ModernLib.Net

()

ModernLib.Net / / / () - (. 77)
:
:

 

 


  И. В. Блауберг, Э. Г. Юдин.

Системотехника

Системоте'хника,научно-техническая дисциплина, охватывающая вопросы проектирования, создания, испытания и эксплуатации сложных систем (больших систем, систем большого масштаба, large scale systems). При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составных частей (элементов, подсистем), но также и к закономерностям функционирования объекта в целом (общесистемные проблемы); появляется широкий круг специфических задач, таких, как определение общей структуры системы, организация взаимодействия между подсистемами и элементами, учёт влияния внешней среды, выбор оптимальных режимов функционирования, оптимальное управление системой и т. д. По мере усложнения систем всё более значительное место отводится общесистемным вопросам, они и составляют основное содержание С. Научной, главным образом математической, базой С. служит сравнительно новая научная дисциплина - теория сложных систем.

  Для сложных систем характерна своеобразная организация проектирования - в две стадии: макропроектирование (внешнее проектирование), в процессе которого решаются функционально-структурные вопросы системы в целом, и микропроектирование (внутреннее проектирование), связанное с разработкой элементов системы как физичических единиц оборудования. С. объединяет точки зрения, подходы и методы по вопросам внешнего проектирования сложных систем.

  Макропроектирование начинается с формулировки проблемы, которая включает в себя по крайней мере 3 основных раздела: определение целей создания системы и круга решаемых ею задач; оценка действующих на систему факторов и определение их характеристик; выбор показателей эффективности системы. Цели и задачи системы определяют, исходя из потребностей их практического использования, с учётом тенденций и особенностей технического прогресса, а также народнохозяйственной целесообразности. Существенное значение при этом имеет опыт применения имеющихся аналогичных систем, а также чёткое понимание роли проектируемой системы в народном хозяйстве. Для оценки внешних и внутренних факторов, действующих на систему, помимо опыта эксплуатации аналогичных систем, используют статистические данные, полученные в результате специальных экспериментальных исследований. В качестве показателей эффективности выбирают числовые характеристики, оценивающие степень соответствия системы задачам, поставленным перед ней, например: для системы слепой посадки самолётов показателем эффективности может служить вероятность успешной посадки, для междугородной телефонной связи - среднее время ожидания соединения с абонентом, для производственного процесса - среднее число изделий, выпускаемых за смену, и т. д. Материалы по изучению целей и задач и результаты проведённых экспериментов используют для обоснования технического задания на разработку системы.

  В соответствии с техническим заданием намечают один или несколько вариантов системы, которые, по мнению проектировщиков, заслуживают дальнейшего рассмотрения и подробного исследования. Анализ вариантов системы ( системный анализ ) проводится по результатам математического моделирования.На практике обычно отдаётся предпочтение имитационному моделированию системы на ЦВМ. Имитационная модель представляет собой некий алгоритм,при помощи которого ЦВМ вырабатывает информацию, характеризующую поведение элементов системы и взаимодействие их в процессе функционирования. Получаемая информация позволяет определить показатели эффективности системы, обосновать её оптимальную структуру и составить рекомендации по совершенствованию исследуемых вариантов. Существуют и аналитические методы оценки свойств сложных систем, основанные на результатах применения теории вероятностных (случайных) процессов.

  Проектировщики сложных систем - специалисты широкого профиля, инженеры-системотехники, обладающие достаточными знаниями в конкретной области техники (например, в машиностроении, электронике, пищевой промышленности, авиации), имеющие повышенную математическую подготовку, а также знающие основы вычислительной техники, автоматизации управления, исследования операций и особенности их практического применения. Помимо них в группу внешнего проектирования сложных систем обычно включают специалистов по системному анализу и математическому моделированию, а также инженеров, способных организовать взаимодействие между элементами системы.

  Существенные особенности имеют испытания сложных систем. Натурный эксперимент в чистом виде используется только для оценки параметров важнейших элементов системы. В комплексных же испытаниях системы значительную роль играют имитационные модели. В частности, на их основе строят имитаторы воздействий внешней среды, генераторы фиктивных сигналов и сообщений, формируют реализации процессов функционирования элементов, участие которых в натурном эксперименте нецелесообразно.

  Лит.:Гуд Г.-Х., Макол Р.-Э., Системотехника. Введение в проектирование больших систем, пер. с англ., М., 1962; Справочник по системотехнике, пер. с англ., М., 1970; Бусленко Н. П., Калашников В. В., Коваленко И. Н., Лекции по теории сложных систем, М., 1973.

  Н. П. Бусленко.

Системы мира

Систе'мы ми'ра,термин, употребляемый в астрономии для обозначения представлений о строении системы небесных тел - Земля, Луна, Солнце, планеты. Попытки создания С. м. предпринимались в Древней Греции уже в 6 в. до н. э. (Фалес, Анаксимандр, Анаксимен). Исторически наибольшее значение имела геоцентрическая С. м., разработанная древнегреческими учёными Аристотелем (4 в. до н. э.) и Птолемеем (2 в. н. э.), и гелиоцентрическая С. м. польского астронома Н. Коперника (1-я половина 16 в.).

  В геоцентрической С. м., принимавшейся за истинную в течение около 2000 лет, нашёл яркое воплощение антропоцентризм в форме идеи о центральном положении Земли во Вселенной. В системе мира Аристотеля неподвижная Земля окружена снаружи семью «небесами», принадлежащими «планетам»: Луне, Меркурию, Венере, Солнцу, Марсу, Юпитеру и Сатурну. Восьмое «небо» занимают звёзды. На девятом - находится «дух», или «первый двигатель», который каким-то непостижимым образом сообщает движение всем небесам. Для того чтобы объяснить довольно сложное видимое движение планет по небу, Аристотель использовал идею Евдокса Книдского (4 в. до н. э.) о системе концентрических вращающихся прозрачных сфер. Всего, согласно его взглядам, имелось 56 сфер. Эта сложность объяснения связана с тем, что движение планет Аристотель, следуя своему учителю Платону (5-4 вв. до н. э.), стремился воспроизвести как результат совершенно равномерного вращения нескольких вложенных друг в друга сфер. Взаимный наклон осей и скорости вращения сфер подбирались для каждой планеты отдельно.

  Во 2 в. до н. э. Гиппарх заменил систему сфер системой эпициклов, идею о которых он заимствовал у Аполлония Пергского (около 200 до н. э.). Система мира Гиппарха была использована и получила законченное развитие в «Альмагесте» Птолемея. В теории эпициклов вместо вращающихся сфер введено равномерное движение планет по окружностям, называемым эпициклами. В то же время сами эпициклы предполагаются перемещающимися т. о., что их центры движутся по другим окружностям, т. н. деферентам. В большинстве случаев одного эпицикла оказывалось недостаточно для представления наблюдаемого сложного движения планет с удовлетворительной точностью и тогда вводился второй, третий и т. д. эпициклы. При этом считалось, что планета движется по последнему из них, а центр каждого эпицикла движется по окружности предыдущего. Углы наклона плоскостей деферентов и эпициклов, их относительные радиусы и угловые скорости перемещения по ним подбирались так, чтобы наилучшим образом описывать видимые движения планет по небу. В течение всего средневековья геоцентрическая С. м. провозглашалась католической церковью как единственно соответствующая христианскому вероучению. В средние века к первоначальным девяти небесным сферам прибавляли ещё одну или две сферы, самая крайняя из которых называется эмпиреем и объявлялась местопребыванием бога и «праведников».

  Гелиоцентрическая С. м. создавалась в эпоху Возрождения и имела революционное значение для развития естествознания. Замечательный труд Н. Коперника «Об обращениях небесных сфер», в котором содержится изложение гелиоцентрическая С. м., был издан в 1543, и с этого времени начинается новая эра естествознания. Коперник опроверг учение о неподвижности Земли. В разработанной им С. м. показано, что Земля вместе с другими планетами (Меркурием, Венерой, Марсом и т. д.) обращается вокруг Солнца, являющегося центральным телом планетной системы. Естественное и простое объяснение получили сложные петлеобразные движения планет: наблюдаемые их перемещения по небу являются относительными движениями, которые мы наблюдаем с движущейся Земли. Таким образом, согласно этой С. м., Земля не является центром мироздания, она - лишь одна из планет. Учение Коперника нанесло решительный удар по антропоцентризму.

  Одним из последователей учения Коперника был Дж. Бруно,который пришёл к правильному материалистическому выводу о бесконечности Вселенной и о том, что Солнце является центром лишь Солнечной системы, одного из бесчисленных миров, существующих во Вселенной. В конце 16 в. развернулась ожесточённая борьба передовой науки против геоцентризма, поддерживаемого христианской церковью. Бруно, обвинённый римской инквизицией в ереси, был сожжён на костре. Научные открытия Г. Галилея явились важной физической и философской аргументацией в пользу гелиоцентрической С. м. Его телескопические наблюдения подтвердили, что Солнце - это лишь одна из бесчисленного множества звёзд. В связи с этими открытиями, опровергавшими христианское учение, католическая церковь, не реагировавшая на книгу Коперника в 1-е десятилетия после её появления, в 1616 издала декрет инквизиции, по которому защита учения Коперника рассматривалась как проявление еретических воззрений. В 1632 против Галилея был возбуждён судебный процесс. Католическая церковь жестоко преследовала учёных, развивавших и распространявших гелиоцентрические С. м., направляла против сторонников новых представлений о Вселенной террор инквизиционных трибуналов.

  После открытий, сделанных в 16-17 вв., вопрос о том, находится ли в центре Вселенной Земля или Солнце, по существу отпал. Было ясно, что Солнце - одна из звёзд и потому, так же, как и Земля, не может быть центром даже для сколько-нибудь большой группы звёзд. Вселенная же в силу своей бесконечности вообще не может иметь никакого центра. После детального выяснения строения Солнечной системы, в конце 18 в. было положено начало изучению строения Галактики,а в 20 в. благодаря развитию средств и методов астрономических наблюдений стали возможными исследования строения метагалактики.В связи с этим термин «С. м.» стал иногда употребляться в новом, расширенном смысле, включающем представления об основных чертах строения этих объектов. См. также статьи Астрономия, Вселенная, Космогония, Космологияи литературу при них

Системы обработки данных

Систе'мы обрабо'тки да'нных, комплекс взаимоувязанных методов и средств сбора и обработки данных, необходимых для организации управления объектами. С. о. д. основываются на применении ЭВМ и других современных средств информационной техники, поэтому их также называют автоматизированными системами обработки данных (АСОД). Без ЭВМ построение С. о. д. возможно только на небольших объектах. Применение ЭВМ означает выполнение не отдельных информационно-вычислительных работ, а совокупности работ, связанных в единый комплекс и реализуемых на основе единого технологического процесса.

  С. о. д. следует отличать от автоматизированных систем управления (АСУ). В функции АСУ включается прежде всего выполнение расчётов, связанных с решением задач управления, с выбором оптимальных вариантов планов на основе экономико-математических методов и моделей и т. п. Их прямое назначение - повышение эффективности управления. Функции же С. о. д. - сбор, хранение, поиск, обработка необходимых для выполнения этих расчётов данных с наименьшими затратами. При создании АСОД ставится задача отобрать и автоматизировать трудоёмкие, регулярно повторяющиеся рутинные операции над большими массивами данных. С. о. д. - это обычно часть и первая ступень развития АСУ. Однако С. о. д. функционируют и как независимые системы. В ряде случаев более эффективно объединять в рамках одной системы обработку однородных данных для большого числа задач управления, решаемых в разных АСУ; создавать С. о. д. коллективного пользования.

  Первые С. о. д. начали создаваться в США в 50-х гг. 20 в., когда выяснилась нецелесообразность использования ЭВМ для решения отдельных задач, например расчёта заработной платы, учёта товарно-материальных ценностей и т. п., и необходимость комплексной обработки данных, вводимых в ЭВМ.

  В СССР функционирует ряд крупных С. о. д., чаще всего входящих в АСУ как основная часть. Таковы системы, созданные на крупных промышленных предприятиях: «Фрезер», «Калибр», ЗИЛ, Львовский телевизионный завод, Донецкий завод им. XV-летия ЛКСМУ и др. С. о. д. получают распространение не только на промышленных предприятиях, но и в плановых и статистических органах, в министерствах и банковских учреждениях, в материально-техническом снабжении и торговле. Их внедрение создаёт предпосылки для развития АСУ.

  Опыт создания и эксплуатации С. о. д. позволил определить основные принципы их построения и методы разработки. Важнейшим из них является принцип интеграции. Он состоит в том, что обрабатываемые первичные данные вводятся в С. о. д. один раз; решаемые в С. о. д. задачи взаимно увязываются т. о., чтобы первичные данные и данные, являющиеся результатом решения одних задач, использовались как исходные для возможно большего числа др. задач. Тем самым устраняется дублирование операций сбора, подготовки и контроля данных и обеспечивается их комплексное использование, что приводит к снижению удельных затрат на получение необходимой информации и повышению эффективности С. о. д.

  С принципом интеграции тесно связан принцип централизации обработки данных. При создании С. о. д. большая часть информационных работ изымается из ведения соответствующих подразделений и концентрируется в едином информационно-вычислительном центре (ИВЦ) или небольшом числе таких центров. При этом на ИВЦ создаются крупные массивы данных, которые могут быть предметом комплексной (интегрированной) обработки. Для ведения и оптимального использования этих массивов в составе С. о. д. создаются специальные информационно-поисковые системы - автоматизированные банки данных (АБД). В АБД поступают данные многократного применения, и здесь в соответствии с графиком работы С. о. д. из них комплектуются рабочие массивы под решаемые задачи, а также выдаются справки по запросам. Централизация обработки данных при создании С. о. д. предполагает обычно перестройку организационной структуры управления.

  Принцип системной организации технологического процесса состоит в том, что при создании С. о. д. необходима комплексная механизация и автоматизация операций на всех этапах сбора и обработки данных, сопряжения применяемых технических средств по пропускной способности и другим техническим параметрам. В противном случае единый технологический процесс разрывается и эффективность С. о. д. резко снижается.

  Разработке С. о. д. предшествуют возможно более детальное обследование и анализ управляемого объекта, задач и структуры управления, содержания и потоков информации. На основе анализа материалов обследования разрабатывается информационная модель С. о. д., фиксирующая связь между задачами обработки данных и новые потоки информации. По определяемым на основе информационной модели С. о. д. объёмам перерабатываемых, хранимых и передаваемых данных производится выбор технических средств и разрабатывается технология С. о. д. Обязательным условием успеха в создании С. о. д. является участие наряду со специалистами руководящих и др. работников, непосредственно занятых решением задач управления на всех этапах разработки и внедрения С. о. д.

  Лит.:Королев М. А., Обработка экономической информации на электронных машинах, 2 изд., М., 1965; Исследование потоков экономической информации. [Сб. ст.], М., 1968; Интегрированные системы обработки данных, М., 1970; Экономическая информация. Методологические проблемы, М., 1974.


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82