значение Н
кпопадает в интервал между
и
Т. о., проникновение магнитного поля в сверхпроводник 2-го рода начинается уже в поле, меньшем, чем Н
к, когда условие равновесия (1) ещё нарушено в пользу сверхпроводящего состояния. Понять это парадоксальное на первый взгляд явление можно, если принять во внимание поверхностную энергию границы раздела нормальной и сверхпроводящей
фаз.В случае сверхпроводников 1-го рода эта энергия положительна, так что появление границы раздела приводит к проигрышу в энергии. Это существенно ограничивает степень расслоения в промежуточном состоянии. Аномальные магнитные свойства сверхпроводников 2-го рода можно качественно объяснить, если принять, что в этом случае поверхностная энергия отрицательна. Именно к такому выводу приводит современная теория сверхпроводимости. При отрицательной поверхностной энергии уже при
Н < Н
кэнергетически выгодным является образование тонких областей нормальной фазы, ориентированных вдоль магнитного поля. Возможность реализации такого состояния сверхпроводника 2-го рода была предсказана А. А.
Абрикосовым
(1952) на основе теории сверхпроводимости В. Л.
Гинзбурга
и Л. Д.
Ландау.Позднее им же был произведён детальный расчёт структуры этого состояния. Оказалось, что нормальные области зарождаются в форме нитей, пронизывающих образец и имеющих толщину, грубо говоря, сравнимую с глубиной проникновения магнитного поля. При увеличении внешнего поля концентрация нитей возрастает, что и приводит к постепенному уменьшению магнитного момента. Т. о., в интервале значений поля от
до
,сверхпроводник находится в состоянии, которое принято называть смешанным.
Фазовый переход в сверхпроводящее состояние в отсутствии магнитного поля.Прямые измерения
теплоёмкости
сверхпроводников при
Н =0 показывают, что при понижении температуры теплоёмкость в точке перехода
Т
киспытывает скачок до величины, которая примерно в 2,5 раза превышает её значение в нормальном состоянии в окрестности
Т
к(
рис. 6
). При этом теплота перехода
Q =0, что следует, в частности, из формулы (2) (
Н
к=0 при
Т = Т
к)
.Т. о., переход из нормального в сверхпроводящее состояние в отсутствии магнитного поля является фазовым переходом 2-го рода. Из формулы (2) можно получить важное соотношение между скачком теплоёмкости и углом наклона кривой
Н
к(
Т)
(
рис. 5
) в точке
Т =
Т
к:
,
где
С
си
С
н- значения теплоёмкости в сверхпроводящем и нормальном состояниях. Это соотношение с хорошей точностью подтверждается экспериментом.
Природа сверхпроводимости.Совокупность экспериментальных фактов о С. убедительно показывает, что при охлаждении ниже Т
кпроводник переходит в новое состояние, качественно отличающееся от нормального. Исследуя различные возможности объяснения свойств сверхпроводника, особенно эффекта Мейснера, немецкие учёные, работавшие в Англии, Г. и Ф. Лондоны (1934) пришли к заключению, что сверхпроводящее состояние является макроскопическим квантовым состоянием металла. На основе этого представления они создали феноменологическую теорию, объясняющую поведение сверхпроводников в слабом магнитном поле - эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное Гинзбургом и Ландау (1950), позволило рассмотреть вопросы, относящиеся к поведению сверхпроводников в сильных магнитных полях. При этом было объяснено огромное количество экспериментальных данных и предсказаны новые важные явления. Убедительным подтверждением правильности исходных предпосылок упомянутых теорий явилось открытие эффекта
квантования магнитного потока,заключённого внутри сверхпроводящего кольца. Из уравнений Лондонов следует, что магнитный поток в этом случае может принимать лишь значения, кратные кванту потока Ф
о=
hc/e*,где
е* - заряд носителей сверхпроводящего тока,
h -
Планка постоянная, с -
скорость света.В 1961 Р. Долл и М. Небауэр и, независимо, Б. Дивер и У. Фейроенк (США) обнаружили этот эффект. Оказалось, что
е* = 2
e, где
е- заряд электрона. Явление квантования магнитного потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в магнитном поле, большем, чем
Н
к1.Образующиеся здесь нити нормальной фазы несут квант потока Ф
о. Найденная в опытах величина заряда частиц, создающих своим движением сверхпроводящий ток (
е* = 2
e), подтверждает
Купера эффект,на основе которого в 1957 Дж.
Бардин,Л.
Купер
и Дж.
Шриффер
(США) и Н. Н.
Боголюбов
(СССР) построили последовательную микроскопическую теорию С. Согласно Куперу, два электрона с противоположными
спинами
при определённых условиях могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2e. Пары обладают нулевым значением спина и подчиняются
Бозе - Эйнштейна статистике.Образуясь при переходе металла в сверхпроводящее состояние, пары испытывают т. н. бозе-конденсацию (см.
Квантовая жидкость
)
,и поэтому система куперовских пар обладает свойством
сверхтекучести.Т. о., С. представляет собой сверхтекучесть электронной жидкости. При
Т= 0 связаны в пары все электроны проводимости. Энергия связи электронов в паре весьма мала: она равна примерно 3,5 k
T
k,где
k -
Больцмана постоянная.При разрыве пары, происходящем, например, при поглощении кванта электромагнитного поля или кванта звука (
фонона
)
,в системе возникают возбуждения. При отличной от нуля температуре имеется определённая равновесная концентрация возбуждений, она возрастает с температурой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет т. н. щель в энергетическом спектре возбуждений, т. е. минимальную энергию, необходимую для создания отдельного возбуждения. Природа сил притяжения между электронами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются взаимодействием электронов с фононами. Тем не менее развитие теории С. стимулировало интенсивные теоретические поиски других механизмов С. В этом плане особое внимание уделяется т. н. нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в которых имеются основания ожидать более интенсивного притяжения между электронами, чем в обычных сверхпроводниках, а следовательно, - и более высокой температуры перехода в сверхпроводящее состояние.
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
|
|