Современная электронная библиотека ModernLib.Net

*Для Ru обнаружены полиморфные превращения при температурах 1035, 1190 и 1500°С.

** Все механические свойства даны для отожжённых П. м. при комнатной температуре; 1 кгс/мм 2= 10 Мн/м 2.Некоторые параметры не приводятся как установленные неточно.

  Применение. Из всех П. м. наибольшее применение имеет Pt. До 2-й мировой войны 1939-45 свыше 50% Pt служило для изготовления ювелирных изделий. В последние 2-3 десятилетия около 90% Pt потребляется для научных и промышленных целей. Из Pt делают лабораторные приборы - тигли, чашки, термометры сопротивления и др., - применяемые в аналитических и физико-химических исследованиях. Около 50% потребляемой Pt (частично в виде сплавов с Rh, Pd, lr, см. ) применяют как катализаторы в производстве азотной кислоты окислением NH 3, в нефтехимической промышленности и мн. др. Pt и её сплавы используются для изготовления аппаратуры для некоторых химических производств. Около 25% Pt расходуется в электротехнике, радиотехнике, автоматике, телемеханике, медицине. Применяется Pt и как антикоррозионное покрытие (см. ) .

  lr применяют главным образом в виде сплава Pt + 10% lr. Из такого сплава сделаны международные эталоны метра и килограмма. Из него изготовляют тигли, в которых выращивают кристаллы для лазеров, контакты для особо ответственных узлов в технике слабых токов. Из сплава lr с Os делают опоры для стрелок компасов и др. приборов.

  Способностью сорбировать H 2и катализировать многие химические реакции обладает Ru; он входит в состав некоторых сплавов, обладающих высокой твёрдостью и стойкостью против истирания и окисления.

  Rh благодаря своей способности отражать около 80% лучей видимой части спектра, а также высокой стойкости против окисления является хорошим материалом для покрытия рефлекторов прожекторов и зеркал точных приборов. Но главная область его применения - сплавы с Pt, из которых изготовляют лабораторную и заводскую аппаратуру, проволоку для термоэлектрических и др.

  Pd в виде черни применяется преимущественно как катализатор во многих химических производствах, в частности в процессах .Из Pd изготовляют ювелирные изделия. Раствор H 2[PdCl 4] - чувствительный реактив на окись углерода. Полоска бумаги, пропитанная им, чернеет уже при содержании 0,02 мг/лСО в воздухе вследствие выделения Pd в виде черни по реакции:

H 2[PdCI 4] +H 2O + CO = 4HCI + CO 2+ Pd.

  Аффинаж П. м. сопровождается выделением ядовитых Cl 2и NOCI, что требует хорошей вентиляции и возможной герметизации аппаратуры. Пары легколетучих RuO 4и OsO 4вызывают общее отравление, а также тяжёлые поражения дыхательных путей и глаз (вплоть до потери зрения). При попадании этих соединений на кожу она чернеет (вследствие восстановления их до RuO 2, OsO 2, Ru или Os) и воспаляется, причём могут образоваться трудно заживающие язвы. Меры предосторожности: хорошая вентиляция, резиновые перчатки, защитные очки, поглощение паров RuO 4и OsO 4растворами щелочей.

  Лит.:Некрасов Б. В., Основы общей химии, т. 3, М., 1970, с. 170-204; Рипан P., Четяну И., Неорганическая химия, т. 2, Химия металлов, пер. с рум., М., 1972, с. 615-675; Плаксин И. Н., Иридий, в кн.: Краткая хим. энциклопедия, т. 2, М., 1963; Леонова Т. Н., Осмий, Палладий, там же, т. 3, М., 1964; её же, Платина, Родий, Рутений, там же, т. 4, М., 1965; Химия рутения, М., 1965; Федоров И. А., Родий, М., 1966; Звягинцев О. Е., Аффинаж золота, серебра и металлов платиновой группы, 3 изд., М., 1945; Черняев И. И., Комплексные соединения переходных металлов, М., 1973; Аналитическая химия платиновых металлов, М., 1972; «Известия Сектора платины и других благородных металлов», в. 1-32, Л. - М., 1920-1955 (в. 1-3 вышли под заглавием «Известия Института по изучению платины и других благородных металлов»); Platinum group metals and compounds. Wash., 1971.

  С. А. Погодин.

  В организме П. м. представлены главным образом элементом рутением, а также искусственными радиоизотопами рутения и родия. Морские и пресноводные водоросли концентрируют радиоизотопы рутения в сотни и тысячи раз (по сравнению со средой), ракообразные - в десятки и сотни, моллюски - до десятков, рыбы и головастики лягушек - от единиц до сотен. 106Ru интенсивно мигрирует в почве, накопляясь в корнях наземных растений. У наземных млекопитающих радиоизотопы Ru всасываются через пищеварительный тракт, проникают в лёгкие, отлагаются в почках, печени, мышцах, скелете. Радиоизотопы Ru - составная часть биосферы.

  Лит.:Булдаков Л. А., Москалев Ю. И., Проблемы распределения и экспериментальной оценки допустимых уровней Cs 137, Sr 90и Ru 106, М., 1968.

  Г. Г. Поликарпов.

Платиновые руды

Пла'тиновые ру'ды,природные минеральные образования, содержащие (Pt, Pd, lr, Rh, Os, Ru) в таких концентрациях, при которых их промышленное использование технически возможно и экономически целесообразно. Значительные скопления П. р. в виде месторождений встречаются очень редко. Месторождения П. р. бывают коренные и россыпные, а по составу - собственно платиновые и комплексные (многие коренные месторождения медных и медно-никелевых сульфидных руд, россыпные месторождения золота с платиной, а также золота с осмистым иридием).

  Платиновые металлы распределены в пределах месторождений П. р. неравномерно. Их концентрации колеблются: в коренных собственно платиновых месторождениях от 2-5 г/тдо единиц кг/т,в коренных комплексных - от десятых долей до сотен (изредка тысяч) г/т;в россыпных месторождениях - от десятков мг/м 3до сотен г/м 3.Основная форма нахождения платиновых металлов в руде - их собственные минералы, которых известно около 90. Чаще других встречаются поликсен, ферроплатина, платинистый иридий (см. ) ,невьянскит, сысертскит (см. ) ,звягинцевит, паоловит, фрудит, соболевскит, плюмбопалладинит, сперрилит. Подчинённое значение имеет рассеянная форма нахождения платиновых металлов в П. р. в виде ничтожно малой примеси, заключённой в кристаллической решётке рудных и породообразующих минералов.

  Коренные месторождения П. р. представлены различными по форме телами платиноносных комплексных сульфидных и собственно платиновых хромитовых руд с массивной и вкрапленной текстурой. Эти рудные тела, генетически и пространственно тесно связанные с интрузивами основных и ультраосновных пород, имеют преимущественно магматического происхождение. Коренные месторождения П. р. встречаются в платформенных и складчатых областях и всегда тяготеют к крупным разломам земной коры. Образование этих месторождений происходило на разных глубинах (от 0,5-1 до 3-5 кмот дневной поверхности) и в разные геологические эпохи (от докембрия до мезозоя). Комплексные месторождения медно-никелевых сульфидных П. р. занимают ведущее положение среди сырьевых источников платиновых металлов. Площадь этих месторождений достигает десятки км 2при мощности промышленных рудных зон - многие десятки м.Их платиновое оруденение ассоциирует с телами сплошных и вкрапленных медно-никелевых сульфидных руд сложнодифференцированных интрузивов габбро-долеритов (месторождения в СССР, Инсизва в ЮАР), стратиформных интрузий габбро-норитов с гипербазитами (месторождения горизонта Меренского в ЮАР и Мончегорское в СССР), расслоенных массивов норитов и гранодиоритов ( медно-никелевые месторождения в Канаде). Основными рудными минералами П. р. являются пирротин, халькопирит, пентландит, кубанит. Главные металлы платиновой группы медно-никелевых П. р. - платина и превалирующий над ней палладий (Pd: Pt от 3: 1 и выше). Содержание в руде остальных платиновых металлов (Rh, lr, Ru, Os) в десятки и сотни раз меньше количества Pd и Pt. В медно-никелевых сульфидных рудах находятся многочисленные минералы платиновых металлов, главным образом это - интерметаллические соединения Pd и Pt с Bi, Sn, Te, As, Pb, Sb, твёрдые растворы Sn и Pb в Pd и Pt, а также Fe в Pt, арсениды и сульфиды Pd и Pt.

  Россыпные месторождения П. р. представлены главным образом мезозойскими и кайнозойскими элювиально-аллювиальными и аллювиальными россыпями платины и осмистого иридия. Промышленные россыпи обнажаются на дневной поверхности (открытые россыпи) или скрыты под 10-30 осадочной толщей (погребённые россыпи). Наиболее крупные из них прослежены на десятки кмв длину, ширина их достигает сотен м,а мощность продуктивных металлоносных пластов до нескольких м;образовались они в результате выветривания и разрушения платиноносных клинопироксенит-дунитовых и серпентин-гарцбургитовых массивов. Промышленные россыпи известны как на платформах (Сибирской и Африканской), так и в эвгеосинклиналях на Урале, в Колумбии (область Чоко), на Аляске (залив Гудньюс) и др. Минералы платиновых металлов в россыпях нередко находятся в срастании друг с другом, а также с хромитами, оливинами и серпентинами.

  Добыча П. р. ведётся открытым и подземным способами. Открытым способом разрабатывается большинство россыпных и часть коренных месторождений. При разработке россыпей широко используются и средства .Подземный способ добычи является основным при разработке коренных месторождений; иногда он используется для отработки богатых погребённых россыпей.

  В результате мокрого обогащения металлоносных песков и хромитовых П. р. получают шлих «сырой» платины - платиновый концентрат с 70-90% минералов платиновых металлов, а в остальном состоящий из хромитов, форстеритов, серпентинов и др. Такой платиновый концентрат отправляется на .Обогащение комплексных сульфидных П. р. осуществляется с последующей многооперационной пирометаллургической, электрохимической и химической переработкой.

  Главные страны, добывающие П. р., - СССР, ЮАР и Канада. Мировые запасы платиновых металлов (без СССР) оцениваются около 7000 т(1972), в том числе ЮАР - 6200 т,Канады - около 500 т,Колумбии - 155 т,США -93 т. В 1972 было добыто платиновых металлов (в т): в ЮАР - 45,2, Канаде - 12,4, Колумбии - 0,8, США - 0,5 (суммарная мировая добыча 59 т) .Основными промышленными месторождениями П. р. являются: в ЮАР месторождения горизонта Меренского (Бушвелдский комплекс), в Канаде - Садбери (провинция Онтарио) и Томпсон-Уобоуден (Манитоба), в Колумбии - россыпи бассейна р. Чоко, в США - россыпи Аляски и сульфидные месторождения меди.

  Лит.:Афанасьева Л. И., Металлы платиновой группы, в сборнике: Минеральные ресурсы промышленно-развитых капиталистических и развивающихся стран, М., 1972; Разин Л. В., Месторождения платиновых металлов, в кн.: Рудные месторождения СССР, т. 3, М., 1974; Масленицкий И. Н., Чугаев Л. В., Металлургия благородных металлов, М., 1972.

  Л. В. Разин.

Платиновые сплавы

Пла'тиновые спла'вы, сплавы (обычно двойные) на основе ;представляют собой, как правило, твёрдый раствор легирующего элемента в платине. Важнейшие легирующие элементы в П. с. - металлы VIII группы периодической системы Менделеева Rh, lr, Pd, Ru, Ni и Co, а также Cu, W, Мо. П. с. характеризуются высокой температурой плавления, коррозионной стойкостью во многих агрессивных средах, в частности большим сопротивлением окислению при повышенных температурах, а также высокими механическими свойствами и износоустойчивостью. Некоторые П. с. обладают каталитическим действием (см. ) в химических реакциях окисления, гидрогенизации, изомеризации и др. Большинство П. с. хорошо поддаются обработке давлением; изделия из них могут быть получены ковкой, прокаткой, волочением и штамповкой.

  П. с. применяют для изготовления термопар (5-40% Rh), разрывных и скользящих контактов (10-25% Rh или 5-15% Ru, или 5-30% lr, или 10-20% Pd, или 5% Ni), деталей малогабаритных приборов ответственного назначения: потенциометров (4-8% W или 3-10% Cu, или 10-20% lr, или 10% Ru, или 5-10% Mo), пружин и пружинящих элементов (25-30% Ir), постоянных магнитов (23% Со), а также высокотемпературных припоев (10-20% Pd). П. с. используются в качестве в реакциях окисления аммиака в азотную кислоту и синтеза синильной кислоты из аммиака и метана (5-10% Rh или 3-5% Pd и 3-5% Rh), нерастворимых анодов (5% lr или 20-50% Pd), материала для стеклоплавильных сосудов и фильер для производства вискозного волокна (3-10% Rh), лабораторной посуды и аппаратуры (1-30% Rh или 5% lr, или 10% Ru) и нагревателей высокотемпературных печей (10-40% Rh).

  И. А. Рогельберг.

Платинотрон

Платинотро'н[от греч. Platэno - делаю шире, расширяю и ] , обратной волны для широкополосного усиления и генерирования электромагнитных колебаний СВЧ. Изобретён в 1949 американским инженером У. Брауном. Наиболее часто П. используют как усилитель и называют амплитроном; П. вместе с дополнительными устройствами для создания положительной обратной связи, работающий как генератор, называется .П. отличается от магнетрона тем, что его система резонаторов разомкнута ( рис. 1 ). Однако электронный поток П. замкнут, и П. усиливает колебания лишь тех частот, при которых выполняется условие синхронизма между электромагнитным полем волны, бегущей вдоль системы резонаторов, и электронным потоком. Амплитудно-частотная характеристика П. в полосе рабочих частот почти равномерна, фазочастотная характеристика близка к линейной, а амплитудная характеристика ( рис. 2 ) нелинейна.

  П. применяют в передающих устройствах радиолокационных станций, систем связи, навигации и телеметрии для усиления частотно- или фазомодулированных сигналов на частотах от 0,5 до 10 Ггц.Промышленностью выпускаются П. на различные выходные мощности - от нескольких квтдо нескольких десятков Мвтв импульсном режиме работы и от нескольких десятков втдо 100 квтв непрерывном режиме. Полоса рабочих частот П. составляет ~10% от средней частоты при коэффициенте усиления 7-17 дб.П. обладают высоким кпд - до 70-80%.

  В. И. Индык, О. И. Обрезан.

Рис. 2. Зависимость выходной мощности и коэффициента усиления платинотрона от входной мощности при различных значениях мощности питания P 0.

Рис. 1. Конструктивная схема платинотрона: 1 - ввод СВЧ энергии; 2 - связки замедляющей системы; 3 - полые резонаторы замедляющей системы; 4 - торцевой экран катода; 5 - пластины анодной структуры; 6 - катод; 7 - вывод СВЧ энергии; Е - источник анодного напряжения. Стрелкой показано направление (в резонаторах) вектора магнитной индукции В.

Платиопс

Платио'пс(Platyops), род крупных ископаемых земноводных надотряда .Жили в позднепермскую эпоху. Длина около 1 м.Морда узкая длинная (как у гавиалового крокодила), расширенная на конце, где располагались крупные хватательные зубы. Ноздри отодвинуты далеко назад, к глазницам. Обитали в пресных водоемах; питались рыбой. Известно 3 вида из Приуралья.

Рис. к ст. Платиопс.

Платифиллин

Платифилли'н, лекарственный препарат из группы ; алкалоид, содержащийся в крестовнике плосколистном (Senecio platyphylloides) и ромболистном, или широколистном (Senecio platyphyllus). По фармакологическому действию близок к . Применяют в порошках и растворах при бронхиальной астме, спазмах мускулатуры органов брюшной полости и кровеносных сосудов, а также для расширения зрачков.

Плато (возвышенная равнина)

Плато'(франц. plateau, от plat - плоский), возвышенная равнина с ровной или волнистой слабо расчленённой поверхностью, ограниченная отчётливыми уступами от соседних равнинных пространств. Различают П.: структурные, сложенные горизонтально залегающими пластами горных пород; вулканические, или лавовые, в которых неровности прежнего рельефа бронированы залитой лавой; денудационные - поднятые денудационные равнины ( и абразионные равнины); нагорные - межгорные впадины, заполненные продуктами выветривания окружающих их горных хребтов.

Плато: 1 - структурное; 2 - вулканическое; 3 - денудационное.

Плато (науч. станция в Антарктиде)

Плато'(Plateau), научная станция США в Восточной Антарктиде. Расположена в глубине материка, в западной части ,на поверхности ледникового покрова (3624 мнад уровнем моря), в 1000 кмот побережья моря Космонавтов. Действовала с февраля 1966 по январь 1969. На станции велись аэрометеорологические, гляциологические и геофизические наблюдения. Служила базой для маршрутных исследований в прилегающих районах.

Платобазальт

Платобаза'льт, ,слагающий обычно огромные по площади покровы тектонически устойчивых, не подвергавшихся складчатости областей. Предполагается, что состав П. наиболее полно отражает состав глубинных базальтовых .

Плато-Бенуэ

Плато'-Бе'нуэ,Бенуэ-Плато (Benue Plateau), штат в центре Нигерии, в бассейне р. Бенуэ. Площадь 105,1 тыс. км 2.Население 4,6 млн. чел. (1969), главным образом народности тив, фульбе, джункун. Административный и основной экономический центр - г. Джос.

  В пределы штата входят большая часть долины р. Бенуэ и плато Джос. Климат экваториально-муссонный; влажный сезон продолжается 7 месяцев. Средние месячные температуры от 20 °С (август) до 25 °С (март - апрель). Осадков 1000-1400 ммв год. Растительность - преимущественно саванна; на крайнем Ю. - лесосаванна.

  В сельском хозяйстве преобладают потребительские и мелкотоварные хозяйства. Возделывают просо, сорго, арахис, хлопчатник, кукурузу, рис; на крайнем Ю. - масличную пальму, яме; в долине р. Бенуэ - кунжут, имбирь и соевые бобы - на экспорт. На плато Джос и нагорье Адамава - животноводство. Добыча оловянной и ниобиевой руд (плато Джос). Заводы: по выплавке олова, деревообрабатывающий, молочный. Изготовление плетёных сумок и корзин, одежды, первичная обработка кожевенного сырья.

Платов Матвей Иванович

Пла'товМатвей Иванович [6 (17).8.1751, станица Старочеркасская, ныне Аксайского района Ростовской обл., - 3 (15).1.1818, Новочеркасск], войсковой атаман Донского казачьего войска (с 1801), генерал от кавалерии (1809), граф (с 1812). Родился в семье войскового старшины. Начал службу с 13 лет. Участвовал в русско-турецкой войне 1768-74, был произведён главнокомандующим В. М. Долгоруковым в офицеры, командовал сотней, с 1771 - полком. В 1775 участвовал в подавлении Крестьянской войны под руководством Е. И. Пугачева. В 1782-83 служил на Кубани и в Крыму под командованием А. В. Суворова. Во время русско-турецкой войны 1787-91 участвовал во взятии Очакова (1788) и штурме Измаила (1790), командуя колонной, а затем всем левым крылом. С 1788 походный атаман войска Донского. В 1797 заподозрен Павлом I в заговоре, сослан в Кострому, а затем заключён в Петропавловскую крепость. В январе 1801 освобожден и назначен главным помощником войскового атамана Донского войска, а вскоре - войсковым атаманом. В 1806-07 участвовал в войне с Францией, в 1807-09 - с Турцией. Во время Отечественной войны 1812 успешно командовал донским казачьим корпусом. Его смелые и решительные действия способствовали разгрому наполеоновских войск. Завоевал популярность как герой войны 1812. Участник кампаний 1813-14. В 1814 сопровождал Александра I в поездке в Великобританию, где был торжественно встречен и получил диплом почётного доктора Оксфордского университета. В Новочеркасске П. поставлен памятник работы П. К. Клодта.

Платон

Плато'н(Plбton) (428 или 427 до н. э., Афины, - 348 или 347, там же), древнегреческий философ. Родился в семье, имевшей аристократическое происхождение. Около 407 познакомился с и стал одним из его самых восторженных учеников. После смерти Сократа уехал в Мегару. По преданию, посетил Кирену и Египет. В 389 отправился в Южную Италию и Сицилию, где общался с пифагорейцами. В Афинах П. основал собственную школу - .В 367 и 361 вновь посетил Сицилию (в 361 по приглашению правителя Сиракуз Дионисия Младшего, выразившего намерение проводить в своём государстве идеи П.); эта поездка, как и предыдущие попытки П. вступить в контакт с власть имущими, окончилась полным крахом. Остальную часть жизни П. провёл в Афинах, много писал, читал лекции.

  Почти все сочинения П. написаны в форме диалогов (беседу в большей части ведёт Сократ), язык и композиция которых отличаются высокими художественными достоинствами. К раннему периоду (приблизительно 90-е гг. 4 в. до н. э.) относятся диалоги: «Апология Сократа», «Критон», «Эвтифрон», «Лазет», «Лисий», «Хармид», «Протагор», 1-я книга «Государства» (сократовский метод анализа отдельных понятий, преобладание моральной проблематики); к переходному периоду (80-е гг.) - «Горгий», «Менон», «Эвтидем», «Кратил», «Гиппий меньший» и др. (зарождение учения об идеях, критика релятивизма ) ;к зрелому периоду (70-60-е гг.) - «Федон», «Пир», «Федр», II-X книги «Государства» (учение об идеях), «Теэтет», «Парменид», «Софист», «Политик», «Филеб», «Тимей» и «Критий» (интерес к проблемам конструктивно-логического характера, теория познания, диалектика категорий и космоса и др.); к позднему периоду - «Законы» (50-е гг.).

  Философия П. не изложена систематически в его произведениях, представляющихся современному исследователю скорее обширной лабораторией мысли; систему П. приходится реконструировать. Важнейшей её частью является учение о трёх основных онтологических субстанциях (триаде): «едином», «уме» и «душе»; к нему примыкает учение о «космосе». Основой всякого бытия является, по П., «единое», которое само по себе лишено каких-либо признаков, не имеет частей, т. е. ни начала, ни конца, не занимает какого-либо пространства, не может двигаться, поскольку для движения необходимо изменение, т. е. множественность; к нему неприменимы признаки тождества, различия, подобия и т.д. О нём вообще ничего нельзя сказать, оно выше всякого бытия, ощущения и мышления. В этом источнике скрываются не только «идеи», или «эйдосы», вещей (т. е. их субстанциальные духовные первообразы и принципы, которым П. приписывает вневременную реальность), но и сами вещи, их становление.

  Вторая субстанция - «ум» ( ) является, по П., бытийно-световым порождением «единого» - «блага». Ум имеет чистую и несмешанную природу; П. тщательно отграничивает его от всего материального, вещественного и становящегося: «ум» интуитивен и своим предметом имеет сущность вещей, но не их становление. Наконец, диалектическая концепция «ума» завершается космологической концепцией. «Ум» есть мысленное родовое обобщение всех живых существ, живое существо, или сама жизнь, данная в предельной обобщенности, упорядоченности, совершенстве и красоте. Этот «ум» воплощён в «космосе», а именно в правильном и вечном движении неба.

  Третья субстанция - «мировая душа» - объединяет у П. «ум» и телесный мир. Получая от «ума» законы своего движения, «душа» отличается от него своей вечной подвижностью; это - принцип самодвижения. «Ум» бестелесен и бессмертен; «душа» объединяет его с телесным миром чем-то прекрасным, пропорциональным и гармоничным, будучи сама бессмертной, а также причастной истине и вечным идеям. Индивидуальная душа есть образ и истечение «мировой души». П. говорил о бессмертии или, вернее, о вечном возникновении также и тела вместе с «душой». Смерть тела есть переход его в др. состояние.

  «Идеи» - это предельное обобщение, смысл, смысловая сущность вещей и самый принцип их осмысления. Они обладают не только логической, но и определённой художественной структурой; им присуща собственная, идеальная материя, оформление которой и делает возможным понимать их эстетически. Прекрасное существует и в идеальном мире, это такое воплощение идеи, которое является пределом и смысловым предвосхищением всех возможных частичных её воплощений; это своего рода организм идеи или, точнее, идея как организм. Дальнейшее диалектическое развитие первообраза приводит к уму, душе и телу «космоса», что впервые создаёт красоту в её окончательном виде. «Космос», который в совершенстве воспроизводит вечный первообраз или образец («парадигму»), прекраснее всего. К этому примыкает платоновское учение о космических пропорциях.

  Материя для П. - лишь принцип частичного функционирования идеи, её сокращения, уменьшения, затемнения, как бы «воспреемница» и «кормилица» идей. Сама по себе она абсолютно бесформенна, не есть ни земля, ни вода, ни воздух, ни вообще какая-либо физическая стихия; материя - это не сущее, сущее же - только идея. П. подверг резкой критике разрыв идей и вещей и формулировал те самые аргументы, которые Аристотель позднее направил против предполагаемого платоновского дуализма. Подлинным бытием для П. является идеальное бытие, которое существует само по себе, а в материи только «присутствует». Материя же впервые получает своё существование оттого, что подражает ему, приобщается к нему или «участвует» в нём.

  В последние годы жизни П.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
  • Большая Советская Энциклопедия (ПЛ)

    ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ПЛ) - Чтение (стр. 18)
    Автор: БСЭ
    Жанр: Энциклопедии

     

     


    png">
    1,34 1,34 1,37 1,36 1,36 1,39
    Ионный радиус,  (по Л. Полингу) Ru 4+0,67 Rh 4+0,68 Pd 4+0,65 Os4 +0,65 lr 4+0,68 Pt 4+0,65
    Конфигурация внешних электронных оболочек 4d 75s 1 4d 85s 1 4d 10 5d 66s 2 5d 76s 2 5d 96s 1
    Состояния окисления (наиболее характерные набраны полужирным шрифтом) 1,2, 3,4, 5, 6,7, 8 1, 3,4 2, 3,4 2,3, 4,6,8 1,2, 3,4,6 2,3, 4
    Плотность (при 20 °С), г/см 3 12,2 12,42 11,97 22,5 22,4 21,45
    Температура плавления, °С 2250 1960 1552 ок. 3050 2410 1769
    Температура кипения, °С ок. 4900 ок. 4500 ок. 3980 ок. 5500 ок. 5300 ок. 4530
    Линейный коэффициент теплового расширения 9,1Ч10 -6(20°С) 8,5Ч10 -6(0-100 °С) 11,67Ч10 -6(0°С) 4,6Ч10 -6° 6,5Ч10 -6(0-100°С) 8,9Ч10 -6(0°С)
    Теплоёмкость, кал/( гЧ°С) 0,057 (0°C) 0,059 (20 °C) 0,058 (0°С) 0,0309 (°С) 0,0312 0,0314 (0°С)
    кдж/( кгЧ К.) 0,0312 0,247 0,243 0,129 0,131 0,131
    Теплопроводность кал/( смЧ сек°С) - 0,36 0,17 - - 0,17
    вт/( мЧК) - 151 71 - - 71
    Удельное электросопротивление, омЧ смЧ10 -6 (или омЧ смЧ10 -8) 7,16-7,6 (0°C) 4,7 (0°C) 10,0 (0°C) 9,5 (0°C) 5,40 (25°C) 9,81 (0°C)
    Температурный коэффициент электросопротивления 44,9Ч10 -4(0-100°C) 45,7Ч10 -4(0-100°C) 37,7Ч10 -4(0-100°C) 42Ч10 -4(0-100°C) 39,25Ч10 -4(0-100°C) 39,23Ч10 -4(0-100°C)
    Модуль нормальной упругости, кгс/мм 2** 47200 32000 12600 58000 52000 17330
    Твёрдость по Бринеллю, кгсlмм 2 220 139 49 400 164 47
    Предел прочности при растяжении, кгс/мм 2 - 48 18,5 - 23 14,3
    Относительное удлинение при разрыве, % - 15 24-30 - 2 31