ModernLib.Net

()

ModernLib.Net / / / () - (. 2)
:
:

 

 


  С. э. постоянного тока применяют для учёта расхода электроэнергии на подвижном составе электрифицированного ж.-д. транспорта, на электролизных установках (в условных единицах — вольт-часах) ,для измерения количества электричества (в ) ,прошедшего через аккумуляторную батарею при её зарядке; С. э. переменного тока применяют как квартирные счётчики электроэнергии и для учёта расхода электроэнергии в электроприводах, осветительных сетях, коммунальном хозяйстве и т. п. Погрешность измерения С. э. 1—2,5%.

  Лит.:Электрические измерения. Средства и методы измерений, под ред. Е. Г. Шрамкова, М., 1972; Шкурин Г. П., Справочник по электро- и электронноизмерительным приборам, М., 1972; Касаткин А. С., Электротехника, 3 изд., М., 1973.

  Г. П. Шкурин.

Индукционный однофазный счётчик электроэнергии переменного тока (50 гц): Ф U— поток, создаваемый током в цепи напряжения (параллельной нагрузке); Ф I— поток, создаваемый током нагрузки; 1 — электромагнит последовательной цепи (тока); 2 — металлическая пластинка для регулирования угла сдвига фаз между потоками Ф Uи Ф I; 3 — электромагнит параллельной цепи (напряжения); 4 — счётный механизм; 5 — тормозной магнит (постоянный магнит, который создаёт противодействующий момент, необходимый для обеспечения однозначности измерения); 6 — алюминиевый диск; 7 — нагрузка (например, осветительные лампы накаливания).

Счётчик ядер конденсации

Счётчик я'дер конденса'ции,прибор для определения концентрации (числа в единице объёма воздуха, обычно в 1 см 3) в атмосфере. Наибольшее распространение получили С. я. к., основанные на принципе адиабатических камер. Исследуемый объём воздуха вводится в небольшую увлажнённую камеру, которая затем адиабатически расширяется, воздух при этом охлаждается, водяной пар становится пересыщенным и конденсируется на ядрах конденсации. Образовавшиеся капельки оседают на дно камеры, и их считают с помощью лупы. На этом принципе работают счётчики Д. Айткена (1887) и Шольца (1932). Последний позволяет определять концентрацию ядер почти во всём диапазоне концентраций, встречающихся в атмосфере; одна из моделей даёт возможность измерять раздельно число заряженных и нейтральных ядер.

  Существуют фотоэлектрические С. я. к., основанные на измерении интенсивности света, проходящего через камеру, в которой после её расширения на ядрах конденсации образовались капли (туман). Чем больше концентрация капель, а следовательно, и ядер конденсации, тем больше ослабление светового луча, направленного через камеру-трубку на фотоэлемент; фототок регистрируется гальванометром. Для перехода к концентрации ядер конденсации прибор предварительно градуируется. Преимущество этих С. я. к. — объективность показаний и возможность автоматизации их работы.

  Лит.:Грабовский Р. И., Атмосферные ядра конденсации, Л., 1956; Александров Н. Н., Петренчук О. П., Методика измерения ядер конденсации в свободной атмосфере при самолётных зондированиях, «Труды Главной геофизической обсерватории», 1959, в. 93; Лактионов А. Г., Определение концентрации облачных ядер конденсации, «Докл. АН СССР. Серия математика, физика», 1965, т. 165, № 6.

  Е. С. Селезнева.

Счётчики заряженных частиц

Счётчики заря'женных части'ц,приборы для регистрации заряженных частиц. К ним относятся: , , , и некоторые др. .

Счёты

Счёты,прибор для арифметических вычислений ( ). Несмотря на применение совершенных счётных машин, С. не утратили своего значения при практической счётной работе.

  Прообразом современных С. явился так называемый дощаный счёт, возникший впервые в России в 16 в. Большое влияние на создание дощаного счёта оказала система налогового обложения в России 15—17 вв. (сошное письмо), при которой, наряду со сложением, вычитанием, умножением и делением целых чисел, надо было производить те же операции и с дробями, поскольку условная единица обложения — соха, делилась на части. Дощаный счёт представлял собой два складывающихся ящика. Каждый ящик разгораживался надвое (позже только внизу); второй ящик был необходим ввиду особенностей денежного счёта. Внутри ящика на натянутые шнуры или проволоку нанизывались кости. В соответствии с десятичной системой счисления ряды для целых чисел имели по 9 или 10 костей ( рис. 2 ); операции с дробями производились на неполных рядах: ряд из трёх костей составлял три трети, ряд из четырёх костей — четыре четверти (чети). Ниже располагались ряды, в которых было по одной кости: каждая кость представляла половину от той дроби, под которой она располагалась (например кость расположенная под рядом из трех костей, составляла половину от одной трети, кость под ней — половину от половины одной трети, и т. д.). Дроби суммировались без приведения к общему знаменателю, например «четь да полтрети, да полполчети» . Иногда операции с дробями производились как с целыми при помощи приравнивания целого (сохи) к определённой сумме денег. Например, при равенстве соха = 48 денежным единицам приведённая выше дробь составит 12 + 8 + 3 = 23 денежные единицы.

  С переходом к арабским цифрам и отменой сошного письма С. утратили в конце 17 в. ряды для дробей, а в начале 18 в. лишились второго ящика и приобрели свой современный вид (сохранившийся в С. один неполный ряд, обычно из четырёх костей, отделяет два ряда для десятых и сотых единицы, а также иногда служит для счёта четвертей и половинок). За границей русские С. применяются в Иране, а в Западной Европе — созданные на их основе в 19 в. наглядные пособия для школы.

  Китайские С. (суан-пан, рис. 3 ), принятые также в Индокитае и Японии, значительно старше русских и поныне сохраняют своё древнее устройство со счётом единиц до 5, а далее пятками.

  Лит.:Спасский И. Г., Происхождение и история русских счетов, в кн.: Историко-математические исследования, в. 5, М., 1952.

Рис. 3. Суан-пан (китайские счёты). Положено 1930.

Рис. 2. Дощаный счет (по чертежу 17 в.). Положено слева , справа 30 рублей 18 алтын  деньги.

Рис. 1. Счёты. Положено 401,28.

Счисление

Счисле'ние,нумерация, совокупность приёмов наименования и обозначения чисел. Наиболее совершенным принципом представления чисел является позиционный (поместный) принцип, согласно которому один и тот же числовой знак ( ) имеет различные значения в зависимости от того места, где он расположен. Такая система С. основывается на том, что некоторое число nединиц (основание системы С.) объединяется в одну единицу второго разряда, nединиц второго разряда объединяются в одну единицу третьего разряда и т. д. Основанием системы С. может быть любое число, большее единицы. К числу таких систем относится современная десятичная система С. (с основанием n =10). В ней для обозначения первых десяти чисел служат цифры 0, 1,..., 9 (см. ) .

 Несмотря на кажущуюся естественность такой системы С., она явилась результатом длительного исторического развития. Возникновение десятичной системы С. связано со счётом на пальцах. Имелись системы С. и с другим основанием: 5, 12 (счёт дюжинами), 20 (следы такой системы сохранились во французском языке, например quatre-vingts, то есть буквально четыре-двадцать, означает 80), 40, 60 и др. При научных исследованиях и при вычислениях на современных вычислительных машинах часто применяется система С. с основанием 2 (см. ) .

 У первобытных народов не существовало развитой системы С. Ещё в 19 в. у многих племён Австралии и Полинезии было только два числительных: один и два; сочетания их образовывали числа: 3 — два-один, 4 — два-два, 5 — два-два-один и 6 — два-два-два. О всех числах, больших 6, говорили: «много», не индивидуализируя их. С развитием общественно-хозяйственной жизни возникла потребность в создании систем С., которые позволили бы считать и обозначать всё большие совокупности предметов. Одной из наиболее древних систем С. является египетская иероглифическая нумерация, возникшая ещё за 2500—3000 лет до н. э. Это была десятичная непозиционная система С., в которой для записи чисел применялся только принцип сложения (числа, выраженные рядом стоящими цифрами, складываются). Специальные знаки имелись для единицы , десяти , ста  и других десятичных разрядов 10 7 .Число 343 записывалось так  (здесь.  — 300, — 40, 3), в славянской: . В алфавитных системах С. запись чисел гораздо короче, чем в предыдущих; кроме того, над числами, записанными в алфавитной нумерации, гораздо легче производить арифметические действия. Однако в алфавитных системах С. нельзя записывать сколь угодно большие числа. Греки расширили ионийскую нумерацию: числа 1000, 2000,..., 9000 они обозначали теми же буквами, что и 1, 2,..., 9, но ставили штрих внизу слева: так, `a означала 1000, `b — 2000 и т. д.

  Для 10 000 был введён новый знак М. Тем не менее ионийская система С. оказалась непригодной уже для астрономических вычислений эпохи эллинизма, и греческие астрономы этого времени стали комбинировать алфавитную систему с шестидесятеричной вавилонской — первой известной нам системой С., основанной на позиционном принципе. В системе С. древних вавилонян, возникшей примерно за 2000 лет до н. э., все числа записывались с помощью двух знаков:  (для единицы) и  (для десяти). Числа до 60 записывались как комбинация этих двух знаков с применением принципа сложения. Число 60 снова обозначалось знаком ,являясь единицей высшего разряда. Для записи чисел от 60 до 3600 вновь применялся принцип сложения, а число 36 000 обозначалось тем же знаком, что и единица, и т. д. Число 343 = 5 60 + 4 .10+3 в этой системе записывалось так: . Однако в силу отсутствия знака для нуля, которым можно было бы отмечать недостающие разряды, запись чисел в этой системе С. не была однозначной (см. ) .Другая система С., основанная на позиционном принципе, возникла у индейцев майя, обитателей полуострова Юкатан (Центральная Америка) в середине 1-го тысячелетия н. э. У майя существовали две системы С.: одна, напоминающая египетскую, употреблялась в повседневной жизни, Другая — позиционная, с основанием 20 и особым знаком для нуля, применялась при календарных расчётах. Запись в этой системе, как и в нашей современной, носила абсолютный характер.

  Современная десятичная позиционная система С. возникла на основе нумерации, зародившейся не позднее 5 в. в Индии. До этого в Индии имелись системы С., в которых применялся не только принцип сложения, но и принцип умножения (единица какого-нибудь разряда умножается на стоящее слева число). Аналогично строились старокитайская система С. и некоторые др. Если, например, условно обозначить число 3 символом III, а число 10 символом X, то число 30 запишется как IIIX (три десятка). Такие системы С. могли служить подходом к созданию десятичной позиционной нумерации.

  Десятичная позиционная система С. даёт принципиальную возможность записывать сколь угодно большие числа. Запись чисел в ней компактна и удобна для производства арифметических операций. Поэтому вскоре после возникновения десятичная позиционная система С. начинает распространяться из Индии на Запад и Восток. В 9 в. появляются рукописи на арабском языке, в которых излагается эта система С., в 10 в. десятичная позиционная нумерация доходит до Испании, в начале 12 в. она появляется и в других странах Европы. Новая система С. получила название арабской, потому что в Европе с ней познакомились впервые по латинским переводам с арабского. Только в 16 в. новая нумерация получила широкое распространение в науке и в житейском обиходе. В России она начинает распространяться в 17 в. ив самом начале 18 в. вытесняет алфавитную. С введением десятичная позиционная система С. стала универсальным средством для записи всех действительных чисел.

  Лит.:Кэджори ф.. История элементарной математики с указаниями на методы преподавания, пер. с англ., 2 изд., Од., 1917; Леффлер Е., Цифры и цифровые системы культурных народов в древности и в новое время, пер. с нем., Од., 1913; Выгодский М. Я., Арифметика и алгебра в древнем мире, 2 изд., М., 1967; Башмакова И. Г. и Юшкевич А. ГГ., Происхождение систем счисления, в кн.: Энциклопедия элементарной математики, кн. 1, М.—Л., 1951.

  И. Г. Башмакова.

Счисление пути

Счисле'ние пути'судна, непрерывный учёт элементов движения судна (скорости, направления) и воздействий внешних сил с целью определения координат судна (счислимого места) без наблюдения береговых ориентиров и небесных светил ( ) .С. п. определяют положение судна с точностью, необходимой для плавания и обеспечения навигационной безопасности. С. п. производится на основании значений курса, скорости и вектора сноса судна. Графическое С. п. ведётся на карте, в его процессе осуществляются расчёт и прокладка истинных курсов и пройденных расстояний, учёт и сноса судна. При таком С. п. с помощью счислимое место получают непрерывно, при ручном способе — дискретно, с избранным интервалом времени. Аналитическое С. п. выполняется с помощью счётно-решающих устройств.

Считывание информации

Счи'тывание информа'циив ЦВМ, извлечение информации, хранящейся в (ЗУ), и передача её в др. устройства вычислительной машины. С. и. производится при выполнении большинства машинных ,а иногда является самостоятельной операцией. Считывание может сопровождаться разрушением (стиранием) информации в тех ячейках (зонах) ЗУ, откуда производилось считывание (как, например, в ЗУ на ферритовых сердечниках), или быть неразрушающим (например, в ЗУ на магнитных лентах, дисках) и, следовательно, допускающим многократное использование однажды записанной информации. С. и. характеризуется временем, затрачиваемым непосредственно на вывод данных из ЗУ; оно составляет от нескольких десятков нсекдо нескольких мсек.(См. также .)


  • :
    1, 2