ModernLib.Net

()

ModernLib.Net / / / () - (. 54)
:
:

 

 


  На рубеже 19-20 вв. при Московском, Петербургском, Новороссийском (Одесса) университетах были организованы физические институты. В Москве одну из лабораторий Физического института возглавил П. Н. Лебедев, которому принадлежат работы всемирного значения по установлению давления света на твёрдые тела (1899) и газы (1907). Лебедев создал первую русскую школу физиков (ок. 30 учёных), работавших по единому плану. К 1917 в  петербургском университете молодые оптики сгруппировались вокруг Д. С. Рождественского, проведшего фундаментальное исследование аномальной дисперсии в парах металлов. В эти же годы в Петербурге также зародилась научная школа А. Ф. Иоффе, выполнившего в 1910-е гг. исследования по фотоэффекту и электрическим свойствам кристаллов. П. Эренфест, работавший в 1904-12 в Петербурге, организовал при университете семинар, из которого впоследствии выросла русская школа физиков-теоретиков.

  В начале 1917в Москве открылся Физический институт - первое в России большое по масштабам того времени научно-исследовательское учреждение. Директором его стал П. П. Лазарев, его сотрудниками - ученики П. Н. Лебедева. Группы Иоффе, Рождественского и Лазарева образовали те центры, вокруг которых возникли и выросли крупнейшие советские физические институты. В 1918 в Петрограде были созданы Государственный оптический институт под руководством Рождественского и Физико-технический институт под рук. Иоффе. В Москве Лазаревым организован институт физики и биофизики. Исследования в области радио получили заметное развитие в России в 10-е гг. В них была заложена основа для создания советской радиофизики и радиотехники. В Нижегородской радиолаборатории (1918) под руководством М. А. Бонч-Бруевича началась плодотворная работа по созданию мощных электронных радиоламп, проектированию радиостанций и т. п.

  Интенсивное развитие научно-исследовательских институтов вытекало из неуклонно проводившегося Советского правительством курса на связь науки с производством. Особенно широкий размах приобрела организация физических институтов в конце 20-х и 30-е гг. По инициативе Иоффе и при его участии на базе Физико-технического института АН СССР были созданы Украинский физико-технический институт в Харькове, Институт физики металлов в Свердловске, Сибирский физико-технический институт в Томске и др. Большое внимание уделялось подготовке научных кадров. При Ленинградском политехническом институте в 1918 создан физико-технический факультет, на котором учились многие известные советской физики, впоследствии основавшие научные школы и новые направления в физике. Инициатором его создания был Иоффе. Некоторые молодые советские физики были посланы на стажировку за границу.

  Физический институт АН СССР, переехавший в 1934 в Москву, под руководством С. И. Вавилова превратился в мощный научный центр. в котором развивались различные направления физики. В 1934 П. Л. Капицей был создан Институт физических проблем АН СССР, исследования которого в основном сосредоточились на физике низких температур и теоретической физике. Позднее в АН СССР были созданы Институт кристаллографии (1943, Москва), Институт радиотехники и электроники (1953, Москва), Акустический институт (1953, Москва), Институт физики высоких давлений (1958, Московская область), Институт физики твёрдого тела (1963, Московская область), Институт теоретической физики (1965, Московская область), Институт спектроскопии (1968, Московская область), Институт ядерных исследований (1970, Москва), Ленинградский институт ядерной физики (1971, Ленинградском область). Созданы физические институты в АН союзных республик, при Сибирском отделении АН СССР.

  Большое значение имела организация работ по ядерной физике и физике элементарных частиц. Исследования в этих областях проводятся в институте атомной энергии (1943, Москва), Объединённом институте ядерных исследований (1956, Дубна) - ядерно-физическом центре социалистических стран, институте экспериментальной и теоретической физики, институте физики высоких энергий (на базе серпуховского протонного ускорителя, запущенного в 1967) и некоторых других институтах (см. также ).

  Международный авторитет советской физики необычайно высок. Советским учёным принадлежат многие важнейшие открытия, ими развиваются все основные направления физики. Шестерым советским физикам были присуждены Нобелевские премии Отделение общей физики и астрономии АН СССР - один из наиболее представительных членов Европейского физического общества, советские физики входят в состав Международного союза прикладной и теоретической физики, Международного союза кристаллографов и других физических международных организаций, они участвуют во всех международных конференциях и симпозиумах. В лабораториях СССР, а также в некоторых зарубежных научных центрах советские учёные ведут совместные эксперименты с учёными других стран. Так, в Институте физики высоких энергий французскими учёными построена, жидководородная пузырьковая камера «Мирабель» и начаты совместные советско-французские эксперименты, в Батейвии в Национальной ускорительной лаборатории США проводятся советско-американские исследования по физике элементарных частиц. Препринты с сообщениями о достижениях советских учёных рассылаются во многие научные центры мира, физические журналы АН СССР переиздаются на английском языке в США и Великобритании.

  Кристаллы и жидкости.Первые успехи советской физики связаны с работами А. Ф. Иоффе по физике кристаллов. Исследованиями Иоффе и его сотрудников - А. П. Александрова, Ф. Ф. Витмана, Н. Н. Давиденкова, С. Н. Журкова, Г. В. Курдюмова, И. В. Обреимова, А. В. Степанова, Я. И. Френкеля - были заложены основы современной физики реальных кристаллов с их сложными, но имевшими большое практическое значение проблемами - прочности, несовершенств строения, дислокаций и методики их исследования. На основе этих работ начала создаваться технология выращивания идеальных, почти совершенных кристаллов, прочность и другие характеристики которых приближаются к теоретическим значениям.

  Проблемами получения почти совершенных кристаллов успешно занимается институт кристаллографии АН СССР, где эти работы были начаты в 40-х гг. А. В. Шубниковым и велись под его руководством многие годы. С именем Шубникова связаны различные направления в кристаллографии, развиваемые его учениками. Л. Ф. Верещагин и его сотрудники достигли выдающихся результатов, изучая поведение твёрдых тел при сверхвысоких давлениях. В их работах был, в частности, предложен и внедрён в промышленность метод получения алмазов (1960). Поликристаллические алмазы типа карбонадо, полученные в институте, были использованы при создании камеры сверхвысокого (мегабарного) давления для исследования фазовых переходов металл - диэлектрик. В 1975 в этой камере осуществлен переход водорода в металлическое состояние (Л. Ф. Верещагин, Е. Н. Яковлев, Ю. А. Тимофеев). С. Н. Журков (Физико-технический институт АН СССР) развивает кинетический подход к проблемам прочности: он показал, что величина предела прочности по существу связана со временем, в течение которого образцы находятся под данной нагрузкой.

  Ряд важных результатов получен Шубниковым и Н. В. Беловым и области структурной кристаллографии и теории симметрии. Практическое применение нашли работы по изучению электрических свойств кристаллов; сюда относится открытие Шубниковым нового вида пьезоэлектрических материалов - поликристаллических пьезоструктур (1946). Широко используется структурный анализ кристаллов и опирающаяся на его данные кристаллохимия; развита теория плотной упаковки и координационных полиэдров, объясняющая характер и физико-химические свойства этих и ряда других неорганических структур (Белов). Б. К. Вайнштейн успешно развивает исследования по расшифровке белковых структур, им же с З. Г. Пинскером создан метод структурной электронографии. Разработаны методы изучения диффузии в твёрдых телах (В. З. Бугаков, В. И. Архаров), дефектов в реальных кристаллах (Б. Г. Лазарев и др.), впервые выяснен механизм влияния дефектов на механические свойства металлов и сплавов (Н. Н. Давиденков и др.), а также дислокаций на электрические свойства (Ю. А. Осипьян).

  Я. И. Френкель развил новый подход к построению кинетической теории жидкостей. Важные работы по исследованию аморфного состояния и механических свойств аморфных тел были проведены П. П. Кобеко и А. П. Александровым.

  Металлы, диэлектрики, полупроводники.Первые успехи теории металлов связаны с работами Я. И. Френкеля. Ему удалось на основе квантовой теории Бора объяснить, почему электронный газ не вносит своего вклада в теплоёмкость металлов, т. е. разрешить т. н. катастрофу с теплоёмкостью, а затем обобщить (1927) представление о волнах де Бройля на случай движения свободных электронов в металле и объяснить температурную зависимость электросопротивления, влияние на него примесей, сохранив в новой теории все те достижения, которые определяли успех классической теории Друде - Лоренца (вывод закона Видемана - Франца и т.д.). Квантовая теория фотоэффекта в металлах была разработана в 1931 И. Е. Таммом и С. П. Шубиным.

  Важные работы по физике металлов и сплавов, по фазовым превращениям и структуре мартенсита выполнены в 30-х гг. Г. В. Курдюмовым. Первые послевоенные годы ознаменовались успехами в области порошковой металлургии; основы физики спекания были заложены в работах советских учёных (М. Ю. Бальшин, Я. Е. Гегузин, Б. Я. Пинес и др.). В 1934 Шубиным и С. В. Вонсовским предложена т. н. полярная модель металлических и полупроводниковых кристаллов, получившая дальнейшее развитие (1949) в работах Н. Н. Боголюбова и С. В. Тябликова.

  В 50-60-е гг. И. М. Лифшиц с сотрудниками показал, что знание динамических свойств электронов проводимости, а с ними и электронных свойств металлов (гальваномагнитных, высокочастотных, резонансных) позволяет установить спектр электронов проводимости и, в частности, важную характеристику этого спектра - поверхность Ферми. Рассмотрение форм поверхности Ферми позволяет делать заключения о термодинамических и кинетических свойствах металлов. Эти работы тесно связаны с плодотворными экспериментальными исследованиями (Н. Е. Алексеевский, В. И. Веркин, Б. Г. Лазарев и др.).

  В области физики диэлектриков существенные достижения принадлежат А. Ф. Иоффе и его школе. В 1916-1923 он и М. В. Кирпичёва экспериментально установили, что ток через ионные кристаллы переносится ионами, движущимися в пространстве междоузлий. Ионная проводимость изучалась в 20-х гг. К. Д. Синельниковым. Исследования диэлектрических свойств аморфных и кристаллических тел были выполнены А. П. Александровым, А. Ф.Вальтером, П. П. Кобеко, Г. И. Сканави и др.

  В конце 20-х гг. И. В. Курчатов и Кобеко исследовали сегнетову соль и её изоморфные смеси, положив начало изучению сегнетоэлектриков. В 1944 Б. М. Вулом были открыты ярко выраженные сегнетоэлектрические свойства у титаната бария. Было установлено, что сегнетоэлектрики представляют собой широкий класс соединений. К работам по сегнетоэлектричеству примыкают исследования Г. А. Смоленского и его сотрудников, в которых был изучен новый класс неметаллических ферромагнетиков, обладающих одновременно электрическими и магнитным порядками (сегнетоферромагнетики, 1960-1964).

  Первые исследования полупроводников в СССР были проведены О. В. Лосевым в 1921. Систематические работы в этой области были начаты в начале 30-х гг. в Физико-техническом институте в Ленинграде и в других научных центрах по инициативе Иоффе. Работы по физике полупроводников в СССР и за рубежом привели к созданию полупроводниковой электроники.

  В 1932 И. Е. Тамм теоретически показал, что на идеальной поверхности полупроводника должны существовать особые энергетические состояния (уровни Тамма). Советскими учёными были впоследствии проведены обширные исследования поверхностных явлений на полупроводниках.

  В 1932 В. П. Жузе и Б. В. Курчатов в соответствии с теорией, описывающей энергетическую структуру реальных полупроводников, экспериментально доказали существование их собственной и примесной проводимостей. В 1933 И. К. Кикоин и М. М. Носков обнаружили возникновение эдс при освещении полупроводника в поперечном магнитном поле. Этот эффект носит их имя и широко используется для исследования электронных явлений в полупроводниках.

  Большое место в работах советских учёных занимал вопрос выпрямления тока. Иоффе были выявлены основные закономерности выпрямления тока. В 1932 Иоффе и Френкель дали объяснение выпрямления тока на контакте металл - полупроводник на основе представления о туннельном эффекте. В 1938 Б. И. Давыдов разработал диффузионную теорию выпрямления на электронно-дырочном переходе. Строгая теория туннельного эффекта в полупроводниках со сложной зонной структурой, в том числе теория туннельного эффекта с участием фононов, была разработана Л. В. Келдышем. Им было рассмотрено также влияние сильного электрического поля на оптические свойства полупроводников (эффект Франца - Келдыша).

  Советским учёным принадлежит основополагающий вклад в развитие представлений об элементарных возбуждениях (квазичастицах) в твёрдом теле. Первая квазичастица - фонон - была введена в теорию Таммом в 1929 в его работе о комбинационном рассеянии света. На «фононном» языке даются современные описания тепловых и электрических свойств твёрдых тел. В 1931 Френкель ввёл новую квазичастицу - экситон - для описания явлений «бестокового» поглощения света. Представление об экситонах легло в основу теории поглощения света молекулярными кристаллами, развитой А. С. Давыдовым. В 1933 Л. Д. Ландау выдвинул гипотезу о влиянии поляризации окружающей среды на свойства движущихся в кристалле электронов. В ионных кристаллах электроны вместе с созданными ими поляризационными ямами образуют квазичастицы, которые были изучены С. И. Пекаром и названы им поляронами. Ю. М. Каган и Е. Г. Бровман разработали (в 70-х гг.) многочастичную теорию металлов, позволившую проанализировать многие свойства металлов.

  Экспериментальное исследование экситонов началось с опозданием на 20 лет; прямое доказательство их существования было получено в 1951 в работах Е. Ф. Гросса, Б. П. Захарчени и их сотрудников. Важные работы по физике экситонов принадлежат А. Ф. Прихотько и её сотрудникам. В 1968 Л. В. Келдыш выдвинул гипотезу, согласно которой взаимодействие между экситонами при достаточно высокой их концентрации приводит к образованию экситонных капель, которые вскоре были экспериментально обнаружены (Я. Е. Покровский, В. С. Багаев и др.).

  Первые в СССР лабораторные образцы германиевых диодов и триодов были разработаны в начале 50-х гг. в  физическом институте АН СССР (Б. М. Вул, В. С. Вавилов, А. В. Ржанов), в Физико-техническом институте АН СССР (В. М. Тучкевич, Д. Н. Наследов), институте радиотехники и электроники (С. Г. Калашников, Н. А. Пенин). Работы этих коллективов содействовали развитию советской промышленности полупроводниковых приборов. Тучкевич и его сотрудники в процессе изучения электрических свойств легированных кремниевых монокристаллов исследовали многослойные структуры с несколькими электронно-дырочными переходами. Всё это привело к созданию уникальных по своим характеристикам управляемых вентилей (тиристоров) и возникновению силовой полупроводниковой техники.

  Ж. И. Алферову и др. принадлежат основные работы по физике гетеропереходов в полупроводниках, в результате которых был разработан большой класс полупроводниковых приборов и приборов квантовой электроники (в частности, уникальных гетеролазеров).

  В 1951 Я. Г. Дорфманом был предсказан циклотронный резонанс в полупроводниках. Взаимодействия примесных центров в полупроводниках были исследованы Н. А. Лениным с помощью электронного резонанса. Радиационные нарушения в полупроводниках исследовали В. С. Вавилов с сотрудниками и др.

  В 1932 Иоффе впервые указал на возможность использования полупроводников для прямого преобразования тепловой энергии в электрическую и для создания охлаждающих устройств. Руководимым им коллективом был создан первый в мире термоэлектрогенератор, а затем создано полупроводниковое термоэлектрическое охлаждающее устройство (1950).

   Магнетизм.Многое достигнуто советскими физиками в учении о магнетизме. Построена первая квантовомеханическая теория ферромагнетизма (Я. И. Френкель, 1928); доменная структура ферромагнетиков получила объяснение в работах Я. Г. Дорфмана, Л. Д. Ландау и Е. М. Лифшица. В 1930 Ландау выполнил классические исследование диамагнетизма свободных электронов. Им же было предсказано явление антиферромагнетизма (1933), существенный вклад в экспериментальное обнаружение и исследование которого внёс А. С. Боровик-Романов; последнему принадлежит также открытие явления пьезомагнетизма (1959). Получила известность теория слабого ферромагнетизма, развитая И. Е. Дзялошинским (1957).


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268