()
ModernLib.Net / / / () -
(. 3)
:
|
|
:
|
|
-
(3,00 )
- fb2
(8,00 )
- doc
(1 )
- txt
(1 )
- html
(7,00 )
- :
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91
|
|
м. не ограничивается учётом малых поправок к теориям движения небесных тел. С появлением общей теории относительности удалось дать объяснение явлению тяготения, и таким образом Н. м. как наука о гравитационном движении небесных тел по существу становится релятивистской.
Согласно основной идее общей теории относительности, свойства пространства событий реального мира определяются движением и распределением масс, а движение и распределение масс, в свою очередь, определяются
метрикой пространства-времени.Эта взаимосвязь находит своё отражение в уравнениях поля - нелинейных уравнениях с частными производными, определяющих метрику поля. В теории тяготения Ньютона уравнения движения (законы механики Ньютона) постулируются отдельно от уравнений поля (линейные уравнения Лапласа и Пуассона для ньютонова потенциала). В общей же теории относительности уравнения движения тел содержатся в уравнениях поля. Однако строгое решение уравнений поля, представляющее интерес для Н. м., и вид строгих уравнений движения задачи
nтел, даже для
n= 2, в общей теории относительности не получены. Лишь для
n= 1 удалось найти строгие решения уравнений поля
:решение Шварцшильда для сферически симметричного неподвижного тела и решение Керра, описывающее поле вращающегося тела сферической структуры. Для решения задачи
nтел (
n> 2) приходится прибегать к приближённым методам и искать решение в виде рядов по степеням малых параметров. Таким параметром в случае движения тел Солнечной системы часто служит отношение квадрата характеристической скорости орбитального движения тел к квадрату скорости света. Вследствие малости этого отношения (около 10
-8) в уравнениях движения и их решениях достаточно для всех практических приложений учитывать лишь члены первой степени относительно этого параметра.
Релятивистские эффекты в движении больших планет Солнечной системы могут быть получены с достаточной точностью на основе решения Шварцшильда. Основным эффектом при этом является вековое смещение перигелиев планет. В решении Шварцшильда имеется также релятивистский вековой член в движении узла орбиты, но выделить этот эффект в явном виде из наблюдений не удаётся. Частично этот вековой член учитывается в радиолокационном эффекте при радиолокации Меркурия и Венеры с Земли (радиолокационный эффект состоит в дополнительном по сравнению с ньютоновским запаздыванием сигнала при возвращении его на Землю). Этот эффект подтвержден экспериментально. Релятивистские эффекты в движении малых планет и комет выявить достаточно уверенно пока не удаётся из-за отсутствия хорошо разработанной ньютоновской теории движения этих объектов и недостаточного количества точных наблюдений.
Релятивистские эффекты в движении Луны получаются на основе решения релятивистской задачи трёх тел и обусловлены главным образом действием Солнца. Они складываются из вековых движений узла и перигея орбиты Луны со скоростью 1,91” в столетие (геодезическая прецессия), а также из периодических возмущений в координатах Луны. Эти эффекты, по-видимому, смогут быть выявлены при лазерной локации Луны. Для усовершенствования теорий движения остальных естественных спутников планет достаточно к ньютоновой теории добавить релятивистские вековые члены в элементах орбит. Первая группа таких членов обусловлена шварцшильдовским смещением перицентра. Вторая группа - это вековые члены в долготе перицентра и узла, вызванные собственным вращением планеты. Наконец, движение планеты вокруг Солнца также приводит к вековым членам в этих элементах (геодезическая прецессия). Все эти члены для некоторых спутников могут достигать значительной величины (особенно для близких спутников Юпитера), но отсутствие точных наблюдений препятствует их обнаружению. Определение релятивистских эффектов в движении искусственных спутников Земли также не даёт положительных результатов из-за невозможности точного учёта влияния атмосферы и аномалий гравитационного поля Земли на их движение. Большой теоретический интерес представляют релятивистские поправки во вращательном движении небесных тел, однако, их обнаружение связано с ещё большими трудностями. Реальным представляется лишь выявление релятивистских эффектов при изучении прецессии гироскопов на Земле и на спутниках Земли.
Лит.:Брауэр Д., Клеменс Дж., Методы небесной механики, пер. с англ., М., 1964; Брумберг В. А., Релятивистская небесная механика, М., 1972; Гребеников Е. А., Рябов Ю. А., Новые качественные методы в небесной механике, М., 1971; Дубошин Г. Н., Небесная механика, 2 изд., М., 1968; Зигель К. Л., Лекции по небесной механике, пер. с нем., М., 1959; Пуанкаре А., Лекции по небесной механике, пер. с франц., М., 1965; его же, Новые методы небесной механики, Избр. труды, т. 1-2, М., 1971-72; Смарт У. М., Небесная механика, пер. с англ., М., 1965; Субботин М. Ф., Введение в теоретическую астрономию, М., 1968; Уинтнер А., Аналитические основы небесной механики, пер. с англ., М., 1967; Чеботарев Г. А., Аналитические и численные методы небесной механики, М. - Л., 1965; Шарлье К., Небесная механика, пер. с нем., М., 1966; Справочное руководство по небесной механике и астродинамике, М., 1971.
Г. А. Чеботарев.
Небесная сфера
Небе'сная сфе'ра, воображаемая вспомогательная сфера произвольного радиуса, на которую проектируются небесные светила; служит для решения различных астрометрических задач. Представление о Н. с. возникло в глубокой древности; в основу его легло зрительное впечатление о существовании куполообразного небесного свода. Это впечатление связано с тем, что в результате огромной удалённости небесных светил человеческий глаз не в состоянии оценить различия в расстояниях до них, и они представляются одинаково удалёнными. У древних народов это ассоциировалось с наличием реальной сферы, ограничивающей весь мир и несущей на своей поверхности многочисленные звёзды. Т. о., в их представлении Н. с. была важнейшим элементом Вселенной. С развитием научных знаний такой взгляд на Н. с. отпал. Однако заложенная в древности геометрия Н. с. в результате развития и совершенствования получила современный вид, в котором и используется в астрометрии.
Радиус Н. с. может быть принят каким угодно: в целях упрощения геометрических соотношений его полагают равным единице. В зависимости от решаемой задачи центр Н. с. может быть помещен в место, где находится наблюдатель (топоцентрическая Н. с.), в центр Земли (геоцентрическая Н. с.), в центр той или иной планеты (планетоцентрическая. Н. с.), в центр Солнца (гелиоцентрическая Н. с.) или в любую др. точку пространства. Каждому светилу на Н. с. соответствует точка, в которой её пересекает прямая, соединяющая центр Н. с. со светилом (с его центром). При изучении взаимного расположения и видимых движений светил на Н. с. выбирают ту или иную систему координат (см.
Небесные координаты
)
,определяемую основными точками и линиями. Последние обычно являются большими кругами Н. с. Каждый большой круг сферы имеет два полюса, определяющиеся на ней концами диаметра, перпендикулярного к плоскости данного круга.
На
рис. 1
изображена Н. с., которая соответствует месту наблюдения, расположенному в некоторой точке земной поверхности с широтой (р. Отвесная (вертикальная) линия, проведённая через центр этой сферы, пересекает Н. с. в точках Z и Z', называемыми соответственно зенитом и надиром. Плоскость, проходящая через центр Н. с. перпендикулярно отвесной линии, пересекает сферу по большому кругу
NESW,называемому математическим (или истинным) горизонтом. Математический горизонт делит Н. с. на видимую и невидимую полусферы; в первой находится зенит, во второй - надир. Прямая, проходящая через центр Н. с. параллельно оси вращения Земли, называемой осью мира, а точки пересечения её с Н. с. - Северным
Ри Южным
P'полюсами мира. Плоскость, проходящая через центр Н. с. перпендикулярно оси мира, пересекает сферу по большому кругу
AWA'E,называется небесным экватором. Из построения следует, что угол между осью мира и плоскостью математического горизонта, а также угол между отвесной линией и плоскостью небесного экватора равны географической широте (места наблюдений. Большой круг Н. с., проходящий через полюсы мира, зенит и надир, называется небесным меридианом.
Из двух точек, в которых небесный меридиан пересекается с математическим горизонтом, ближайшая к Северному полюсу мира
Nназывается точкой севера, а диаметрально противоположная
S- точкой юга. Прямая
NS,проходящая через эти точки, есть полуденная линия. Точки горизонта, отстоящие на 90° от точек
Nи
S, называются точками востока
Еи запада
W.Точки
N, Е. S, Wназываются главными точками горизонта. По диаметру
EWпересекаются плоскости математического горизонта и небесного экватора.
Большой круг Н. с., по которому происходит видимое годичное движение центра Солнца, называется эклиптикой (
рис. 2
).
Плоскость эклиптики образует с плоскостью небесного экватора угол e = 23°27'. Эклиптика пересекает экватор в двух точках, одна из которых -точка весеннего равноденствия (в ней Солнце при видимом годичном движении переходит из Южного полушария Н. с. в Северное), а другая, диаметрально противоположная ей, - точка осеннего равноденствия. Точки эклиптики, отстоящие на 90° от точек весеннего и осеннего равноденствия, называется точками летнего и зимнего солнцестояния (первая - в Северном полушарии Н. с., вторая - в Южном). Большой круг Н. с., проходящий через полюсы мира и точки равноденствия, называется колюром равноденствий; большой круг Н. с., проходящий через полюсы мира и точки солнцестояния, - колюром солнцестояний. Прочерченные на звёздной карте, эти круги отсекают хвосты у древних изображений созвездий Большой Медведицы (колюр равноденствий) и Малой Медведицы (колюр солнцестояний), откуда и происходит их название (греч. kуluroi, буквально - с обрубленным хвостом, от kуlos - обрубленный, отсеченный и ига - хвост).
Видимому суточному перемещению звёзд, являющемуся отображением действительного вращения Земли вокруг оси, соответствует вращение Н. с. вокруг оси мира с периодом, равным одним звёздным суткам. Вследствие вращения Н. с. все изображения светил описывают в пространстве параллельные экватору окружности, называются суточными параллелями светил. В зависимости от расположения суточных параллелей относительно горизонта светила подразделяются на незаходящие (суточные параллели располагаются целиком над горизонтом), невосходящие (суточные параллели целиком под горизонтом), восходящие и заходящие (суточные параллели пересекаются горизонтом). Границами этих групп светил являются параллели
KNи
SM',касающиеся горизонта в точках
Nи S (
рис. 1
). Так как видимость светил определяется положением горизонта, плоскость которого перпендикулярна отвесной линии, то условия видимости небесных светил различны для мест на поверхности Земли с различной географической широтой j. Это явление, известное уже в древности, служило одним из доказательств шарообразности Земли. На экваторе (j = 0°) ось мира
PP'располагается в плоскости горизонта и совпадает с полуденной линией
NS.Суточные параллели (
KK', MM') всех светил пересекают плоскость горизонта под прямыми углами. Здесь все светила являются восходящими и заходящими (
рис. 3
). По мере перемещения наблюдателя по земной поверхности от экватора к полюсу наклон оси мира к горизонту увеличивается. Всё большее число светил становится незаходящими и невосходящими. На полюсе (j = 90°) ось мира совпадает с отвесной линией, а плоскость экватора - с плоскостью горизонта. Здесь все светила разделяются только на незаходящие и невосходящие, так каких суточные параллели (
KK', MM') располагаются в плоскостях, параллельных горизонту (
рис. 4
).
Лит.:Блажко С. Н., Курс сферической астрономии, М. - Л., 1948; Казаков С. А., Курс сферической астрономии, 2 изд., М. - Л., 1940.
В. П. Щеглов.
Рис. 4. Изображение небесной сферы для полюса (j = 90°).
Рис. 2. Небесная сфера: ЎA
A' - небесный экватор; ЎE = E' - эклиптика; Ў и - точки весеннего и осеннего равноденствия; Е и E' - точки летнего и зимнего солнцестояния; Р и P' - Северный и Южный полюсы мира; П и П' - Северный и Южный полюсы эклиптики.
Рис. 3. Изображение небесной сферы для экватора (j = 0°).
Рис. 1. Небесная сфера: Z - зенит; Z' - надир; NESW - математический горизонт; N, Е, S, W - точки севера, востока, юга и запада; Р и P' - Северный и Южный полюсы мира; AWA'E - небесный экватор; j - географическая широта.
Небесные координаты
Небе'сные координа'ты,числа, с помощью которых определяют положение светил и вспомогательных точек на
небесной сфере.В астрономии употребляют различные системы Н. к. Каждая из них по существу представляет собой систему полярных
координат
на сфере с соответствующим образом выбранным полюсом. Систему Н. к. задают большим кругом небесной сферы (или его полюсом, отстоящим на 90° от любой точки этого круга) с указанием на нём начальной точки отсчёта одной из координат. В зависимости от выбора этого круга системы Н. к. называлась горизонтальной, экваториальной, эклиптической и галактической. Н. к. употреблялись уже в глубокой древности. Описание некоторых систем содержится в трудах древнегреческого геометра Евклида (около 300 до н. э.). Опубликованный в «Альмагесте»
Птолемея
звёздный каталог
Гиппарха
содержит положения 1022 звёзд в эклиптической системе Н. к.
В горизонтальной системе основным кругом служит математический, или истинный, горизонт
NESW(
рис. 1
), полюсом - зенит
Zместа наблюдения. Для определения положения светила s проводят через него и
Zбольшой круг, называется кругом высоты, или вертикалом, данного светила. Дуга
Zs вертикала от зенита до светила называется его зенитным расстоянием
zи является первой координатой;
zможет иметь любое значение от 0° (для зенита
Z) до 180° (для надира
Z'). Вместо
zпользуются также высотой светила
h,равной дуге круга высоты от горизонта до светила. Высота отсчитывается в обе стороны от горизонта от 0° до 90° и считается положительной, если светило находится над горизонтом, и отрицательной - если светило под горизонтом. При таком условии всегда справедливо соотношение
z+
h= 90°. Вторая координата - азимут
А -есть дуга горизонта, отсчитываемая от точки севера
Nпо направлению к востоку до вертикала данного светила (в астрометрии азимут часто отсчитывают от точки юга
Sк западу). Эта дуга
NESMизмеряет сферический угол при
Zмежду небесным меридианом и вертикалом светила, равный двугранному углу между их плоскостями. Азимут может иметь любое значение от 0° до 360°. Существенной особенностью горизонтальной системы является её зависимость от места наблюдения, т.к. зенит и математический горизонт определяются направлением отвесной линии, различным в разных точках земной поверхности. Вследствие этого координаты даже весьма удалённого светила, наблюдаемого одновременно из разных мест земной поверхности, различны. В процессе движения по суточной параллели каждое светило дважды пересекает меридиан; прохождения его через меридиан называются кульминациями. В верхней кульминации
zбывает наименьшим, в нижней - наибольшим. В этих пределах
zизменяется в течение суток. Для светил, имеющих верхнюю кульминацию к югу от
Z, азимут
Ав течение суток меняется от 0° до 360°. У светил же, кульминирующих между полюсом мира
Ри Z, азимут изменяется в некоторых пределах, определяемых широтой места наблюдения и угловым расстоянием светила от полюса мира.
В первой экваториальной системе основным кругом служит небесный экватор
QЎ
Q’(
рис. 2
), полюсом - полюс мира
Р, видимый из данного места. Для определения положения светила s проводят через него и
Рбольшой круг, называемый часовым кругом, или кругом склонений. Дуга этого круга от экватора до светила есть первая координата - склонение светила d. Склонение отсчитывается от экватора в обе стороны от 0° до 90°, причём для светил Южном полушария d принимается отрицательным. Иногда вместо склонения берётся полярное расстояние
р,равное дуге
Рs круга склонений от Северного полюса до светила, которая может иметь любое значение от 0° до 180°, так что всегда справедливо соотношение:
р+ d = 90°. Вторая координата - часовой угол
t -есть дуга экватора
QM,отсчитываемая от расположенной над горизонтом точки
Qпересечения его с небесным меридианом в направлении вращения небесной сферы до часового круга данного светила. Эта дуга соответствует сферическому углу при
Рмежду направленной к точке юга дугой меридиана и часовым кругом светила.
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91
|
|