()
ModernLib.Net / / / () -
(. 79)
:
|
|
:
|
|
-
(4,00 )
- fb2
(10,00 )
- doc
(1 )
- txt
(1 )
- html
(10,00 )
- :
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
|
|
д. в материалах могут возникать остаточные
напряжения.Макронапряжения приводят к короблению) растрескиванию, межкристаллитной коррозии, а иногда обусловливают анизотропию механических и магнитных свойств материала или повышают его усталостную прочность (например, при наличии сжимающих напряжений). Рентгенографическое определение макронапряжений в простейшем случае сводится к измерению смещения дебаевской линии DJ. В простейшем случае при нормальных напряжениях s смещение DJ связано с s выражением: s
=
EctgJ
ЧDJ/m, где
Е -
Юнга модуль,m
-
Пуассона коэффициент.
Микронапряжения,как и измельчение блоков мозаики, приводят к уширению дебаевских линий. Если уширение обусловлено только микронапряжениями, то средняя их величина (для кристаллов кубической сингонии): D
а/
а= b/4tgJ. Для разделения эффектов, вызываемых микронапряжениями и блоками мозаики, применяют специальную методику, основанную на
гармоническом анализе.
Фазовый анализ.Р. м. позволяет производить качественный и количественный фазовый анализ гетерогенных смесей. Каждая фаза данного вещества даёт на рентгенограмме характерное отражение. В определении составляющих смесь фаз по их отражениям и состоит качественный фазовый анализ. Количественный фазовый анализ проводят на рентгеновском дифрактометре: сопоставляя интенсивности отражений фазы и эталона, находящихся в смеси, можно определить концентрацию данной фазы в поликристалле.
Фазовые превращения.Р. м. применяют для исследования изменений в пересыщенном
твёрдом растворе,обусловленных его распадом (старением) и, следовательно, возникновением новых фаз и (или) исчезновением старых. Температурно-временная зависимость изменения концентрации фаз даёт возможность изучать кинетику процессов и научно выбирать, например, режимы термообработок, определять энергию активации процесса и т.д. Распад твёрдых растворов сопровождается изменением их физических и механических свойств. Особенно значительно меняются свойства, когда кристаллическая решётка вновь образующейся фазы совпадает с исходной решёткой твёрдого раствора и между ними нет чёткой границы раздела; в таком случае говорят, что распад протекает когерентно - образуются, например, зоны Гинье - Престона (
рис. 3
). Если возникает чёткая граница раздела, то говорят о некогерентных выделениях фаз. Рентгенограммы твёрдых растворов при когерентном и некогерентном распадах существенно отличаются, что позволяет получать важные данные о ходе кристаллоструктурных процессов.
Определение типа твёрдого раствора и границы растворимости.Для установления типа твёрдого раствора в Р. м. определяют количество
nатомов в элементарной ячейке раствора, используя рентгенографические данные о её объёме
Qи значении плотности раствора r:
n=
Qr
/AЧ1,66Ч10
-24, где
A -средневзвешенный атомный вес. Если
nокажется равным числу атомов в элементарной ячейке растворителя
n
o
,то раствор построен по типу замещения; если
n>
no -имеем раствор внедрения, при
n < no -раствор вычитания.
Для установления границы растворимости в твёрдом состоянии в Р. м. анализируют изменения периодов кристаллической решётки при повышении концентрации раствора. Концентрация, при которой период решётки (для 2 компонентных растворов) перестаёт меняться при дальнейшем изменении состава, определяет предельную растворимость для данной температуры. По найденным значениям предельной растворимости для различных температур строят границу растворимости.
Рентгенографическое исследование расплавленных и аморфных веществ.Аморфные вещества и расплавы дают диффузное рассеяние рентгеновских лучей (см.
рис. 6
в ст.
Рентгеновский структурный анализ
)
,но на рентгенограммах всё же можно выделить немногочисленные и очень размытые интерференционные максимумы. Анализ дифракционных картин (
рис. 4
, а) позволяет разобраться в структуре жидкостей и аморфных тел; при этом определяется функция атомного распределения r(
r), т. е. усреднённое по объёму
Qчисло атомов
N в 1
см
3на расстоянии
rот центрального атома: r(
r) =
(
dN/dQ)
r
(
рис. 4
, б)
.Диффузный фон несёт также информацию об электронной структуре сплава.
Исследование ближнего и дальнего порядка.В твёрдых растворах атомы компонентов распределены, как правило, не хаотично, а с некоторой корреляцией (см.
Дальний порядок и ближний порядок
)
.Когда корреляция существует только в ближайших координационных сферах, возникает или ближнее упорядочение (например, в сплавах Fe - Si и Fe - Al), либо ближнее расслоение (Cr - Mo и Si - Ge). Рентгенографически это можно обнаружить по появлению дополнительного диффузного фона. С помощью Р. м. установлено, что при понижении температуры в твёрдых растворах с ближним расслоением обычно происходит распад на 2 твёрдых раствора (например, Al - Zn), а в растворах с ближним упорядочением при этом возникает дальний порядок (например, в Fe
3Al). В последнем случае корреляция между упорядоченными атомами наблюдается в объёме всего образца, что сопровождается появлением на рентгенограмме слабых дополнительных сверхструктурных линий (
рис. 5
), по интенсивности которых можно судить о степени развития дальнего порядка.
Рентгенографическое исследование тепловых колебаний.Для исследования используют рентгенографическую методику измерения диффузного рассеяния рентгеновских лучей, вызванного тепловыми колебаниями, на монокристаллах. Эти измерения позволяют получить дисперсионные кривые n =
f(
k) (где n - частота, a
k -
волновой векторупругих волн в кристалле) по различным направлениям в кристалле. Знание дисперсионных кривых даёт возможность определить упругие константы кристалла, вычислить константы межатомного взаимодействия и рассчитать фононны и спектр кристалла.
Об изучении рентгеновскими методами распределения дефектов в достаточно крупных и почти совершенных монокристаллах см. в ст.
Рентгеновская топография.
Исследование радиационных повреждений.Р. м. позволяет установить изменения структуры кристаллических тел под действием проникающей радиации (например, изменение периодов решётки, возникновение диффузных максимумов и т.д.), а также исследовать структуру радиоактивных веществ.
Лит.:Уманский Я. С., Рентгенография металлов и полупроводников, М., 1969: его же, Рентгенография металлов, М., 1967; Иверонова В. И., Ревкевич Г. П., Теория рассеяния рентгеновских лучей, М., 1972; Хачатурян А. Г., Теория фазовых превращений и структура твердых растворов, М., 1974; Кривоглаз М. А., Применение рассеяния рентгеновских лучей и тепловых нейтронов для исследования несовершенств в кристаллах, К., 1974; Конобеевский С. Т., Действие облучения на материалы, М., 1967: Кривоглаз М. А., Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами, М., 1967; Уманский Я. С., Чириков Н. В., Диффузия и образование фаз, М., 1974; Warren В. Е., X-ray diffraction, N. Y., 1969; Schuize G. R., Metallphysik, B., 1974.
Я. С. Умайский, Н. В. Чириков.
Рис. 3. Диффузное рассеяние состаренного монокристалла Ni - Be. Дополнительное диффузное рассеяние вокруг отражений твёрдого раствора вызвано распадом пересыщенного твёрдого раствора с образованием мелкодисперсной новой фазы, имеющей ту же кристаллическую решётку, что и раствор, но отличающуюся по составу и удельному объёму (разные периоды решётки). Для каждого отражения приведены индексы интерференции, отличающиеся от миллеровских индексов порядком отражения.
Рис. 2. Схема двойного вульф-брэгговского рассеяния (II) от блочного поликристалла в область малых углов e от первичного пучка I.
Рис. 1. Профили линий дебаеграммы: а - узкие (неуширенные) сплошные отражения от кристаллитов размерами ~ 0,5
мкм; б - уширенные отражения от блоков мозаики размерами 0,1-0,2
мкм. b - полуширина размытой линии.
Рис. 4. Дебаеграмма (а) аморфного твёрдого тела (или жидкости, расплава) и график (б) изменения распределения r(r) атомной плотности Hg с расстоянием r от центра неупорядоченного скопления. Появление нескольких первых размытых максимумов интенсивности I(S) (где
) вызвано неупорядоченным скопленнием атомов (ионов).
Рис. 5. Дебаеграмма сплава Fe - Al. При упорядоченном расположении атомов разного сорта, кроме обычных отражений 110, 200, 211. 220, 310, присущих твёрдому раствору с объёмноцентрированной кубической решёткой, появляются более слабые дополнительные сверхструктурные отражения 100, 111, 210, 300, 221. Нарушение порядка приводит к ослаблению интенсивности сверхструктурных линий.
Рентгенография молекул
Рентгеногра'фия
моле'кул, область
рентгеновского структурного анализа,посвященная изучению строения молекул, находящихся в конденсированных состояниях (кристаллы, аморфные вещества и молекулярные жидкости). При исследовании молекул газов и паров получают их рентгенограммы, на которых наблюдаются одно или несколько размытых диффузных колец; такие рентгенограммы позволяют в ряде случаев определять межатомные расстояния в молекуле.
Рентгенодефектоскопия
Рентгенодефектоскопи'я, см. в ст.
Дефектоскопия.
Рентгенодиагностика
Рентгенодиагно'стика, распознавание повреждений и заболеваний человека и животных на основе данных рентгенологического исследования. Некоторые органы (кости, лёгкие, сердце) хорошо видны на снимках при
рентгенографии
и на флюороскопическом экране при
рентгеноскопии
благодаря тому, что разные ткани имеют различные коэффициенты поглощения
рентгеновских лучей
; другие органы можно исследовать только после введения в организм рентгеноконтрастных веществ (см.
Диагностические средства
)
.В медицинской практике рентгенологические данные необходимы для выяснения локализации, объёма и характера анатомических изменений, изучения функции органов, наблюдения за течением болезни, её осложнениями и исходом. Поскольку Р. сопровождается лучевой нагрузкой, соблюдаются меры
защиты организма от излучений.Современная клиническая диагностика основана на комплексном исследовании больного различными методами, поэтому правильная методика Р. включает такие этапы, как предварительное ознакомление с жалобами больного и клинической картиной болезни; сопоставление данных рентгенологических и других диагностических методов, а также результатов предыдущих рентгенологических исследований; проверку правильности рентгенологического заключения путём дальнейшего наблюдения за больным и эффектом лечебных мероприятий.
Лит.:Методика и техника рентгенологического исследования, под ред. И. Г. Лагуновой, М., 1969; Линденбратен Л. Д., Этапы диагностического анализа рентгенограмм. (На пути к теории рентгенологического распознавания), «Вестник рентгенологии и радиологии», 1972, № 2; Poppe Н., Technik der Rцntgendiagnostik, Stuttg., 1961.
Л. Д. Линденбратен.
Рентгеноконтрастные средства
Рентгеноконтра'стные
сре'дства, химические вещества - в основном иодсодержащие препараты (кардиотраст, билитраст, трийотраст и др.), применяемые для рентгенологического исследования органов и тканей человека. Подробнее см. в ст.
Диагностические средства.
Рентгенология
Рентгеноло'гия, медицинская и ветеринарная дисциплина, предмет изучения которой - теория и практика использования рентгеновского излучения для исследования здорового и больного организмов человека и животных. Возникла на рубеже 19-20 вв., после открытия (1895) рентгеновских лучей. Пионерами Р. были: в России - А. С. Попов (в январе 1896 изготовил, по-видимому, 1-ю в стране рентгеновскую трубку и произвёл медицинские исследования), В. Н. Тонков (в феврале 1896 сообщил о применении рентгеновских лучей в изучении скелета, положил начало рентгеноанатомии), А. К. Яновский (в феврале 1896 начал систематические рентгенологические исследования больных в Военно-медицинской академии), И. Р. Тарханов (одним из первых показал биологическое действие рентгеновского излучения); в Австрии - Г. Гольцкнехт; в Германии - Г. Альберс-Шёнберг, А. Кёлер; в США - К. Бек, Ю, Колдуэлл, В. Мортон; во Франции - А. Беклер; в Швеции - Й. Форселль. Большой вклад в развитие Р. как научной медицинской дисциплины внесли русские врачи С. П. Григорьев, М. И. Неменов, С. А. Рейнберг; М. Обре (Франция), А. О. Окерлунд (Швеция), Г. Берг (Германия), Дж. Кейз, Дж. Фалер (США) и многие др.
Р. сыграла важную роль в разработке многих проблем морфологии, физиологии и патологии человека, а также в развитии практического здравоохранения; рентгенологический метод принадлежит к ведущим способам распознавания болезней (см.
Рентгенодиагностика
)
.Прогресс Р. во 2-й половине 20 в. связан с научно-технической революцией - появлением электроннооптических усилителей рентгеновского изображения, рентгенотелевидения, приспособлений для скоростной рентгеновской съёмки и катетеризации сосудов, видеомагнитной записи и т.д. Перед современной Р. стоят проблемы дальнейшего совершенствования медицинской рентгенотехники и методики обследования больных; развития теории рентгенологического распознавания болезней, в частности теории распознавания рентгеновских «образов», и создания автоматизированных устройств для анализа рентгенограмм и флюорограмм разных органов; развития клинической ангиографии и лимфографии; внедрения в практику электрорентгенографии; совершенствования защиты больных и персонала при проведении рентгенологического исследования и др.
Основоположники ветеринарной Р. в СССР - Г. В. Домрачёв, А. И. Вишняков, возрастной и сравнительной рентгеноанатомии животных - Г. Г. Воккен, работы которого посвящены рентгеноостеологии, антропологии и ангиологии. С 1923 центрами ветеринарной Р. становятся Казанский и Петроградский (Ленинградский) ветеринарные институты; в первом разрабатывались вопросы рентгенодиагностики заболеваний внутренних органов домашних животных, во втором - костно-суставных заболеваний. Советская ветеринарная Р. изучила многие вопросы диагностики патологии с.-х. животных, связанной с нарушением минерального обмена (И. Г. Шарабрин и др.), диагностики болезней органов дыхания, пищеварения у крупных и мелких животных (В. А. Липин, К. Ф. Музафаров и др.) и переломов костей конечностей (А. Л. Хохлов и др.).
Исторически сложилась связь между Р. и
радиологией.Это отражено, в частности, в названиях (рентгенорадиологические) институтов, научных общественных съездов, журналов, кафедр. Во многих странах для обозначения Р. применяют термин «радиология». В 1918 в Петрограде был открыт первый в мире специальный рентгенорадиологический институт (ныне Центральный научно-исследовательский рентгенорадиологический институт Министерства здравоохранения СССР). Аналогичные институты были созданы затем в Харькове, Москве, Киеве и др. (к 1974 в СССР функционировало 8 институтов рентгенологии и медицинской радиологии и 4 института медицинской радиологии и онкологии). С 1934 введена система единого организационного построения рентгенологической службы - так называемые рентгеновские центры (впоследствии - рентгеновские станции, рентгенологические отделения) и должность главного рентгенолога во всех республиках, краях, областях и крупных городах страны; они планируют сеть рентгеновских кабинетов, оказывают научно-методическую, техническую и консультативную помощь врачам-рентгенологам. Р. преподаётся на кафедрах Р. и радиологии медицинских институтов и медицинских факультетов университетов. Специализация по Р. проводится на рабочих местах в крупных больницах и научно-исследовательских институтах, в интернатуре и аспирантуре медицинских институтов и в институтах усовершенствования врачей. Курс ветеринарной Р. введён на кафедрах диагностики или терапии незаразных болезней ветеринарных вузов и факультетов. За рубежом нет единой системы подготовки врачей-рентгенологов. В большинстве стран она осуществляется на двух-трёхгодичных курсах при крупных рентгенологических отделениях.
Советские рентгенологи объединены во Всесоюзное научное общество рентгенологов и радиологов (основано в 1919 под названием Российской ассоциации рентгенологов и радиологов; первый съезд российских рентгенологов и радиологов состоялся ранее - в 1916 в Москве), которое насчитывает (1974) свыше 10 тыс. членов; с 1969 входит в Международное общество радиологов.
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
|
|