Большая Советская Энциклопедия (РА)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (РА) - Чтение
(стр. 26)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(3,00 Мб)
- Скачать в формате fb2
(8,00 Мб)
- Скачать в формате doc
(1 Кб)
- Скачать в формате txt
(1 Кб)
- Скачать в формате html
(8,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
|
|
А. Б. Каждан.
Радиометрический анализ
Радиометри'ческий ана'лиз,метод анализа химического состава веществ, основанный на использовании радиоактивных изотопов и ядерных излучений. В Р. а. для качественного и количественного определения состава веществ используют радиометрические приборы (см.
). Различают несколько способов Р. а. Прямое радиометрическое определение основано на осаждении определяемого иона в виде нерастворимого осадка избытком реагента известной концентрации, содержащего радиоактивный изотоп с известной удельной активностью. После осаждения устанавливают радиоактивность осадка или избытка реагента.
Радиометрическое титрование основано на том, что определяемый в растворе ион образует с реагентом малорастворимое или легкоэкстрагируемое соединение. Индикатором при титровании служит изменение, по мере введения реагента, радиоактивности раствора (в 1-м случае) и раствора или экстракта (во 2-м случае). Точка эквивалентности определяется по излому кривой титрования, выражающей зависимость между объёмом введённого реагента и радиоактивностью титруемого раствора (или осадка). Радиоактивный изотоп может быть введён в реагент или определяемое вещество, а также в реагент и определяемое вещество.
Метод изотопного разбавления основан на тождественности химических реакций изотопов данного элемента. Для его осуществления к анализируемой смеси добавляют некоторое количество определяемого вещества
m
0, содержащего в своём составе радиоактивный изотоп с известной радиоактивностью
I
0
.Затем выделяют любым доступным способом (например, осаждением, экстракцией, электролизом) часть определяемого вещества в чистом состоянии и измеряют массу
m
1и
I
1радиоактивность выделенной порции вещества. Общее содержание искомого элемента в анализируемом объекте находят из равенства отношений радиоактивности выделенной пробы к радиоактивности введённого вещества и массы выделенного вещества к сумме масс введённого вещества и находящегося в анализируемой смеси:
, откуда
.
При
исследуемое вещество облучают (активируют) ядерными частицами или жёсткими g-лучами, а затем определяют активность образующихся радиоактивных изотопов, которая пропорциональна числу атомов определяемого элемента, содержанию активируемого изотопа, интенсивности потока ядерных частиц или фотонов и сечению ядерной реакции образования радиоактивного изотопа.
Фотонейтронный метод основан на испускании нейтронов при действии фотонов высокой энергии (g
-квантов) на ядра атомов химических элементов. Количество нейтронов, определяемое
, пропорционально содержанию анализируемого элемента. Эта энергия фотонов должна превышать энергию связи нуклонов в ядре, которая для большинства элементов составляет ~ 8
Мэв(лишь для бериллия и дейтерия она равна соответственно 1,666
Мэви 2,226
Мэв; при использовании в качестве источника g-квантов изотопа
124Sb, с
E
g= 1,7 и 2,1
Мэв,можно определять бериллий на фоне всех др. элементов).
В Р. а. применяются также методы, основанные на поглощении нейтронов, g-лучей, b-частиц и квантов характеристического рентгеновского излучения радиоактивных изотопов. В методе анализа, основанном на отражении электронов или позитронов, измеряется интенсивность отражённого потока. Энергия частиц, отражённых от лёгких элементов, во много раз меньше энергии частиц, отражённых от тяжёлых элементов, что позволяет определять содержание тяжёлых элементов в их сплавах с лёгкими элементами и в рудах. См. также
.
Лит.:Крешков А. П., Основы аналитической химии, книга 3 - Физико-химические (инструментальные) методы анализа, 3 изд., М., 1970; Несмеянов Ан. Н., Радиохимия, М., 1972.
А. Н. Несмеянов.
Радиометрический эффект
Радиометри'ческий эффе'кт,проявление действия силы отталкивания между двумя поверхностями, поддерживаемыми при разных температурах (
T
1>
T
2)
и помещенными в разреженный газ. Р. э. вызывается тем, что молекулы, ударяющиеся о поверхность с
T
1, отскакивают от неё, имея более высокую среднюю кинетическую энергию, чем молекулы, ударяющиеся о поверхность с
T
2
.Холодная пластина со стороны, обращенной к горячей, бомбардируется молекулами, имеющими в среднем более высокую энергию, чем молекулы, бомбардирующие пластину с противоположной стороны (со стороны стенки сосуда с
Т=
T
2). Благодаря разнице в импульсах, передаваемых молекулами противоположным сторонам пластины, возникает сила отталкивания. При достаточно низких давлениях газа
р,когда средняя длина свободного пробега молекул больше, чем расстояние между поверхностями, сила отталкивания, приходящаяся на единицу площади:
.
При более высоких
Fстановится меньше, несмотря на то, что в передаче энергии участвует большее количество молекул, т.к. быстрые молекулы теряют часть своей энергии при столкновении с более медленными молекулами. Т. о., при низких давлениях сила
Fпрямо пропорциональна
р,а при высоких - обратно пропорциональна. При некотором промежуточном
рзначение силы
Fпроходит через максимум. На Р. э. основано действие радиометрического
.
Радиометрическое обогащение
Радиометри'ческое обогаще'ние,отделение полезных минералов от пустой породы, основанное на свойстве минералов испускать излучения (эмиссионно-радиометрические методы) или ослаблять их (абсорбционно-радиометрические методы). В эмиссионно-радиометрических методах используется естественная радиоактивность минералов, их люминесценция и др. В абсорбционно-радиометрических методах используются рентгеновское, нейтронное и гамма-излучение.
Р. о. осуществляется с помощью радиометрических сепараторов (
рис. 1
), в которых датчик регистрирует излучение и преобразует его в электрические импульсы. Из датчика импульсы поступают в радиометр, в котором частота поступления импульсов сравнивается с заранее заданной «пороговой» величиной и при превышении её поступает команда на исполнительный механизм, разделяющий полезное ископаемое на обогащенный продукт и отходы (хвосты).
Режимы радиометрической сепарации: покусковой, при котором регистрируется излучение отдельных кусков полезного ископаемого; порционный - регистрируется излучение порций, состоящих из нескольких кусков, и поточный - регистрируется излучение движущегося непрерывного потока полезного ископаемого. Покусковой режим технологически наиболее эффективен, но наименее производителен.
Р. о. получило распространение при обработке урановых руд, являясь основным методом обогащения этого вида сырья. Кроме того, оно используется для обработки бериллиевых руд (фотонейтронный процесс), золотосодержащих руд и неметаллических полезных ископаемых (фотометрический процесс), алмазосодержащих руд (люминесцентный процесс), железных РУД (гамма-абсорбционный процесс), борных руд (нейтронно-абсорбционный процесс) и др.
Разновидность Р. о. - радиометрическая сортировка, с помощью которой сортируются загруженные полезным ископаемым транспортирующие устройства (вагонетки, автомашины, скипы и др.). Сортировка осуществляется радиометрической контрольной станцией (
рис. 2
), которая работает с большой производительностью, но коэффициент обогащения полезного ископаемого при этом невелик. В связи с этим они используются главным образом для выделения из горной массы наиболее бедной части полезного ископаемого, удаляемой в отвал.
Лит.:Мокроусов В. А., Гольбек Г. Р., Архипов О. А., Теоретические основы радиометрического обогащения радиоактивных руд, М., 1968; Крейндлин И. И., Маркова Р. А., Паска Л. М., Приборы для радиометрического обогащения руд, М., 1972.
В. А. Мокроусов.
Рис.1. Схема радиометрического сепаратора для естественно-радиоактивных руд: 1 - ленточный конвейер; 2 - экран; 3 - датчик радиометра; 4 - шибер; 5 - электромагнит; 6 - радиометр.
Рис. 2. Радиометрическая контрольная станция: 1 - датчики радиометра; 2 - радиометры; 3 - весы.
Радиометрия
Радиоме'трия(от
и
), совокупность методов измерений активности (числа распадов в единицу времени)
в радиоактивных источниках. Родоначальниками Р. можно считать Э.
и Х.
,
впервые в 1930 осуществивших с помощью
определение числа a-частиц, испускаемых в 1
сек1
гRa (удельная активность).
Радиометрические методы различают по способу приготовления источника, по геометрии измерений, по используемым физическим явлениям. К первой группе относятся методы: «бесконечно тонкого» и «бесконечно толстого» слоев, «перевода метки в газ», «полного испарения проб». Ко второй группе - методы определённого телесного угла и «4p-счёта». К третьей группе методов относятся калориметрический, весовой, метод жидкостного сцинтилляционного счёта, методы счётчиков внутреннего наполнения,
, масс-спектрометрический, эмиссионный спектральный, метод совпадений и др.
Для абсолютных измерений активности a- и b-излучателей широко применяют метод 4p-счёта, при котором регистрируются частицы, испускаемые из источника в любом направлении. Активность находят по формуле:
А=
N/PK,
где
N -скорость счёта с поправками на фон и «мёртвое время»,
Р -поправка на схему распада,
К -коэффициент, учитывающий поглощение в подложке, самопоглощение в источнике и пр. Для измерений твёрдых радиоактивных источников используют газоразрядные 4p-счётчики. Геометрия измерений, близкая к 4p, осуществляется также при применении жидкостных
, счётчиков и камер внутреннего наполнения.
Для абсолютных измерений активности нуклидов, распад которых сопровождается каскадным излучением, применяют
.Установки, включающие два детектора, настраивают так, чтобы раздельно регистрировались излучения разного рода или разной энергии. При этом измеряют активность источника с нуклидом, распад которого сопровождается каскадным испусканием именно этих излучений. Активность определяют по формуле:
,
где
N
1и
N
2
-скорости счёта, получаемые с каждым из детекторов,
N
12
-скорость счёта совпадений, а
F -некоторая функция от (
N
1/
N
2), стремящаяся к 1 при (
N
2/
N
1) ® 1
.В наиболее простых случаях
F(
N
2/
N
12) = 1.
Если источники обладают значительной активностью, применяют калориметрический метод, основанный на измерении теплового эффекта, вызванного распадом нуклида в образце. Зная среднюю энергию, поглощаемую в системе образец - калориметр при одном акте распада, и общую интенсивность выделения энергии источником, рассчитывают активность нуклидов. Калориметрический метод является одним из самых старых, но им широко пользуются до сих пор.
Если удаётся выделить нуклид в макроколичествах, его активность может быть найдена по формуле:
А=
l
М,
где
М -число атомов нуклида в образце, l
-постоянная распада (в
сек
-1),
Т -период полураспада (в
сек). Этот метод называется весовым, т.к.
Мрассчитывают, исходя из веса нуклидов в источнике. Весовой метод называется масс-спектрометрическим или методом эмиссионного спектрального анализа, если относительное содержание нуклида в источнике определяют с помощью масс-спектрометра или эмиссионного спектрального анализа.
Массовые измерения активности осуществляют в основном относительными методами, сравнивая измеряемые источники с образцовыми (откалиброванными с высокой точностью радиоактивными растворами, жидкостями, газами, при создании которых используют методы абсолютных измерений активности). Относительные измерения активности нуклидов, распад которых сопровождается g-излучением, обычно осуществляют с помощью ионизационных камер, сцинтилляционных счётчиков и
.В случае b-излучающих нуклидов используют ионизационные камеры и газоразрядные счётчики. Массовые измерения активности низкоэнергетичных b-излучателей (
14C,
3H и др.) осуществляют методом жидкостного сцинтилляционного счёта.
Р. широко используется при решении самых разнообразных задач - от исследований с помощью меченых атомов (см.
) до определения возраста горных пород (см.
) и в археологии.
Лит.:Караваев Ф. М., Измерения активности нуклидов, М., 1972; Коробков В. И., Лукьянов В. Б., Методы приготовления препаратов и обработки результатов измерений радиоактивности, М., 1973; Туркин А. Д., Дозиметрия радиоактивных газов, М., 1973; Ванг Ч., Уиллис Д., Радиоиндикаторный метод в биологии, пер, с англ., М., 1969; Техника измерений радиоактивных препаратов. Сб. ст., М., 1962; Манн У. Б., Селигер Г. Г., Приготовление и применение эталонных радиоактивных препаратов, [пер. с нем.], М., 1960.
В. А. Баженов.
Радиомиметические вещества
Радиомимети'ческие вещества'(от
и греч. mimetikуs - подражательный), химические соединения, действие которых на отдельные клетки, органы, ткани и организм животных и человека по многим показателям сходно с
.Чаще к Р. в. относят алкилирующие соединения (иприт, этиленимин и др.), оказывающие губительное действие на клетку на всех стадиях её жизненного цикла. Подобно ионизирующим излучениям Р. в. обладают мутагенным и канцерогенным действием, вызывают у млекопитающих острые и хронические дегенеративные изменения в костном мозге, слизистой оболочке кишечника, половых органах, подавляют образование антител, нарушают процесс окислительного фосфорилирования, биосинтез белка и др. Аналогичным действием на организм обладают также вещества, выделяемые из облученного организма. Их чаще называют радиотоксицами. На способности Р. в. подавлять рост некоторых опухолей основаны многие исследования по химиотерапии рака.
А. Г. Тарасенко.
Радиомонтаж
Радиомонта'ж,см.
радиоэлектронной аппаратуры.
Радионавигационная система
Радионавигацио'нная систе'ма,комплекс из нескольких однотипных или разнотипных радионавигационных устройств, взаимодействующих между собой (по радиоканалам или в рамках единой структурной схемы) и обеспечивающих при совместной работе определение местоположения движущихся объектов и решение др. комплексных задач навигации. Наибольшее распространение в
получили (начиная с 40-50-х гг. 20 в.) разностно-дальномерные (гиперболические) и угломерно-дальномерные (полярные) Р. с.
Разностно-дальномерные Р. с., использующие фазовый или импульсно-фазовый метод измерения разности расстояний, состоят из 3 (или более) наземных передающих радиостанций и специального бортового (самолётного, корабельного) приёмоиндикаторного устройства. Одна из наземных станций, называется ведущей, излучает рабочие сигналы, одновременно являющиеся синхронизирующими (см.
) для двух др. (ведомых) станций. Ведомые станции излучают рабочие сигналы синхронно с ведущей, но с определённой, искусственно вводимой задержкой во времени. Наземные станции импульсно-фазовых Р. с. излучают рабочие сигналы в импульсном режиме на одной
, а станции фазовых - обычно на разных несущих частотах в режиме непрерывных колебаний (или посылок несущих колебаний). На борту движущегося объекта сигналы, излученные станциями, принимаются и время их прихода сравнивается (с учётом задержки). 2 наземные станции (ведущая и одна из ведомых) обеспечивают измерение одной линии положения (гиперболы), а 3 (и более) наземные станции - определение местоположения и др. навигационных элементов движения объектов. Для каждой гиперболической Р. с. выпускаются специальные карты, на которых с большой точностью нанесены семейства гипербол, каждая из которых соответствует определённой разности времени прихода сигналов от соответствующих ведущей и ведомой радиостанций, расположенных в известных географических пунктах; координаты объекта определяются точкой пересечения 2 гипербол. В настоящее время (середина 70-х гг.) для навигации при значительных расстояниях (свыше 500-600
км) чаще всего применяются длинноволновые гиперболические импульсно-фазовые системы и сверхдлинноволновые гиперболические фазовые системы, каждая из которых имеет, как минимум, 3 мощные наземные передающие радиостанции. Длинноволновые Р. с. работают в диапазоне частот 70-130
кгц,
наземные станции этих Р. с. имеют импульсную мощность до 4
Мвт,и при расстояниях (базе) между станциями 1000-1300
кмобеспечивается дальность действия ~ 2000
кмпри проведении измерений по поверхностному лучу и до 5000
км -по пространственному лучу. В рабочей зоне такой Р. с. точность (среднеквадратичная ошибка) определения местоположения объекта по поверхностному лучу 600-1250
м.Сверхдлинноволновые Р. с. работают в диапазоне частот 10-14
кгц, их наземные станции непрерывно излучают мощность ~ 100
квт, и при базовых расстояниях 2-4 тыс.
кмобеспечивается дальность действия 5-10 тыс.
км.В рабочей зоне такой Р. с. точность (среднеквадратичная ошибка) определения места ~ 1-2,5
кмднём и в 2 (и более) раза хуже ночью. В 60-70-х гг. получают распространение длинноволновые импульсно-фазовые Р. с. с подвижными (перевозимыми) наземными станциями, с малыми базовыми расстояниями (порядка 200-300
км) и с дальностью действия до 400-600
км.Кроме высокоточной навигации самолётов и кораблей на малых дальностях, эти Р. с. благодаря использованию частот ~ 100
кгцпозволяют обеспечивать также высокоточное вождение различного рода наземных (сухопутных) подвижных объектов.
Угломерно-дальномерные Р. с. состоят, как правило, из наземных всенаправленных
, служащих для измерения азимутов (фазовым или импульсно-фазовым методом), и бортовых импульсных
,
служащих для измерения дальности. Местоположение объекта определяется путём измерения на объекте дальности до радиомаяка и нахождения его азимута. Такие Р. с. работают в диапазоне УКВ (на частотах ~ 0,1-1
Ггц) и имеют дальность действия, определяемую, практически, прямой геометрической видимостью (в воздушной навигации при высоте полёта 13-15
кмдальность действия достигает 600
км). Наилучшая точность определения этими Р. с. азимутальной линии положения ~ 0,25° и дальномерной (круговой) линии положения ~ 100-200
м(для 50% измерений).
В 60-х - начале 70-х гг. созданы спутниковые Р. с., которые, в зависимости от состава радионавигационных устройств, устанавливаемых на
и на обслуживаемых им движущихся объектах, а также от применяемых методов навигационных измерений, могут быть азимутальными (угломерными), дальномерными или угломерно-дальномерными.
Особое навигационное значение имеют сложные комплексные (в т. ч. комбинированные - включающие радионавигационные устройства, не взаимодействующие между собой) Р. с., например: автоматизированные системы управления воздушным движением на воздушных трассах и в приаэродромных зонах, которые обеспечивают эшелонирование летательных аппаратов (ЛА) по высоте, в продольном и боковом направлениях (и тем самым предотвращение столкновений ЛА в воздухе), опознавание ЛА, их заход на посадку; системы посадки самолётов на палубу корабля; системы обеспечения безопасного вождения и лоцманской проводки судов в гаванях, фарватерах и т.д.
Лит.:Белавин О. В., Зерова М. В., Современные средства радионавигации, М., 1965; Скиба Н. И., Современные гиперболические системы дальней радионавигации, М., 1967; Шустер А. Я., Судовые радионавигационные приборы, Л., 1973; Самолётные навигационные системы, пер. с англ., М., 1973.
М. М. Райчев.
Радионавигация
Радионавига'ция,совокупность операций по обеспечению вождения движущихся объектов (летательных аппаратов, судов и др.), а также по наведению управляемых объектов с помощью радиотехнических средств; научно-техническая дисциплина, рассматривающая принципы построения радиотехнических средств и разрабатывающая методы их использования применительно к решению задач вождения движущихся объектов по определённой траектории (маршруту) и вывода их в заданный район в заданное время (см.
,
). При решении основной задачи навигации - определения местоположения объектов и навигационных элементов их движения - в Р. используют как специальные радиотехнические средства, так и применяемые в др. областях техники, например в
,
.Действие радионавигационных средств основано на использовании следующих важных особенностей
; распространение радиоволн над поверхностью Земли происходит по кратчайшему (ортодромическому) расстоянию между пунктами излучения и приёма; скорость распространения постоянна; радиолучи, отражённый от ионосферы и падающий на неё, лежат в одной плоскости.
Радионавигационные средства подразделяют: по роду решаемых ими задач и полноте их решения - на радионавигационные устройства (радиопеленгаторы, в том числе
;
,
, радиосекстанты и др.), обеспечивающие (в определённых сочетаниях или при использовании независимых искусственных или естественных источников радиоизлучения либо отражающих свойств земной поверхности и находящихся на ней неподвижных объектов) решение только частных навигационных задач, обычно - определение одной линии (поверхности) положения движущегося объекта, и радионавигационные системы, обеспечивающие решение сложных комплексных навигационных задач; по используемому диапазону
-в соответствии с
; по параметру радиосигналов, используемому при измерении навигационных элементов (наиболее употребительный отличительный признак), - на амплитудный, фазовые, частотные, временные и комбинированные (амплитудно-временные, фазово-временные и т.п.); по методу определения линий положения - на угломерные (азимутальные), дальномерные (круговые) и комбинированные (например, угломерно-дальномерные, разностно-дальномерные); по количеству подвижных объектов, обеспечиваемых навигационной информацией, - на средства ограниченной и неограниченной пропускной способности. Их также различают и по др. классификационным признакам, например выделяют автономные и неавтономные радионавигационные средства.
Применение радионавигационных методов и средств позволило увеличить точность прохождения маршрутов движущимися объектами и вывода их в заданный район, а также значительно повысить безопасность плавания судов и полётов самолётов в сложных метеорологических условиях. Объединение различных радионавигационных устройств в определённые системы в принципе позволяет обеспечить выполнение всех основных задач навигации. Однако в целях повышения надёжности и безопасности вождения объектов в наиболее сложных условиях такие системы на практике используют совместно с нерадиотехническими средствами, например с
, с которыми они образуют комплексные (комбинированные) системы навигации.
Лит.см. при ст.
.
М. М. Райчев.
Радиопеленгация
Радиопеленга'ция,вид
; определение направления на источник радиоизлучения. Осуществляется с помощью радиопеленгаторов.
Радиопеленгатор состоит из антенно-фидерной системы (АФС), служащей для приёма распространяющихся от пеленгуемого объекта радиоволн, и так называемого приёмоиндикатора (ПИ). В ПИ в результате сравнения амплитуд (при Р. амплитудным методом) или измерения разностей фаз (при Р. фазовым методом) переменных электродвижущих сил, наводимых в АФС принимаемыми радиоволнами, вырабатывается информация об углах между направлением на пеленгуемый объект и основными плоскостями, принятыми за начало отсчёта. В универсальных (двухкоординатных) радиопеленгаторах измеряются оба угла, определяющих это направление, в азимутальных - один из них (азимут). В морской навигации измерение азимута (пеленга) с помощью радиопеленгатора называется радиопеленгованием.
По степени автоматизации измерений и по способу индикации направления на пеленгуемый объект различают следующие типы радиопеленгаторов: неавтоматические (слуховые) - с индикацией по минимуму или максимуму слышимости сигналов пеленгуемого объекта, полуавтоматические (визуальные) - со стрелочным индикатором или электроннолучевой индикацией, автоматические - с цифровым отсчётом измеряемых параметров.
Р. с использованием двух радиопеленгаторов, расположенных на достаточно большом расстоянии друг от друга (таком, чтобы их направления на источник радиоизлучения отличались не менее чем на 30°), позволяет определить местоположение пеленгуемого объекта - он расположен в точке пересечения обоих направлений. Р. (одновременно или с небольшими интервалами) двух и более источников радиоизлучения, положение которых известно, позволяет определять местоположение объекта, с которого ведётся Р.
Явление направленности приёма, свойственное большинству типов антенн и лежащее в основе амплитудного метода Р., было отмечено А. С.
.Изобретение
привело к созданию первых радиопеленгаторов. В развитие теории и практики Р. большой вклад внесли советские учёные Б. А.
, М. В.
и др. Р. широко применяется в морской, воздушной и космической навигации, в радиоразведке, радиоастрономии, метеорологии (см., например,
).
Лит.:Кукес И. С., Старик М. Е., Основы радиопеленгации, М., 1964; Вартанесян В. А., Гойхман Э. Ш., Рогаткин М. И., Радиопеленгация, М., 1966; Смирновский А. Ф., Радионавигационные средства, Л., 1967 (Курс кораблевождения, т. 5, книга 5); Мезин В. К., Автоматические радиопеленгаторы, М., 1969.
В. К. Мезин, М. И. Скворцов.
Радиопередатчик
Радиопереда'тчик,устройство (комплекс устройств), служащее для получения модулированных электрических колебаний в диапазонах радиочастот с целью их последующего излучения (
) в виде электромагнитных волн. Р. - важнейшая составная часть систем и устройств передачи информации посредством радиоволн: систем и устройств, применяемых в
,
,
,
,
и др. отраслях техники (см., например,
,
), а также используемых в научных экспериментах. Р. различают по диапазону рабочих волн (см.
), мощности колебаний, подводимых к антенне (до 100
вт -маломощные, от 100
втдо 10
квт -средней мощности, от 10
квтдо 1
Мвт -мощные и свыше 1
Мвт -сверхмощные), роду работы (телеграфные, телефонные и др.), способу модуляции (с амплитудной, частотной, фазовой или др. модуляцией), типу генераторных электронных приборов (ламповые, транзисторные, магнетронные, клистронные и т.п.), назначению (связные, вещательные, локационные, телевизионные и т.п.), мобильности (стационарные, передвижные).
Простейший (однокаскадный) Р. содержит генератор с самовозбуждением, преобразующий энергию постоянного (реже переменного) тока в энергию радиочастотных колебаний (см.
), и
, а также источник электропитания. Однако Р., работающие в диапазонах дециметровых и более длинных волн (особенно Р. средней и большой мощности), обычно состоят из нескольких каскадов, выполняющих различные функции. Многокаскадность Р. вызвана главным образом требованием получения достаточно мощных колебаний с высокой стабильностью несущей частоты (допустимый уход частоты обычно лежит в пределах 10
-6-10
-9). Применение различных методов
обычно позволяет получать достаточно стабильные колебания лишь в маломощном генераторе с самовозбуждением (называемым
), работающим на частоте, как правило, более низкой, чем рабочая частота Р. Тогда в последующих каскадах Р. (
) производится её умножение. При особо высоких требованиях к стабильности частоты сразу после задающего генератора ставят т. н. буферный каскад, защищающий задающий генератор от обратного воздействия последующих, более мощных каскадов Р. Для увеличения мощности колебаний применяют каскад (или каскады) предварительного усиления напряжения и мощности колебаний, который возбуждает выходной мощный каскад Р., называемый генератором с независимым возбуждением. Изменением того или иного параметра Р. осуществляют
радиочастоты. Модулированные колебания через цепи связи передаются в антенну, кабельную или проводную линии связи.
Лит.:Дробов С. А., Бычков С. И., Радиопередающие устройства, 4 изд., М., 1969; Родионов В. М., История радио-передающих устройств, М., 1969; Модель З. И., Радиопередающие устройства, М., 1971.
В. М. Тимофеев.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
|
|