()
ModernLib.Net / / / () -
(. 59)
:
|
|
:
|
|
-
(8,00 )
- fb2
(30,00 )
- doc
(1 )
- txt
(1 )
- html
(28,00 )
- :
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268
|
|
Аналитическая химия.Предложены и применены новые методы анализа, например дробный и капельный (1922, Н. А. Тананаев), бесстружковый для анализа металлов, кинетический анализ с использованием каталитических реакций (1958-60, К. Б. Яцимирский), ультрамикроанализ (1959-60, И. П. Алимарин). С 1946-49 развёрнуты работы по совершенствованию и внедрению методов хроматографического анализа (А. В. Киселев, К. В. Чмутов, А. А. Жуховицкий). Получили развитие оптические, электрохимические и радиохимические методы анализа. Впервые использован нейтронный радиоактивационный анализ следов примесей в полупроводниковых элементах. В связи с решением проблем геохимии, биогеохимии, а также космохимии большой вклад в развитие современных методов анализа следов элементов и изучение изотопного состава элементов в минералах и метеоритах внесён А. П. Виноградовым. Особенностью работ школы советских аналитиков является изучение проблем, связанных с применением органических реактивов (Л. М. Кульберг, И. М. Коренман, А. П. Терентьев, В. И. Кузнецов, 1946-50).
Органическая химия.Исследования в области органической химии получили в СССР большой размах. Н. Д. Зелинский, С. С. Наметкин, С. В. Лебедев, Ю. Г. Мамедалиев, А. В. Топчиев и их сотрудники систематически изучали углеводороды нефти. Ими были разработаны способы разделения нефти, низкотемпературные процессы получения ацетилена на основе метана, дегидрогенизации бутана и пентанов соответственно до бутадиена и изопрена, этилбензола и изопропилбензола - до стирола и a-метилстирола, циклогексановых углеводородов - до ароматических. Открыты и детально изучены реакции C
5- и C
6-дегидроциклизации алканов в соответствующие циклопентановые, циклопентеновые и ароматические углеводороды (Н. Д. Зелинский, Б. А. Казанский, Б. Л. Молдавский и др.). Эти реакции наряду с дегидрогенизационным катализом Зелинского представляют важнейшее звено в процессах риформинга, в промышленном синтезе бензола и других индивидуальных ароматических углеводородов. Большое число работ выполнено в области гидрогенизации углеводородов: выяснены закономерности гидрогенизационного катализа (С. В. Лебедев. Б. А. Казанский, 1920-30); синтезированы модельные углеводороды по схеме: спирты - олефины - парафины (А. Д. Петров, Р. Я. Левина и др., 1940-е гг.). Принципиально важным для теории этих синтезов было открытие реакций гидрополимеризации и гидроконденсации (Я. Т. Эйдус и Н. Д. Зелинский, 1926-48).
Работы в области изомерных превращений ацетиленовых углеводородов в школе А. Е. Фаворского, продолжавшиеся более 50 лет (с 1880-х гг.), позволили установить взаимные переходы между ацетиленовыми, алленовыми и диеновыми соединениями, определить условия их устойчивости, изучить механизм изомеризации и полимеризации диенов, найти структурные закономерности, относящиеся к внутримолекулярным перегруппировкам. Исследования димеризации и полимеризации ацетиленовых углеводородов и гидратации полученных продуктов привели к синтезу ряда ацетиленовых спиртов и карбонильных соединений, а также соединений стероидного типа (И. Н. Назаров, 1940-е гг.), и к промышленному синтезу хлоропренового каучука (А. Л. Клебанский, И. М. Долгопольский, 1932-34). Систематические исследования в области нитрования углеводородов привели к получению многих практически важных нитропроизводных (А. И. Титов, С. С. Новиков, А. В. Топчиев, 1940-60).
Разработан т. н. кумольный процесс, позволяющий получать на основе бензола и пропилена (через кумол) ацетон и фенол (П. Г. Сергеев, Р. Ю. Удрис, Б. Д. Кружалов, 1947). Работы в области крекинга и алкилирования углеводородов позволили получать необходимые изоалканы для производства высокооктановых бензинов, а также индивидуальные углеводороды - промежуточные продукты органического синтеза. Универсальные методы синтеза циклопропановых и циклобутановых углеводородов были разработаны Н. Я. Демьяновым, Н. М. Кижнером, Б. А. Казанским и др.
Изучен механизм реакций и определены условия жидкофазного окисления парафиновых углеводородов с получением жирных кислот, спиртов, альдегидов.
Элементоорганические соединения. Этот раздел химии превратился в СССР в обширную область, занимающую пограничное положение между неорганической и органической химией. В 1920-е гг. преимущественно изучались магний- и натрийорганические соединения (П. П. Шорыгин, Н. Д. Зелинский, В. В. Челинцев, А. П. Терентьев), а затем в практику вошли литийорганические (К. А. Кочешков, Б. М. Михайлов и др.). В 1929 открыт новый метод получения ртутьорганических соединений (реакция Несмеянова), ставший основой синтеза многих органических производных тяжёлых металлов вообще. В 30-40-е гг. на основе этого метода синтезированы соединения олова, свинца, висмута, таллия, цинка, сурьмы и т. д.; изучены их свойства, открыты новые типы реакций (А. Н. Несмеянов, К. А. Кочешков, Р. Х. Фрейдлина, О. Л. Реутов и их сотрудники). Были изучены разнообразные реакции ониевых (хлорониевых, бромониевых и иодониевых) соединений. Исследованиями А. Е. Арбузова заложены основы химии фосфорорганических соединений. Б. А. Арбузовым, М. И. Кабачником, А. В. Кирсановым и их сотрудниками разработаны способы получения фосфорорганических инсектицидов, негорючих полимеров, смазок, пластификаторов.
С 40-х гг. стала изучаться химия фторорганических соединений (И. Л. Кнунянц и его школа, Н. Н. Ворожцов, А. В. Фокин, А. Я. Якубович, Б. Л. Дяткин и др.), получены фторсодержащие производные практически всех классов органических соединений. Разработаны доступные, в том числе промышленные, методы синтеза фторорганических соединений; изучены нуклеофильное и электрофильное присоединение к ненасыщенным системам, природа p-связи фторолефинов, вопросы сопряжения, анодное фторирование ароматических соединений, прямое фторирование урацила (для получения противоопухолевого препарата 5-фторурацила) и т. д. Разработаны методы получения органических соединений элементов III гр., в том числе борорганических соединений (Б. М. Михайлов и др.). Исследованы многочисленные реакции ценовых соединений переходных металлов, в том числе получение полимеров на основе производных ферроцена.
С работами в области химии элементоорганических соединений тесно связано решение ряда фундаментальных вопросов теории органической химии. А. Н. Несмеяновым и М. И. Кабачником сформулирована теория двойственной реакционной способности соединений, для которых нехарактерно классическое таутомерное равновесие. Изучение распада двойных диазониевых солей с галогенидами металлов и разложение металлоорганических соединений в растворах привело к важным выводам о механизме свободнорадикальных реакций и об относительной активности радикалов (А. Н. Несмеянов, Г. А. Разуваев и их сотрудники).
Гетероциклические соединения. Начало работ в этой области положено А. Е. Чичибабиным, изучившим химию пиридина и других азотсодержащих циклов. В 1930-50-е гг. работы В. М. Родионова, Н. Д. Зелинского и Ю. К. Юрьева положили основание научным представлениям о взаимных каталитических превращениях пятичленных гетероциклов. Исследования в области химии фурана и тиофена привели к синтезу их многочисленных практически важных производных (Н. И. Шуйкин, Я. Л. Гольдфарб, С. А. Гиллер, А. П. Терентьев, Ю. А. Жданов). И. Л. Кнунянц нашёл новый тип гетероциклических соединений - пропиотиолактонов. Систематически изучались самые различные азотсодержащие гетероциклы. Синтезированы многие высокоэффективные фармацевтические препараты, инсектофунгициды и другие биологически активные вещества гетероциклического характера.
Природные соединения. В 20-40-е гг. работы в этой области были почти всецело посвящены выяснению состава и строения различных природных соединений: терпенов (С. С. Наметкин, А. Е. Арбузов, Б. А. Арбузов), сахаров и целлюлозы (П. П. Шорыгин, С. Н. Данилов), алкалоидов (А. П. Орехов, А. Е. Чичибабин, В. М. Родионов, А. С. Садыков, С. Ю. Юнусов и др.). Но уже в 50-е гг. преимущественное развитие получили работы, заложившие основы биоорганической химии. В качестве объектов исследования на первое место выдвигаются биополимеры (белки, нуклеиновые кислоты, полисахариды) и биорегуляторы (гормоны, витамины, антибиотики). Основными методами исследования при этом стали новейшие физические и физико-химические методы. Проведён ряд успешных работ по выяснению сложной структуры гликопротеидов и природных углеводов (Н. К. Кочетков и др.).
Высокомолекулярные соединения.Первые исследования в области синтеза высокомолекулярных соединений выполнены в конце 19 - начале 20 вв. А. М. Бутлеровым, И. Л. Кондаковым, Г. С. Петровым и др. Важное значение для формирования современных представлений о полимеризации имели ранние работы С. В. Лебедева по полимеризации диеновых и алленовых углеводородов (1908-13). Он же впервые (1928) разработал метод синтеза бутадиенового каучука и в 1932 организовал промышленное производство этого материала.
С начала 1930-х гг. происходит формирование науки о полимерах как самостоятельной области химии, объединяющей в единое целое и развивающей весь комплекс представлений о путях синтеза высокомолекулярных соединений, их свойствах и свойствах тел, построенных из макромолекул. Существ. роль при становлении науки о полимерах в СССР сыграли труды В. А. Каргина.
С. С. Медведевым и его школой изучался механизм радикальной полимеризации: впервые установлена радикальная природа полимеризационных процессов, сформулировано понятие инициирования и передачи цепи при полимеризации.
Большое значение имело открытие Б. А. Долгоплоском окислительно-восстановительного инициирования полимеризации, которое легло в основу создания промышленного синтеза каучуков методом эмульсионной полимеризации (1939-52). Значительный вклад в разработку кинетической теории радикальной полимеризации в растворах внесли С. С. Медведев и Х. С. Багдасарьян. Разрабатывались статистические основы полимеризационных процессов (С. Я. Френкель). Созданы способы управления радикальной полимеризацией, основанные на использовании комплексообразователей, изменяющих реакционную способность мономеров и радикалов, осуществлен синтез макромолекул на матрицах из синтетических полимеров, моделирующий матричный биосинтез (В. А. Кабанов и др.). Проведены детальные исследования полимеризации в твёрдой фазе и радиационной полимеризации.
Достигнуты успехи в изучении и реализации ионной и координационно-ионной полимеризации. Ещё в ранних исследованиях С. С. Медведевым было впервые доказано образование «живущих» активных центров. Позже им же были установлены важные особенности механизмов этих процессов. Б. А. Долгоплоск и его школа внесли крупный вклад в изучение координационно-ионной полимеризации диенов, в результате чего было создано промышленное производство стереорегулярных каучуков. Позднее им был открыт и исследован стереоспецифический катализ полимеризации диенов под влиянием p-аллильных комплексов переходных металлов, установлен цепной характер полимеризации цикло-олефинов с раскрытием цикла и карбенный механизм реакций этого типа. А. А. Коротков впервые синтезировал 1,4
-цис-полиизопрен. Н. С. Ениколопов открыл новый элементарный акт передачи цепи с разрывом, характерный для некоторых процессов полимеризации гетероциклических мономеров. И. Л. Кнунянц был в числе первых исследователей полимеризации e-капролактама. Работы Н. С. Наметкина привели к созданию поликремнийуглеводородов.
Исследования В. В. Коршака и его школы легли в основу важных обобщений, касающихся механизма поликонденсации. Разработан ряд новых путей синтеза полимеров (полирекомбинация, дегидрополиконденсация, полипереарилирование, конденсационная полициклотримеризация). В результате получены новые полимерные материалы, в том числе термостойкие.
Значит. успехи достигнуты в области синтеза и технологии элементоорганических полимеров благодаря оригинальным исследованиям К. А. Андрианова, впервые (1937) осуществившего синтез полиорганосилоксанов. В дальнейшем им и его школой разработаны основные принципы синтеза полимеров с неорганическими цепями молекул, в том числе полиорганометаллосилоксанов, синтезированы термостойкие кремнийорганические полимеры, нашедшие широкое применение. Получены жесткоцепные термостойкие полимеры методами полициклоконденсации и выяснены механизмы этих процессов (М. М. Котон и др.).
Разработана статистическая теория реакционной способности звеньев полимерной цепи с учётом эффекта соседних групп, впервые установлены зависимости свойств привитых и блоксополимеров от их надмолекулярной структуры и от структуры составляющих полимерных компонентов. В этих работах заложены основы структурно-химической модификации полимеров (Н. А. Платэ и др.). Созданы методы радиационно-химического модифицирования полимеров путём прививки мономеров из газовой фазы. Исследованы особенности радиационно-химических превращений полимеров (В. Л. Карпов и др.). Изучены закономерности вулканизации каучуков (Б. А. Догадкин). Крупный вклад в области химии и химической модификации целлюлозы внесли С. Н. Данилов и З. А. Роговин. Успешно разрабатываются проблемы стабилизации полимерных материалов (Н. М. Эмануэль, Г. А. Разуваев).
В области исследований физических свойств полимеров основополагающее значение имели труды А. П. Александрова, П. П. Кобеко, Ю. С. Лазуркина, в которых впервые (конец 30-х гг.) была сформулирована кинетическая концепция релаксационных переходов в полимерах как в особой разновидности аморфных тел. Эта концепция получила детальное развитие в работах В. А. Каргина и его школы; она была доведена до стройной системы представлений о трёх физических состояниях аморфных полимеров. Исследования связи между физико-химическими свойствами полимеров и их строением на молекулярном и надмолекулярном уровнях привели к нахождению эффективных способов модификации пластмасс, каучуков и химических волокон. В. А. Каргин предложил концепцию о роли надмолекулярной организации полимеров (совместно с А. И. Китайгородским и Г. Л. Слонимским) и обосновал структурную механику полимерных тел. С. Н. Журков сформулировал и развил представления о термофлуктуационной природе прочности и механической долговечности полимеров. Развиты представления о закономерностях изменения термомеханических свойств полимеров при их пластификации. Исследованы закономерности одноосного течения полимеров и открыто явление химического течения. Г. В. Виноградовым выполнены важные работы в области реологии полимеров. В. Ф. Евстратов исследовал связь структуры и свойств синтетических каучуков с эксплуатационными характеристиками получаемых из них резин.
Для развития теории растворов полимеров большое значение имело установление в конце 1930-х гг. явления их термодинамической обратимости (В. А. Каргин совместно с С. П. Папковым и З. А. Роговиным). В 50-70-х гг. исследованы новые классы полимеров, образующих жидкокристаллические структуры. В. Н. Цветков развил общие и экспериментальные подходы к определению конформации отдельных макромолекул. Первая количественная молекулярная теория конформационного состояния полимерных цепей предложена Я. И. Френкелем и С. Е. Бреслером. М. В. Волькенштейн развил поворотно-изомерную концепцию гибкости макромолекул.
Значительное развитие получили исследования в области полимеров с системой сопряжения (А. В. Топчиев, С. П. Папков, Б. А. Кренцель); фармакологически активных полимеров и полимеров биомедицинского назначения (С. Н. Ушаков и др.); полимерных систем, моделирующих различные функции биополимеров: катализ, самосборку упорядоченных агрегатов из комплементарных макромолекул и др.
Развитие химической науки и производства происходит в условиях международного сотрудничества и укрепляющихся деловых контактов советских химиков с учёными других социалистических стран. Десятки химических институтов и предприятий осуществляют двустороннее сотрудничество со многими организациями и предприятиями стран - членов СЭВ. Так, в результате сотрудничества химиков и машиностроителей СССР и ГДР разработан и освоен высокоавтоматизированный процесс производства полиэтилена в трубчатом реакторе мощностью 50- 70 тыс.
т/год,ведутся работы над созданием производства полиэтилена низкой плотности мощностью технической линии более 100 тыс.
т/год.Советские и чехословацкие химики совместно разработали технологический процесс получения пирокатехина совместно со специалистами Венгрии эффективно ведутся работы по созданию производства олефинов и продуктов их переработки. Сотрудничество советских и болгарских химиков в разработке процесса конверсии окиси углерода привело к созданию новых высокопроизводительных катализаторов с увеличенным сроком службы.
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268
|
|