ModernLib.Net

()

ModernLib.Net / / / () - (. 8)
:
:

 

 


По отношению к холодной и кипящей воде О. устойчиво. Стандартный электродный потенциал О. в кислой среде равен - 0,136 в. Из разбавленных HCl и H 2SO 4на холоду О. медленно вытесняет водород, образуя соответственно хлорид SnCl 2и сульфат SnSO 4. В горячей концентрированной H 2SO 4при нагревании О. растворяется, образуя Sn (SO 4) 2и SO 2. Холодная (О °С) разбавленная азотная кислота действует на О. по реакции:

4Sn + 10HNO 3= 4Sn (NO 3) 2+ NH 4NO 3+ 3H 2O.

  При нагревании с концентрированной HNO 3(плотность 1,2-1,42 г/ см 3) О. окисляется с образованием осадка метаоловянной кислоты H 2SnO 3, степень гидратации которой переменна:

3Sn+ 4HNO 3+ nH 2O = 3H 2SnO 3· nH 2O + 4NO.

  При нагревании О. в концентрированных растворах щелочей выделяется водород и образуется гексагидростаннат:

Sn + 2КОН + 4Н 2О = K 2[Sn (OH) 6] + 2H 2.

  Кислород воздуха пассивирует О., оставляя на его поверхности плёнку SnO 2. Химически двуокись SnO 2очень устойчива, а окись SnO быстро окисляется, её получают косвенным путём. SnO 2проявляет преимущественно кислотные свойства, SnO - основные.

  С водородом О. непосредственно не соединяется; гидрид SnH 4образуется при взаимодействии Mg 2Sn и соляной кислоты:

Mg 2Sn + 4HCl = 2MgCl 2+ SnH 4.

  Это бесцветный ядовитый газ, t kип-52 °С; он очень непрочен, при комнатной температуре разлагается на Sn и H 2в течение нескольких суток, а выше 150 °С - мгновенно. Образуется также при действии водорода в момент выделения на соли О., например:

SnCl 2+ 4HCl + 3Mg = 3MgCl 2+ SnH 4.

  С галогенами О. даёт соединения состава SnX 2и SnX 4. Первые солеобразны и в растворах дают ионы Sn 2+, вторые (кроме SnF 4) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием О. с сухим хлором (Sn + 2Cl 2= SnCl 4) получают тетрахлорид SnCl 4; это бесцветная жидкость, хорошо растворяющая серу, фосфор, йод. Раньше по приведённой реакции удаляли О. с вышедших из строя лужёных изделий. Сейчас способ мало распространён из-за токсичности хлора и высоких потерь О.

  Тетрагалогениды SnX 4образуют комплексные соединения с H 2O, NH 3, окислами азота, PCl 5, спиртами, эфирами и многими органическими соединениями. С галогеноводородными кислотами галогениды О. дают комплексные кислоты, устойчивые в растворах, например H 2SnCl 4и H 2SnCl 6. При разбавлении водой или нейтрализации растворы простых или комплексных хлоридов гидролизуются, давая белые осадки Sn (OH) 2или H 2SnO 3· nH 2O. С серой О. даёт нерастворимые в воде и разбавленных кислотах сульфиды: коричневый SnS и золотисто-жёлтый SnS 2.

  Получение и применение. Промышленное получение О. целесообразно, если содержание его в россыпях 0,01%, в рудах 0,1%; обычно же десятые и единицы процентов. О. в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и др. ценные металлы. Первичное сырьё обогащают: россыпи - преимущественно гравитацией, руды - также флотогравитацией или флотацией.

  Концентраты, содержащие 50-70% О., обжигают для удаления серы, очищают от железа действием HCl. Если же присутствуют примеси вольфрамита (Fe, Mn) WO 4и шеелита CaWO 4, концентрат обрабатывают HCl; образовавшуюся WO 3·H 2O извлекают с помощью NH 4OH. Плавкой концентратов с углём в электрических или пламенных печах получают черновое О. (94-98% Sn), содержащее примеси Cu, Pb, Fe, As, Sb, Bi. При выпуске из печей черновое О. фильтруют при температуре 500-600 °С через кокс или центрифугируют, отделяя этим основную массу железа. Остаток Fe и Cu удаляют вмешиванием в жидкий металл элементарной серы; примеси всплывают в виде твёрдых сульфидов, которые снимают с поверхности О. От мышьяка и сурьмы О. рафинируют аналогично - вмешиванием алюминия, от свинца - с помощью SnCl 2. Иногда Bi и Pb испаряют в вакууме. Электролитическое рафинирование и зонную перекристаллизацию применяют сравнительно редко для получения особо чистого О.

  Около 50% всего производимого О. составляет вторичный металл; его получают из отходов белой жести, лома и различных сплавов. До 40% О. идёт на лужение консервной жести, остальное расходуется на производство припоев, подшипниковых и типографских сплавов (см. ). Двуокись SnO 2применяется для изготовления жаростойких эмалей и глазурей. Соль - станнит натрия Na 2SnO 3·3H 2O используется в протравном крашении тканей. Кристаллический SnS 2(«сусальное золото») входит в состав красок, имитирующих позолоту. Станнид ниобия Nb 3Sn - один из наиболее используемых сверхпроводящих материалов.

  Н. Н. Севрюков.

  Токсичность самого О. и большинства его неорганических соединений невелика. Острых отравлений, вызываемых широко используемым в промышленности элементарным О., практически не встречается. Отдельные случаи отравлений, описанные в литературе, по-видимому, вызваны выделением AsH 3при случайном попадании воды на отходы очистки О. от мышьяка. У рабочих оловоплавильных заводов при длительном воздействии пыли окиси О. (т. н. чёрное О., SnO) могут развиться , у рабочих, занятых изготовлением оловянной фольги, иногда отмечаются случаи хронической экземы. Тетрахлорид О. (SnCl 4·5H 2O) при концентрации его в воздухе свыше 90 мг/ м 3раздражающе действует на верхние дыхательные пути, вызывая кашель; попадая на кожу, хлорид О. вызывает её изъязвления. Сильный судорожный яд - оловянистый водород (станнометан, SnH 4), но вероятность образования его в производственных условиях ничтожна. Тяжёлые отравления при употреблении в пищу давно изготовленных консервов могут быть связаны с образованием в консервных банках SnH 4(за счёт действия на полуду банок органических кислот содержимого). Для острых отравлений оловянистым водородом характерны судороги, нарушение равновесия; возможен смертельный исход.

  Органические соединения О., особенно ди- и триалкильные, обладают выраженным действием на центральную нервную систему. Признаки отравления триалкильными соединениями: головная боль, рвота, головокружение, судороги, парезы, параличи, зрительные расстройства. Нередко развиваются коматозное состояние (см. ), нарушения сердечной деятельности и дыхания со смертельным исходом. Токсичность диалкильных соединений О. несколько ниже, в клинической картине отравлений преобладают симптомы поражения печени и желчевыводящих путей. Профилактика: соблюдение правил гигиены труда.

  О. как художественный материал. Отличные литейные свойства, ковкость, податливость резцу, благородный серебристо-белый цвет обусловили применение О. в декоративно-прикладном искусстве. В Древнем Египте из О. выполнялись украшения, напаянные на другие металлы. С конца 13 в. в западно-европейских странах появились сосуды и церковная утварь из О., близкие серебряным, но более мягкие по абрису, с глубоким и округлым штрихом гравировки (надписи, орнаменты). В 16 в. Ф. Брио (Франция) и К. Эндерлайн (Германия) начали отливать парадные чаши, блюда, кубки из О. с рельефными изображениями (гербы, мифологические, жанровые сцены). А. Ш. вводил О. в при отделке мебели. В России изделия из О. (рамы зеркал, утварь) получили широкое распространение в 17 в.; в 18 в. на севере России расцвета достигло производство медных подносов, чайников, табакерок, отделанных оловянными накладками с эмалями. К началу 19 в. сосуды из О. уступили место фаянсовым и обращение к О. как художественному материалу стало редким. Эстетические достоинства современных декоративных изделий из О. - в чётком выявлении структуры предмета и зеркальной чистоте поверхности, достигаемой литьём без последующей обработки.

  Лит.:Севрюков Н. Н., Олово, в кн.: Краткая химическая энциклопедия, т. 3, М., 1963, с. 738-39; Металлургия олова, М., 1964; Некрасов Б. В., Основы общей химии, 3 изд., т. 1, М., 1973, с. 620-43; Рипан P., Четяну И., Неорганическая химия, ч. 1 - Химия металлов, пер. с рум., М., 1971, с. 395-426; Профессиональные болезни, 3 изд., М., 1973; Вредные вещества в промышленности, ч. 2, 6 изд., М,, 1971; Tardy, Les йtains 'franзais, pt. 1-4, P., 1957-64; Mory L., Schцnes Zinn, Mьnch., 1961; Haedeke H., Zinn, Braunschweig, 1963.

Мастер Писсавен (Лион). Кувшин. 17 в.

Блюдо с медными украшениями. Копенгаген. Ок. 1700.

Блюдо. Италия. 17 в. Собрание Румана. Вена.

Сосуд для масла (вид с обеих сторон). Палестина. 6 - нач. 7 вв. Собор. Монца.

К. В. Маркс (Нюрнберг). Супница. 1773. Частное собрание (Мюнхен).

М. Ланг (Ульм). Бутыль. Середина 17 в. Баварский национальный музей. Мюнхен.

Сосуды для чая. ФРГ. 1950-е гг.

Мастер Лихтенхан (Шнеберг). Кружка. Около 1550. Частное собрание. Мюнхен.

Рама, отделанная оловом. Россия. Конец 17 в. Исторический музей. Москва.

Оловоорганические соединения

Оловооргани'ческие соедине'ния, класс , содержащих в молекулах по крайней мере одну связь С-Sn. Практически все известные О. с. образованы четырёхвалентным оловом. К ним относятся сполна замещенные соединения R 4Sn, а также соединения типа R 3SnX, R 2SnX 2и RSnX 3, где R - одинаковые или разные органические радикалы, Х - галоген, водород, кислород или остаток, связанный с атомом олова через гетероатом О, N, S и др., например -ОСН 3, -NHCH 3, -ОН, -SR. Так, основные О. с., содержащие кислород: гидроокиси R 3SnOH, окиси R 3SnOSnR 3и R 2SnO, станноновые кислоты RSnOOH. Известны О. с., молекулы которых представляют собой линейные цепи или циклы из атомов олова, содержащие боковые органические радикалы.

  Связи Sn-C и Sn-X в О. с. в большинстве случаев малополярны; связь Sn-C менее реакционноспособна, чем связи олово - гетероатом, устойчива к действию воды и кислорода воздуха, но расщепляется под воздействием галогенов и кислот. Для оловоорганических гидридов R n SnH 4– nхарактерно присоединение к разнообразным кратным связям. Физ. свойства О. с. изменяются в широких пределах - от легколетучих жидкостей, хорошо растворимых в органических растворителях, до неплавких и нерастворимых веществ. О. с., содержащие гетероатомы, часто ассоциированы в растворах и кристаллах или обладают полимерной структурой.

  Соединения R 4Sn получают действием на хлорное олово органических соединений Li, Mg или Al, а также обработкой сплавов олова с натрием или магнием галогеналкилами. Оловоорганические галогениды - исходные вещества для получения разнообразных О. с. - образуются при взаимодействии R 4Sn с галогенидами олова или галогенами, при реакции металлического олова с галогеналкилами. Некоторые О. с. токсичны (см. ).

 Соединения типа R 3SnX и R 2SnX 2широко применяют в качестве стабилизаторов поливинилхлорида (например, дилаурат дибутилолова), как фунгициды (ацетат трифенилолова), бактерициды (бензоат трибутилолова).

  Лит.:Методы элементоорганической химии, М., 1968.

  Д. Н. Кравцов.

Оловянная

Оловя'нная, посёлок городского типа, центр Оловяннинского района Читинской области РСФСР. Расположен на левом берегу р. Онон (бассейн Амура). Ж.-д. станция на линии Карымская - Забайкальск, в 249 кмк Ю.-В. от Читы. 10,5 тыс. жителей (1970). Заводы: подъёмно-транспортного оборудования, стройматериалов, маслодельный; мясокомбинат.

Оловянная чума

Оловя'нная чума', полиморфное превращение т. н. белого олова в серое (b ® a), при котором металл рассыпается в серый порошок. Причина разрушения состоит в резком увеличении удельного объёма металла (плотность (b-Sn больше, чем a-Sn). Переход облегчается при контакте олова с частицами a-Sn и распространяется подобно «болезни». Наибольшую скорость распространения О. ч. имеет при температуре -33 °С; свинец и многие др. примеси её задерживают. В результате разрушения «чумой» паянных оловом сосудов с жидким топливом в 1912 погибла экспедиция Р. Скотта к Южному полюсу.

Оловянные руды

Оловя'нные ру'дыи россыпи, природные минеральные образования, содержание олова в которых достаточно для экономически целесообразной добычи этого металла. Из известных минералов Sn основное промышленное значение имеет , содержащий до 78,8% Sn. Промышленные концентрации в рудах образует (27,5% Sn), который часто не используется из-за трудности его обогащения и извлечения из него Sn. Некоторое промышленное значение может иметь также кальциевый борат олова - норденшельдин (43,5% Sn). О. р. нередко представляют собой комплексное сырьё и содержат W, Be, Li, Та или Cu, Pb, Zn, Ag. Месторождения олова делятся на коренные и россыпные. Высокая стоимость олова делает рентабельной разработку коренных месторождений с содержанием Sn в десятые доли процента и россыпных месторождений с содержанием его в сотые доли процента.

  По генезису и минеральному составу коренные месторождения О. р., формировавшиеся в породах алюмосиликатного состава, разделяются на 3 формации: пегматитовую, касситерит-кварцевую и касситерит-сульфидную. Месторождения пегматитовой формации генетически связаны с кислыми гранитами. Для них характерно наличие неравномерных скоплений или отдельных включений крупных кристаллов касситерита. Большого промышленного значения эти месторождения не имеют, но иногда являются источником комплексного сырья (Li, Be и др.). Месторождения касситерит-кварцевой формации относятся к высокотемпературным гидротермальным образованиям, генетически связанным с интрузиями кислой и ультракислой гранитовой магмы (в СССР - Забайкалье, Чукотка; в ЧССР и ГДР - Рудные горы; Нигерия; Юго-Восточная Азия и др.). О. р. этой формации характеризуются крупными выделениями касситерита (кроме Sn, содержат W, Та, Be и др.). Один из главных источников добычи Sn - месторождения касситерит-сульфидной формации в районах развития , иногда связанных с вулканическими формациями (в Приморье, Забайкалье и др. районах СССР; за рубежом - в Боливии, Великобритании, Австралии и др. странах). Эти интрузии характеризуются главным образом кислым составом. Кроме касситерита, оловосодержащие минералы представлены станнином и др. сульфидами и сульфосолями. Месторождения О. р., образовавшиеся в карбонатных породах и пространственно ассоциирующиеся с интрузиями субщелочного состава, являются полиформационными и включают также оловоносные скарны О. р. (Южный Китай; район Кинта в Малайе; Сан-Антонио в Мексике; Аляска в США; Средняя Азия в СССР и др.). О. р. этого комплекса характеризуются высоким (часто свыше 1%) содержанием Sn, сложным минеральным составом, а также наличием F, W, Cu, Be, Sb, Pb, Zn и др. компонентов. Оловосодержащие минералы в них, помимо касситерита, на отдельных месторождениях представлены норденшельдином и др. станноборатами.

  Россыпные месторождения О. р. образуются за счёт разрушения оловорудных месторождений преимущественно пегматитовой и касситерит-кварцевой формаций (в СССР - Забайкалье и др.; за рубежом - в Индонезии, Нигерии и др.).

  Коренные месторождения О. р. разрабатываются как открытым способом, так и подземным; оловоносные россыпи - при помощи драг, экскаваторов, гидромеханизации. О. р. коренных месторождений перерабатываются на обогатительных фабриках методом гравитации, труднообогатимые руды - по комбинированной схеме гравитации и . В плавку идут чистые, освобожденные от примесей оловянные концентраты с содержанием олова около 60%. Из богатых труднообогатимых оловянно-медно-свинцово-цинковых руд, а также из отвальных шлаков с содержанием олова более 0,1% металлическое олово получают методом фьюмингования.

  Из общего количества мировых запасов олова около 70% заключено в россыпных месторождениях, из которых извлекается до 75% всего добываемого металла. Общие запасы олова в развивающихся и развитых капиталистических странах составляют около 8,3 млн. т(1973). Основные ресурсы сосредоточены в странах Юго-Восточной Азии - в Малайзии, Индонезии, Таиланде, Лаосе, Бирме, а также в Боливии, Бразилии, Австралийском Союзе, Нигерии, Великобритании.

  Лит.:Оценка месторождений при поисках и разведках, в. 2 - Остроменцкий Н. М., Косов Б. М., Овчинников Д. И., Олово, 2 изд., М., 1966; Геология месторождений олова зарубежных стран, М., 1969.

  А. Б. Павловский.

Оловянные сплавы

Оловя'нные спла'вы, сплавы на основе . В состав О. с. входят в различных соотношениях Pb, Sb, Cu, Zn, Cd и другие элементы (см. таблицу). Со многими металлами олово образует . Отличительные свойства О. с. - низкая температура плавления, малая прочность и твёрдость и удовлетворительная коррозионная стойкость; некоторые О. с. обладают хорошими антифрикционными свойствами. О. с. применяются главным образом в качестве , подшипниковых материалов (см. , ), , .


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11