ModernLib.Net

()

ModernLib.Net / / / () - (. 207)
:
:

 

 


Проводились термодинамические исследования и других теплоносителей. С конца 30-х гг. во ВТИ, МГУ, Энергетическом институте АН СССР (ЭНИН АН СССР), МЭИ и других НИИ осуществлялись экспериментальные работы по определению теплопроводности чистых жидкостей, растворов, газов, сталей и других материалов.

  В 20-х гг. паровые котлы производительностью до 20 т/чпри давлении пара до 1,5 Мн/м 2выпускали Ленинградский металлический завод (Л М 3), Невский завод им. Ленина (НЗЛ) и Таганрогский завод «Красный котельщик» (ТКЗ). В эти годы М. В. Кирпичёвым была создана теория теплового моделирования, давшая метод изучения тепловых и аэродинамических процессов, протекающих в паровых котлах. Посредством этого метода определялись оптимальные условия обтекания поверхности нагрева паровых котлов дымовыми газами. Увеличение единичной производительности котлов потребовало разработки механизированных топочных устройств - шахтно-цепных топок Т. Ф. Макарьева (Центральный котлотурбинный институт, ЦКТИ) для сжигания кускового торфа и цепных топок для каменных углей. Дальнейшее развитие теплоэнергетики привело к созданию камерных топок для сжигания пылевидного топлива - бурых и каменных углей и антрацитового штыба, считавшегося ранее непригодным для использования отходом угледобычи. Для сжигания фрезерного торфа, пришедшего на смену кусковому, были разработаны камерные топки - ВТИ - Мосэнерго и А. А. Шершнёва (ЦКТИ). Развитие котлостроения сопровождалось научно-исследовательскими работами по изучению физических процессов, протекающих в котлоагрегатах.

  Первые экспериментальные работы по конвективному теплообмену были начаты в 20-х гг.; среди них важное для техники значение имели исследования теплоотдачи при движении жидкости в трубах и каналах. Экспериментальное изучение вопросов теплообмена при ламинарном и турбулентном движении различных жидкостей проводилось в 30-е гг. во ВТИ, МЭИ и ЭНИН АН СССР. Теоретические исследования по теплообмену при турбулентном движении были выполнены в ЦКТИ. В результате этих работ созданы основы для расчёта теплообмена в трубах при движении газа со скоростью вплоть до звуковой. Обширные исследования по теплообмену и гидравлическому сопротивлению пучков труб проводились начиная с 30-х гг. в ЦКТИ и ВТИ (В. М. Антуфьев, Г. С. Белецкий, Л. С. Козаченко, Н. В. Кузнецов, В. Н. Тимофеев и др.). В ЭНИН АН СССР были выполнены работы по изучению теплоотдачи при конденсации пара и при кипении (Г. Н. Кружилин).

  В области лучистого теплообмена одна из первых работ, посвященных разработке методов расчёта угловых коэффициентов для ряда плоских и пространственных задач, принадлежит Т. Т. Усенко (1920). Теоретические исследования по вопросам лучистого теплообмена были затем развёрнуты в ЭНИН АН СССР; там же проводились экспериментальные исследования на моделях топочных устройств. В ВТИ и ЦКТИ разрабатывались практические методы расчёта теплообмена в топках. Основные результаты исследований теплопередачи были обобщены М. А. Михеевым. На базе многочисленных работ ЦКТИ и ВТИ был создан нормативный метод теплового расчёта котельных агрегатов, а затем и метод аэродинамического расчёта.

  Котлостроение в 30-е гг. шло по пути значит. увеличения паропроизводительности котельных агрегатов (до 160-200 т/ч) и повышения параметров пара: давления до 34 Мн/м 2и температуры до 420 °С. Увеличивались экранные поверхности нагрева и уменьшались конвективные, число барабанов котлов снизилось с 3-5 до 2-1. Увеличение паронапряжения зеркала испарения и парового объёма верхнего барабана котла заставило искать пути уменьшения уноса из котла влаги с паром, приводившего к перегоранию труб пароперегревателей, улучшения водного режима котлов и обеспечения надёжной циркуляции воды в котлах.

  Задача создания эффективных сепарационных устройств была решена в 1937-38 совместными стендовыми исследованиями ЦКТИ (К. А. Блинов, Ю. В. Зенкевич, Е. И. Сухарев), ВТИ (А. А. Кот, Кузнецов) и Оргрэс (Г. Е. Холодовский), что позволило использовать в котлах воду с большим (в несколько раз) содержанием соли, ликвидировать загрязнение пароперегревателей солями и отказаться от испарителей на ТЭС с барабанными котлами. Теоретическое исследование Н. Я. Малофеева (ЦКТИ) определило рациональные схемы распределения пара по трубам пароперегревателей. Созданию нормального водного режима котлов были посвящены работы Оргрэс (А. А. Сидоров) и ВТИ (Ю. М. Кострикин, Ф. Г. Прохоров, Кот, И. Ф. Шопкин).

  В Бюро прямоточного котлостроения (ВПК) под рук. Л. К. Рамзина был разработан прямоточный котёл с однократной принудит. циркуляцией, хорошо работающий при высоких (от 140 Мн/м 2) давлениях пара и единственно применимый при закритических давлениях. Первый котёл на 200 т/ч,140 Мн/м 2и 500 °С был установлен в 1933 на ТЭЦ-9 Мосэнерго. Э. И. Ромм предложил схему ступенчатого испарения и дал первое теоретическое обоснование её работы (1938). В 1946 Холодовский развил теорию котлов со ступенчатым испарением.

  Важный итог развития советской теплотехники 40-х гг. - практический переход к производству пара сверхвысоких параметров: на ТЭЦ ВТИ был пущен экспериментальный котельный агрегат на 29,3 Мн/м 2и 600 °С. В 1950 Подольский завод выпустил первый высокопроизводительный барабанный котёл на высокие параметры пара, прямоточный котёл, оборудованный шахтными мельницами; выпуск котлов, рассчитанных на повышенные параметры пара, начали и другие заводы.

  Переход к высоким и сверхвысоким параметрам пара потребовал дальнейших теоретических исследований. В 1951 развернулись работы по вопросам молекулярного переноса энергии и по исследованию принципиальных особенностей процессов тепло- и массообмена. Начало 50-х гг. отмечено дальнейшим прогрессом энергомашиностроения. ЛМЗ выпустил конденсационную одновальную паровую турбину мощностью 150 Мвтпри 3000 об/минна 16,6 Мн/м 2и 550 °С.

  К концу 50-х гг. установленная мощность ТЭС в СССР была увеличена в 2,2 раза за счёт строительства электростанций с агрегатами по 100, 150, 200 Мвмв виде блоков котёл - турбина с параметрами пара 12,7 Мн/м 2и 565 °С. С 1963 вводятся в действие энергоблоки мощностью 300 Мвтна 24,5 Мн/м 2и 560/565 °С.

  В конце 60-х гг. и начале 70-х гг. началось освоение более крупных энергоблоков единичной мощностью 500 и 800 Мвтдля ТЭС суммарной мощностью по 4-6 Гвт(в районах Экибастузского и Канско-Ачинского угольных месторождений). На очереди сооружение ещё более крупных электростанций с энергоблоками-гигантами по 1,2 Гвт.В 1975 состоялась закладка главного корпуса под первый блок-гигант на Костромской ГРЭС.

  Значит. увеличение доли газа в топливном балансе СССР и высокая эффективность этого вида топлива делают целесообразным использование в теплоэнергетике газотурбинных установок (ГТУ). В СССР первые работы по ГТУ были осуществлены в начале 30-х гг. (Г. И. Зотиков, В. В. Уваров), тогда же под рук. В. М. Маковского была спроектирована первая советская газовая турбина. Основное направление развития газотурбостроения - повышение мощности установок и усовершенствование технологии производства жароупорных сталей. Экономический эффект внедрения газотурбинных станций зависит от мощности установок и температуры газа на входе в турбину. При мощности 50 Мвти температуре газа на входе 650-750 °С ГТУ становятся конкурентоспособными по сравнению с лучшими паровыми установками. Ещё более экономичными являются парогазовые установки (ПГУ), разработка которых была начата в ЦКТИ (А. Н. Ложкин, А. А. Канаев) в 1945-47. В середине 70-х гг. в эксплуатации на Невинномысской ГРЭС находится ПГУ мощностью 200 Мвт.

 Широкое развитие в СССР получила теплофикация. По тепловым нагрузкам, мощностям ТЭЦ 11 котельных, удельному отпуску тепла, длине тепловых сетей СССР значительно опережает другие страны мира. Централизованные мощные источники тепла покрывают около 75% всей тепловой нагрузки городов и промышленных районов страны (из них ТЭЦ - почти половину нагрузки).

  За годы развития теплоэнергетики в СССР сформировались и выросли многочисленные научные коллективы. Выдающуюся роль в вопросах современной теплоэнергетики играют работы В. П. Глушко, Н. А. Доллежаля, В. А. Кириллина, М. А. Стыриковича, С. А. Христиановича, А. Е. Шейндлина, Г. Н. Кружилина и мн. др. Основные исследования по вопросам теплоэнергетики проводятся в Государственном научно-исследовательском энергетическом институте им. Г. М. Кржижановского, Всесоюзном научно-исследовательском теплотехническом институте им. Ф. Э. Дзержинского (ВТИ), Московском энергетическом институте (МЭИ), Центральном котлотурбинном институте им. И. И. Ползунова (ЦКТИ, Ленинград), институте теплоэнергетики АН УССР (Киев), Всесоюзном научно-исследовательском и проектном институте энергетической промышленности (ВНИПИ Энергопром), в институте «Теплоэнергопроект» (ТЭП, оба в Москве), на ряде заводов энергетического машиностроения и др.

  См. также , .

  Ядерная энергетика.Развитие ядерной энергетики как самостоятельной отрасли энергетического производства берёт начало с пуска в 1954 в г. Обнинске (Калужская область) первой в мире атомной электростанции (АЭС) мощностью 5 Мвт(Обнинская АЭС). Работы по созданию АЭС, проводимые под общим руководством И. В. Курчатова, были выполнены за весьма короткий срок - 4,5 года. Опыт строительства и эксплуатации Обнинской АЭС был обобщён в докладе, представленном Советским Союзом в 1955 на 1-й Международной конференции по мирному использованию атомной энергии, и показал реальную возможность эффективного использования новых энергетических ресурсов в мирных целях. Этот опыт послужил основой для дальнейшего успешного развития ядерной энергетики в СССР.

  Период с 1954 до конца 60-х гг. характеризовался разработкой, сооружением и эксплуатацией единичных опытно-промышленных АЭС относительно небольшой мощности. В результате опытной проверки было отобрано несколько типов ядерных реакторов на тепловых нейтронах и АЭС, наиболее соответствующих в техническом и экономическом отношении задачам крупномасштабного ядерного энергетического производства. Так, уран-графитовый реактор канального типа (замедлитель - графит, теплоноситель - вода, протекающая под давлением через каналы в активной зоне), примененный на Обнинской АЭС, стал принципиальной конструктивной основой 1-го (1964) и 2-го (1967) энергоблоков Белоярской АЭС им. И. В. Курчатова мощностью соответственно 100 и 200 Мвт.Другим типом ядерного реактора, получившим наибольшее развитие в тот же период, был водо-водяной энергетический реактор (ВВЭР) корпусного типа (замедлитель нейтронов - вода, одновременно отводящая тепло от тепловыделяющих элементов, размещенных в стальном корпусе). Опытно-промышленные реакторы такого типа были установлены на 1-м и 2-м энергоблоках Нововоронежской АЭС им. 50-летия СССР (пущены в 1964 и 1969, их мощность соответственно 210 и 365 Мвт) .

 Успешная эксплуатация опытно-промышленных энергоблоков первых АЭС и накопленный на этой базе значит. опыт в области ядерной энергетики позволили с начала 70-х гг. приступить к этапу создания и освоения промышленных энергоблоков, данные которых по выработке электроэнергии и использованию установленной мощности сопоставимы по конкурентоспособности с данными электростанций, работающих на твёрдом органическом топливе. В период 1971-75 были введены в действие реакторы типа ВВЭР мощностью 440 Мвт(ВВЭР-440) на 3-м и 4-м энергоблоках Нововоронежской АЭС. Началось серийное строительство АЭС с 2 реакторами по 440 Мвт.Следующий шаг в развитии реакторов этого типа - строительство АЭС с 2 реакторами мощностью 1000 Мвт(ВВЭР-1000). Заканчивается (1977) строительство одного из таких реакторов на Нововоронежской АЭС (после ввода его в действие мощность АЭС достигнет 2,5 Гвт) .2 энергоблока по 1000 Мвтпредполагается пустить (1-я очередь) на Калининской АЭС. Работы по усовершенствованию и развитию уран-графитовых реакторов канального типа привели к созданию одноконтурного кипящего реактора РБМК мощностью 1000 Мвт(РБМК-1000). Такие реакторы установлены на 1-м (1973) и 2-м (1975) энергоблоках Ленинградской АЭС им. В. И. Ленина и на Курской АЭС. Строится (1977) Игналинская АЭС (Литовская ССР) с реакторами РБМК-1500; ведётся проектирование энергоблока с реактором такого типа мощностью 2,4 Гвт.В 1976-80 предполагается осуществлять дальнейшее наращивание ядерных энергетических мощностей страны путём строительства АЭС с реакторами ВВЭР-440, ВВЭР-1000, РБМК-1000 и РБМК-1500.

  В соответствии с решениями 25-го съезда КПСС в 1976-80 предполагается продолжить строительство АЭС с реакторами мощностью 1-1,5 Гвт,обеспечить ввод в действие на АЭС мощности в размере 13-15 Гвт(примерно пятая часть от всей электрической мощности, вводимой за пятилетие) при опережающем развитии ядерной энергетики в Европейской части СССР. Для выполнения этих задач предусматривается организовать серийное производство для АЭС реакторов на тепловых нейтронах и турбоагрегатов к ним единичной мощностью не менее 1 Гвт,а также осуществить разработку комплектного оборудования для энергоблоков на тепловых нейтронах мощностью до 1,5 Гвт.

  Одним из важнейших направлений развития ядерной энергетики является реализация возможности наиболее рационального использования природных запасов урана и тория. В современных реакторах на тепловых нейтронах энергия ядерного топлива используется лишь на несколько процентов. Отработанное топливо можно использовать повторно (и многократно), очистив его от продуктов деления и шлаков; при этом расход естественного урана сокращается в 2-3 раза. Однако практически такая задача может быть осуществлена лишь тогда, когда отработанного топлива накопится достаточное количество. Реакторы на быстрых нейтронах позволяют существенно (в десятки раз) повысить эффективность использования ядерного сырья. В реакторах этого типа наряду с расходованием ядерного топлива осуществляется его расширенное воспроизводство за счёт вовлечения в энергетический цикл 238U. После создания экспериментальных и опытных образцов реакторов в 1973 в г. Шевченко (Казахская ССР) была пущена опытно-промышленная АЭС с реактором на быстрых нейтронах мощностью 350 Мвт(БН-350). Для 3-го энергоблока Белоярской АЭС ведётся строительство реактора на быстрых нейтронах мощностью 600 Мвт(БН-600). В 1976-1980 строительство и освоение реакторов такого типа предполагается вести ускоренными темпами.

  Наряду с исследованиями в области применения ядерных реакторов для производства электрической энергии важное значение в СССР отводится проблеме использования ядерной энергии для обеспечения тепловой энергией бытовых и промышленных предприятий, опреснения воды, проведения высокотемпературных технологических процессов (например, в металлургии), получения химических продуктов и для других народно-хозяйственных целей. Успешно действует двух целевая АЭС в г. Шевченко, представляющая собой первую в мире ядерную энергетическую установку с реактором на быстрых нейтронах в комбинации с крупной опреснительной установкой (120 000 м 3дистиллята в сутки). Построена 1-я атомная теплоэлектроцентраль (АТЭЦ) - Билибинская (48 Мвт) ,снабжающая потребителей не только электрической энергией, но и тепловой. Опыт эксплуатации этой станции позволит приступить к подготовительным работам по широкому использованию ядерной энергии для целей теплофикации, а также решить важнейшую задачу т. н. малой энергетики - обеспечить энергией труднодоступные и удалённые районы страны. Для районов, находящихся вдали от действующих энергосистем, разрабатываются также малогабаритные блочные ядерно-энергетические установки. В 1961 сдана в эксплуатацию крупноблочная транспортабельная атомная электростанция ТЭС-3 с водо-водяным реактором мощностью 1,5 Мвт,используемая в качестве исследовательской базы для создания установок подобного типа. Построена экспериментальная блочная ядерная энергетическая установка с органическим теплоносителем и замедлителем АРБУС (750 квт) ,создана атомная электростанция АБВ-1,5 с ядерным реактором водо-водяного типа мощностью 1,5 Мвт.

 Наряду с разработкой паротурбинных энергоблоков ведутся работы по созданию реакторных установок с непосредственным преобразованием тепловой энергии в электрическую. В 1964 была пущена установка «Ромашка», состоящая из высокотемпературного реактора на быстрых нейтронах и термоэлектрического преобразователя, успешно проработавшая более года вместо запланированных

1000 ч.В течение 1970-71 проведены испытания 2 термоэмиссионных реакторов-преобразователей «Топаз», показавших реальную возможность в ближайшем будущем использовать такие установки в качестве бортового источника электропитания на космических летательных аппаратах.

  В СССР ядерная энергия успешно используется на флоте.


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268