ModernLib.Net

()

ModernLib.Net / / / () - (. 56)
:
:

 

 


Идея использования модуляции скорости электронов принадлежит Рожанскому, а первые практические шаги по её реализации - представителям электрофизической школы Чернышева: Н. Д. Девяткову, Н. Ф. Алексееву, Л. Б. Малярову и др. Теория и расчёт приборов СВЧ-диапазона разрабатывались Г. А. Гринбергом.

  Важные работы по эмиссионной (катодной ) электронике принадлежат П. И. Лукирскому и С. А. Векшинскому и их школам. Эти работы были теснейшим образом связаны с промышленностью электронных ламп и проводились в конце 20-х - начале 30-х гг. на ленинградском заводе «Светлана». Исследования внешнего фотоэффекта дали прямые выходы в промышленность: прогресс отечественного производства фотоэлементов (кислородно-цезиевых и сурьмяно-цезиевых) связан с именами Н. Д. Моргулиса, А. А. Лебедева, С. Ю. Лукьянова, П. В. Тимофеева, Н. С. Хлебникова. Большое значение для понимания явлений, входящих в круг проблем эмиссионной электроники, имели работы Л. Н. Добрецова. В начале 30-х гг. Л. А. Кубецкий открыл принцип вторичного электронного умножения и построил первый фотоэлектронный умножитель.

  Существенный вклад в развитие исследований по распространению радиоволн внесли (40-50-е гг.) работы В. А. Фока, Б. А. Введенского, М. А. Леонтовича, В. Л. Гинзбурга, Е. Л. Фейнберга, Г. А. Гринберга и др. Ещё в конце 30-х гг. ленинградскими физиками под руководством Д. А. Рожанского и Ю. Б. Кобзарева были разработаны принципы импульсной радиолокации и построены радиолокационные станции.

  Идея использования радио в астрономии, в частности для радиолокации Луны, была в 40-х гг. высказана Мандельштамом и Папалекси. В 60-х гг. В. А. Котельниковым и коллективом его сотрудников были проведены радиолокационные исследования планет.

  Квантовая электроника.Крупнейшим событием в физике и технике явилось создание квантовой электроники. Высокая культура радиофизических исследований, проводимых в Физическом институте АН СССР, во многом определила то, что именно в нём в 1951 по инициативе А. М. Прохорова начались фундаментальные исследования по квантовой электронике. В 1952-55 Прохоров совместно с Н. Г. Басовым доказал возможность создания усилителей и генераторов принципиально нового типа и решил основные задачи его осуществления. Первый молекулярный генератор (мазер) в сантиметровом диапазоне длин волн был построен ими в 1955 (и независимо от них Ч. Таунсом в США). Инверсия населённостей была получена ими в трехуровневой системе с оптической накачкой (1955). В 1957-58 Прохоров предложил использовать в качестве рабочего вещества рубин, выдвинул идею открытых резонаторов и развил методы создания парамагнитных усилителей.

  После изобретения мазеров важнейшим достижением в квантовой электронике явилось создание квантовых генераторов в  оптическом диапазоне длин волн - лазеров, причём оказалось, что лазерный эффект можно получить на широком классе веществ: полупроводниках, газах, жидкостях, стеклах, растворах. Басов впервые указал на возможность использования полупроводников в квантовой электронике и совместно с сотрудниками развил методы создания полупроводниковых лазеров (1957-61). Первый в СССР полупроводниковый лазер на арсениде галлия был построен в лаборатории, руководимой Б. М. Вулом. В 1963 Ж. И. Алферов предложил использовать для полупроводникового лазера гетероструктуры. Особо перспективен газодинамический лазер на CO 2, предложенный в 1967 А. М. Прохоровым и В. К. Конюховым и построенный в 1970.

  Квантовая электроника оказала большое влияние на развитие физики в целом (лазерная спектроскопия, лазерное зондирование атмосферы, лазерная диагностика плазмы и др.). Лазеры используются для целей локации, космической связи, в вычислительной технике, медицине.

  Высокотемпературная плазма и проблемы управляемых термоядерных реакций.Исследования по теории плазмы были начаты в 30-х гг. В 1936 Л. Д. Ландау предложил кинетическое уравнение для электронной плазмы. В 1938 А. А. Власов составил уравнение колебаний разреженной плазмы в её собственном самосогласованном поле. Теория колебаний плазмы, основанная на этом уравнении, была развита в 1946 Ландау, который показал, что даже в отсутствие столкновений частиц плазмы колебания в ней затухают (т. н. затухание Ландау). Интерес к исследованию горячей плазмы возрос в связи с проблемой осуществления управляемого термоядерного синтеза. В 1950 И. Е. Тамм и А. Д. Сахаров предложили принцип магнитной термоизоляции плазмы. В 50-е гг. существ. результаты были достигнуты при экспериментальном исследовании мощных импульсных разрядов в газах для получения высокотемпературной плазмы (Л. А. Арцимович, М. А. Леонтович и их сотрудники). При этом была обнаружена неустойчивость плазмы. Дальнейшие исследования многообразных, типов неустойчивостей (Р. З. Сагдеев и др.) привели к разработке способов эффективного подавления некоторых из них (Б. Б. Кадомцев, М. С. Иоффе и др.). Теории турбулентности плазмы и её турбулентного нагрева посвящены исследования А. А. Веденова, Б. Б. Кадомцева, Е. К. Завойского и их сотрудников. Проведению всех этих исследований способствовали работы по созданию методов диагностики плазмы (Б. П. Константинов, Н. В. Федоренко, В. Е. Голант). Особенно большие успехи в получении эффективной термоизоляции плазмы были достигнуты на тороидальных магнитных установках типа «Токамак», исследования на которых были начаты в 1956 под руководством Арцимовича. В 1975 закончено сооружение наиболее крупной установки такого типа - «Токамак-10», которое явилось одним из значительных шагов на пути к осуществлению управляемой термоядерной реакции. На основе полученных результатов начаты разработки термоядерных реакторов (Е. П. Велихов, И. Н. Головин). В 1969 П. Л. Капица получил стабильный плазменный шнур в СВЧ-разряде с температурой порядка 10 5-10 6К. Развивается перспективное направление термоядерных исследований, связанное с применением мощных лазеров для нагрева плазмы (А. М. Прохоров, Н. Г. Басов) и релятивистских электронных пучков (Е. К. Завойский, П. И. Рудаков). Интенсивно проводятся исследования на открытых ловушках (Г. И. Будкер, М. С. Иоффе) и установках с обжатием плазмы магнитным полем (Велихов).

  Акустика.Различным разделам акустики - от общей теории акустики движущейся среды до проблем архитектурной акустики и практических методов измерений акустических величин - посвящены работы Н. Н. Андреева, возглавившего школу советских акустиков. Советскими учёными были выполнены работы по распространению звука в неоднородных и слоистых средах (Л. М. Бреховских); по общей теории звуковых явлений в неоднородных и движущихся средах (Д. И. Блохинцев, 1944-46); по распространению звука в средах со случайными неоднородностями (Л. А. Чернов, 1951-58); по звуковой оптике: преломление и фокусировка звука и ультразвука (Л. Д. Розенберг, 1949-55): по акустике речи (Л. А. Чистович, М. А. Сапожков). В 30-40-х гг. были проведены исследования в области музыкальной акустики (А. В. Римский-Корсаков, Л. С. Термен и др.). По архитектурной акустике и электроакустике работы выполнили В. В. Фурдуев, Ю. М. Сухаревский, С. Н. Ржевкин, А. А. Харкевич, Г. Д. Малюжинец и др. Важные результаты по нелинейной акустике получены Б. П. Константиновым, одним из пионеров этой области науки, и др. Начиная с 50-х гг. получила развитие физика ультразвука и гиперзвука (И. Г. Михайлов, С. Я. Соколов и др.). Ультразвуковая дефектоскопия в СССР начала быстро развиваться благодаря основополагающим работам Соколова.

  В начале 60-х гг. И. А. Викторов, Ю. А. Гуляев, В. Л. Гуревич, В. И. Пустовойт установили эффект усиления ультразвуковых волн в полупроводниках и слоистых структурах полупроводник - диэлектрик при дрейфе через них носителей тока, на основе которого были созданы различные акустоэлектронные приборы. Магнитоакустический резонанс, возникающий при взаимодействии гиперзвуковых и спиновых волн в ферромагнетиках (А. И. Ахиезер и др.), лег в основу генераторов гипер- и ультразвука и явился новым инструментом исследования магнитоупорядоченных кристаллов.

  Периодические издания: «Акустический журнал» (с 1955), «Атомная энергия» (с 1956), «Журнал технической физики» (с 1931), «Журнал экспериментальной и теоретической физики» (с 1931), «Известия АН СССР. Серия физическая» (с 1936), «Кристаллография» (с 1956), «Оптика и спектроскопия» (с 1956), «Приборы и техника эксперимента» (с 1956), «Радиотехника и электроника» (с 1956), «Успехи физических наук» (с 1918), «Физика металлов и металловедение» (с 1955), «Ядерная физика» (с 1965), «Квантовая электроника» (1971), «Физика плазмы» (1975) и др.

  См. , , , , , , , , , , , , , , , , .

  Э. В. Шпольский, В. Я. Френкель.

 Механика

 Начало работ по механике в России относится к 1-й половине 18 в. и связано с организацией Петербургской АН в 1725 по указу Петра I. В 1722 вышел в свет первый русский учебник по механике «Наука статическая или механика» Г. Г. Скорнякова-Писарева. Большой вклад в развитие механики внесли работы Д. Бернулли и Л. Эйлера, которые, в частности, явились создателями теоретической гидродинамики идеальной жидкости. В 30-х гг. 18 в. в Петербурге были подготовлены «Гидродинамика» Д. Бернулли (1738) и двухтомная «Механика» Л. Эйлера (1736).

  В 19 в. центр тяжести исследований по механике в России переместился постепенно в университеты и высшие технические учебные заведения. В середине 19 в. в Петербурге работали М. В. Остроградский, П. Л. Чебышёв и др. Во 2-й половине 19 в. складывается московская школа механики, которая достигла расцвета в начале 20 в. под руководством Н. Е. Жуковского и С. А. Чаплыгина. Характерным для этой школы явилось сочетание математического подхода с разработкой прикладных задач. На рубеже 20 в. сформировалась петербургская инженерная школа (И. Г. Бубнов, В. Л. Кирпичёв, А. Н. Крылов, И. В. Мещерский, С. П. Тимошенко). Общая теория устойчивости движения механических систем, созданная А. М. Ляпуновым, явилась фундаментальным вкладом в развитие механики начала 20 в.

  После Октябрьской революции 1917 научные работы по механике значительно интенсифицировались. Крупнейшим учреждением, тесно связанным с развитием механики, стал созданный в Москве в 1918 Центральный аэрогидродинамический институт (ЦАГИ), которому в 1937 присвоено имя его основателя - Н. Е. Жуковского. Здесь в 30-х гг. под руководством Чаплыгина был создан крупнейший научный центр теоретических и экспериментальных исследований, который возглавил гидроаэромеханические исследования применительно к авиации, гидромашиностроению, кораблестроению, промышленной аэродинамике и др. Исследования по механике ведутся также в Институте проблем механики АН СССР (Москва), Институте теоретической и прикладной механики Сибирского отделения АН СССР (Новосибирск), в МГУ, ЛГУ, Ленинградском политехническом институте и других вузах, а также научно-исследовательских институтах АН союзных республик и в отраслевых институтах различных министерств и ведомств.

  Основным направлением исследований в 1-й половине 20 в. явилась механика сплошных сред. Значительный прогресс в этой области был связан вначале с приложениями к решению её задач методов теории функций комплексного переменного. В конце 60-х - начале 70-х гг. усилия учёных сосредоточены главным образом на углублении основных фундаментальных представлений о механических процессах, на более глубоком отражении физико-химической природы поведения и взаимодействия тел в экстремальных условиях, изучаются оптимальные режимы технологических процессов и инерциальных систем. Совершенствуются методы исследования на вычислительных машинах с разработкой стандартных программ решения новых задач механики.

  В СССР с 1960 регулярно проводятся Всесоюзные съезды по теоретической и прикладной механике. Широко развиты международные связи советских учёных-механиков. Начиная с 1-го Международного конгресса по механике (Нидерланды, 1924) советские учёные принимают участие в их работе. 13-й Международный конгресс по механике был проведён в Москве в 1972. Работы в этом направлении координируются созданным в 1956 Национальным комитетом СССР по теоретической и прикладной механике.

  Общая механика.Основными разделами аналитической механики, получившими развитие в 20 в., были теория устойчивости, тесно связанная с общими качественными методами исследования дифференциальных уравнений, а также выделившаяся в самостоятельный раздел механики теория управления. Существенный вклад в теорию устойчивости А. М. Ляпунова был внесён Н. Г. Четаевым, который, в частности, предложил эффективный метод построения функций Ляпунова и дал общую теорему о неустойчивости движения, получив на её основе обращение теоремы Лагранжа об устойчивости равновесия. Важные результаты были получены в развитии второго метода Ляпунова и в доказательстве теорем существования (Н. Н. Красовский, В. В. Румянцев и др.), в исследовании устойчивости в критических случаях (Г. В. Каменков, И. Г. Малкин), в развитии первого метода Ляпунова (Н. П. Еругин и др.).

  В классических разделах аналитической механики получено обобщение вариационного принципа Гаусса, проанализированы способы освобождения систем (Н. Г. Четаев, Н. Е. Кочин), разработана теория возмущений и устойчивости стационарных движений динамических систем (А. Н. Колмогоров, В. И. Арнольд), развита геометрия неголономных многообразий (В. В. Вагнер) и динамика неголономных систем, а также систем с неидеальными связями (Ю. И. Неймарк, Н. А. Фуфаев и др.).

  Широкое развитие, особенно после 30-40-х гг., получила динамика гироскопов и гироскопических систем (А. Н. Крылов, Б. В. Булгаков, А. Ю. Ишлинский, Е. Л. Николаи, Я. Н. Ройтенберг и др.), а также связанная с ней теория инерциальной навигации (А. Ю. Ишлинский и др.). Новые вопросы рассмотрены в динамике твёрдых тел с жидким наполнением (Н. Н. Моисеев, В. В. Румянцев и др.). В связи с изучением движения и ориентации искусственных спутников осуществляются исследования в области динамики космического полёта (Д. Е. Охоцимский, Т. М. Энеев и др.).

  Обширный раздел общей механики составляет теория колебаний. Основы теоретических и экспериментальных исследований нелинейных колебаний были заложены и развиты в конце 30-х - начале 40-х гг. в работах двух больших направлений Л. И. Мандельштама - Н. Д. Папалекси и Н. М. Крылова - Н. Н. Боголюбова, получивших мировое признание. Первое (А. А. Андронов, А. А. Витт, С. Э. Хайкин и др.) характерно использованием топологических методов качественной теории дифференциальных уравнений. А. А. Андронову принадлежат, в частности, основополагающие работы по теории автоколебаний и методу точечных отображений. Работы второго основаны на применении теории асимптотических разложений (Ю. А. Митропольский и др.).

  С приложениями в технике и с проблемами устойчивости, колебаний и гироскопических систем тесно связана теория управления, бурно развивающаяся с 50-х гг., истоки которой лежат в теории автоматического регулирования. Важнейшая современная проблема механики и смежных дисциплин - теория оптимального управления. К общей механике примыкают работы по теории машин и механизмов.

  Механика жидкости и газа.Исследования 20-30-х гг. по гидродинамике несжимаемой жидкости развивались преимущественно в духе классических работ школы Жуковского - Чаплыгина. В теории крыла продолжалось изучение обтекания профилей и решёток, была развита теория тонкого крыла, рассмотрен ряд простейших нестационарных задач, колебания крыла, круглого в плане; решены задачи об ударе тела о воду и о глиссировании (В. В. Голубев, М. В. Келдыш, Н. Е. Кочин, М. А. Лаврентьев, Л. И. Седов и др.). Получила развитие вихревая теория винта (В. П. Ветчинкин, Н. Н. Поляхов). В послевоенный период и особенно в 60-70-х гг. в связи с дальнейшим развитием теории и главным образом благодаря внедрению быстродействующих ЭВМ оказалось возможным анализировать сложные нестационарные задачи обтекания крыла с исследованием схождения вихревой пелены (С. М. Белоцерковский).

  Существенные результаты получены в гидродинамике течений со свободными поверхностями. Строго обоснованная теория поверхностных волн конечной амплитуды дана в 20-х гг. А. И. Некрасовым. Большой цикл исследований по линейной теории волн, в том числе приливных, и волновому сопротивлению проведён в 30-х гг. (М. В. Келдыш, Кочин, Л.Н. Сретенский и др.). Нелинейной теории волн посвящены работы Кочина, Н. Н. Моисеева, Я. И. Секерж-Зеньковича, Сретенского и др. Всемирно известные работы по теории качки корабля А. Н. Крылова получили дальнейшее развитие в трудах М. Д. Хаскинда. Достигнуты большие успехи в теории жидкостных струй (обтекание криволинейных препятствий - А. И. Некрасов, обтекание с возвратной струей - Д. А. Эфрос). Разработана теория кумулятивных зарядов, дан ряд строгих математических результатов в теории уединённой волны в струй М. А. Лаврентьевым.

  В аэродинамике дозвуковых скоростей начиная с конца 30-х гг. применяются методы аппроксимации адиабаты Чаплыгина: были даны приближённый метод расчёта обтекания профиля, а затем и строгие решения для линейной аппроксимации адиабаты (Седов, С. А. Христианович, И. М. Юрьев).


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268