Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ЛА)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ЛА) - Чтение (стр. 11)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  Стационарное поддержание лазерной искры было осуществлено в различных газах с помощью непрерывного СО 2-лазера мощностью в несколько сотен вт.Затравочная плазма создавалась импульсным СО 2-лазером.

  Термоядерный синтез.С помощью Л. и. возможно осуществление реакции термоядерного синтеза. Для этого необходимо образование чрезвычайно плотной и горячей плазмы с температурой, в случае синтеза ядер дейтерия, ~ 10 8К. Для того чтобы энерговыделение в результате реакции превышало энергию, вложенную в плазму при её нагреве, необходимо выполнение условия:

  nt³ 10 14 см -3сек,

 где n- плотность плазмы, t- время её существования. Для коротких лазерных импульсов это условие выполняется при очень высоких плотностях плазмы. При этом давление в плазме столь велико, что её магнитное удержание практически невозможно. Возникающая вблизи фокуса плазма разлетается со скоростью ~ 10 8 см/сек.Поэтому t- время, за которое сгусток плотной плазмы ещё не успевает существенно изменить свой объём (время инерционного удержания плазмы). Для осуществления термоядерного синтеза длительность лазерного импульса t л, очевидно, не должна превышать t. Минимальная энергия лазерного импульса Eпри плотности плазмы n= 5Ч10 22 см -3(плотность жидкого водорода), времени удержания t= 2Ч10 -9 секи линейных размерах плазменного сгустка 0,4 смдолжна составлять: E= 6Ч10 5 дж.Однако эффективное поглощение света плазмой в условиях её инерционного удержания и выполнение условия nt~ 10 -14имеет место лишь для определённых длин волн l:

  l кр> l > (l кр/ ),

  где l кр- критическая длина волны для плазмы с плотностью n(см. ) .При n= 5Ч10 22 см -3l лежит в ультрафиолетовой области спектра, для которой пока не существует мощных лазеров. В то же время при l = 1 мкм(неодимовый лазер) даже для n = 10 21 см -3,соответствующей l кр, получается трудно осуществимое значение минимальной энергии E= 10 9 дж.Трудность ввода энергии Л. и. видимого и инфракрасного диапазонов в плотную плазму является фундаментальной. Существуют различные идеи относительно её преодоления, среди которых представляет интерес получение сверхплотной горячей плазмы в результате адиабатического сжатия сферической дейтериевой мишени реактивным давлением плазмы, выбрасываемой с поверхности мишени под действием Л. и.

  Впервые высокотемпературный нагрев плазмы Л. и. был осуществлен при оптическом пробое воздуха. В 1966-67 при плотности потока Л. и. ~ 10 12-10 13 вт/см 2было зафиксировано рентгеновское излучение от плазмы лазерной искры, имеющей температуру ~ 1-3Ч10 6К. В 1971 при облучении твёрдой сферической водородосодержащей мишени Л. и. с плотностью потока до 10 16 вт/см 2была получена плазма с температурой (измеренной по рентгеновскому излучению) 10 7К. При этом наблюдался выход 10 6нейтронов за импульс. Полученные результаты, а также имеющиеся возможности увеличения энергии и мощности лазеров создают перспективу получения с помощью Л. и. управляемой термоядерной реакции.

  Химия резонансно-возбуждённых молекул. Под действием монохроматического Л. и. возможно селективное воздействие на молекул, что позволяет избирательно вмешиваться в химические реакции синтеза, диссоциации и процессы катализа. Многие химические реакции сводятся к разрушению одних химических связей в молекулах и созданию других. Связи между атомами обусловливают колебательный спектр молекулы. Частоты линий этого спектра зависят от энергии связи и массы атомов. Под действием монохроматического Л. и. резонансной частоты отдельная связь может быть «раскачана». Такая связь легко может быть разрушена и заменена другой. Поэтому колебательно возбуждённые молекулы оказываются химически более активными ( рис. 4 ).

  С помощью Л. и. можно осуществить разделение молекул с разным изотопным составом. Эта возможность связана с зависимостью частоты колебаний атомов, составляющих молекулу, от массы атомов. Монохроматичность и высокая мощность Л. и. позволяют избирательно возбуждать на преддиссоциационный уровень молекулы только одного изотопного состава и получать в продуктах диссоциации химические соединения моноизотопического состава или сам изотоп. Т. к. число диссоциированных молекул данного изотопного состава равно числу поглощённых квантов, то эффективность метода по сравнению с другими методами может быть высокой.

  Перечисленные эффекты не исчерпывают всех физических явлений, обусловленных действием Л. и. на вещество. Прозрачные диэлектрики разрушаются под действием Л. и. При облучении некоторых ферромагнитных плёнок наблюдаются локальные изменения их магнитного состояния, что может быть использовано при создании быстродействующих переключающих устройств и элементов памяти ЭВМ. При фокусировке Л. и. внутри жидкости имеет место так называемый светогидравлический эффект, позволяющий создавать в жидкости высокие импульсные давления. Наконец, при плотностях потока излучения ~ 10 18-10 19 вт/см 2возможно ускорение электронов до релятивистских энергий. С этим связан целый ряд новых эффектов, например рождение электронно-позитронных пар.

  Лит.:Райзер Ю. П., Пробой и нагревание газов под действием лазерного луча, «Успехи физических наук», 1965, т. 87, в. 1, с. 29; Квантовая электроника. Маленькая энциклопедия, М., 1969; Действия излучения большой мощности на металлы, под ред. А. М. Бонч-Бруевича и М. А. Ельяшевича, М., 1970; Басов Н. Г., Крохин О. Н., Крюков П. Г., Лазеры и управляемая термоядерная реакция, «Природа», 1971, № 1; Действие лазерного излучения. Сб. ст., пер. с англ., под ред. Ю. П. Райзера, М., 1968; Басов Н. Г. [и др.], Лазеры в химии, «Природа», 1973, № 5.

  В. Б. Федоров, С. Л. Шапиро.

  Лазерное излучение в биологии. Почти одновременно с созданием первых лазеров началось изучение биологического действия Л. и. Некоторые возможные биолого-медицинские аспекты его использования были намечены Ч. (1962). В последующем оказалось, что возможная сфера применения Л. и. шире. Биолого-медицинские эффекты Л. и. связаны не только с высокой плотностью потока излучения и возможностью фокусировки луча на самых малых площадях, но, по-видимому, и с др. его характеристиками (монохроматичностью, длиной волны, когерентностью, степенью поляризации), а также с режимом излучения. Один из важных вопросов при использовании Л. и. в биологии и медицине - дозиметрия Л. и. Определение энергии, поглощённой единицей массы биообъекта, связано с большими трудностями. Различные ткани неодинаково поглощают и отражают Л. и. Кроме того, Л. и. в разных областях спектра оказывает не одинаковое, а подчас и антагонистическое действие на биообъект. Поэтому и невозможно ввести при оценке эффекта Л. и. коэффициент качества. Характер эффекта Л. и. определяется прежде всего его интенсивностью, или плотностью потока излучения. В случае импульсных излучателей важны также длительность импульсов и частота их следования. Из-за избирательности поглощения Л. и. биологическая эффективность может не соответствовать энергетическим характеристикам Л. и. Условно различают термические и нетермические эффекты Л. и.; переход от нетермических к термическим эффектам лежит в диапазоне 0,5-1 вт/см 2.При плотностях потока излучения, превышающих указанные, происходит поглощение Л. и. молекулами воды, что приводит к их испарению и последующей коагуляции молекул белка. Наблюдаемые при этом структурные изменения аналогичны результатам обычного термического воздействия. Однако Л. и. обеспечивает строгую локализацию поражения, чему способствует сильная обводнённость биообъекта и поглощение рассеивающейся энергии в пограничных областях, смежных с облучаемой. При импульсных термических воздействиях ввиду очень короткого времени воздействия и быстрого испарения воды наблюдается так называемый взрывной эффект: возникает султан выброса, состоящий из частиц ткани и паров воды; этому сопутствует возникновение ударной волны, воздействующей на организм в целом.

  Л. и. с меньшей плотностью потока излучения вызывает в биообъекте изменения, механизм которых не полностью выяснен. Это сдвиг в активности ферментов, структуре пигментов, нуклеиновых кислот и др. важных в биологическом отношении веществ. Нетермические эффекты Л. и. вызывают сложный комплекс вторичных физиологических изменений в организме, чему, возможно, способствуют резонансные явления, протекающие в биосубстрате на молекулярном уровне. Нетермические эффекты Л. и. сопровождаются реакциями со стороны нервной, кровеносной и др. систем организма. Избирательность поглощения Л. и. и возможность фокусирования луча на площадях порядка 1 мкм 2особенно заинтересовали исследователей внутриклеточных структур и процессов, использующих Л. и. в качестве «скальпеля», позволяющего избирательно разрушать ядро, митохондрии или др. органеллы клетки без её гибели. Как при термических, так и при нетермических воздействиях Л. и. наиболее выраженной способностью к его поглощению обладают пигментированные ткани. Прижизненное окрашивание специфическими красителями позволяет разрушать и прозрачные для данного Л. и. структуры. В установках для внутриклеточных воздействий используют Л. и. с длиной волны как видимого спектра, так и ультрафиолетового и инфракрасного диапазонов, в непрерывном и импульсном режимах.

  Фотографирование биообъектов в Л. и. с целью получения пространственного изображения клеток и тканей стало возможным с созданием лазерных голографических установок для микрофотографирования. В связи с возможностью концентрации энергии Л. и. на очень малых площадях открылись новые возможности для спектрального ультрамикроанализа отдельных участков клетки, жизнедеятельность которой при этом временно сохраняется. С этой целью коротким импульсом Л. и. вызывают испарение вещества с поверхности исследуемого объекта и в газообразном виде подвергают спектральному анализу. Масса образца при этом не превышает долей мкг.

 Установлено, что ряд физиологических изменений происходит в организме животных под действием излучения гелий-неоновых лазеров малой мощности. При этом отмечаются стимуляция кроветворения, регенерация соединительной ткани, сдвиги артериального давления, изменения проводимости нервного волокна и др. Как при непосредственном облучении гелий-неоновыми лазерами растительных тканей, так и при предпосевном облучении семян выявлено стимулирующее влияние Л. и. на ряд биохимических процессов, рост и развитие растений.

  Н. Н. Шуйский.

  Лазерное излучение в медицине. Медицинское применение Л. и. обусловлено как термическими, так и нетермическими эффектами. В хирургии Л. и. используют в качестве «светового скальпеля». Его преимущества - стерильность и бескровность операции, а также возможность варьирования ширины разреза. Бескровность операции связана с коагуляцией белковых молекул и закупоркой сосудов по ходу луча. Этот эффект отмечается даже при операциях на таких органах, как печень, селезёнка, почки и др. По мнению ряда исследователей, послеоперационное заживление при лазерной хирургии идёт скорее, чем после применения электрокоагуляторов. К недостаткам лазерной хирургии следует отнести некоторую ограниченность движений хирурга в операционном поле даже при использовании различной конструкции. В качестве «светового скальпеля» наиболее широко применяют СО 2-лазеры с длиной волны 10 590  и мощностью от нескольких втдо нескольких десятков вт.

 В офтальмологии с помощью лазерного луча лечат отслоение сетчатки, разрушают внутриглазные опухоли, формируют зрачок. На основе рубинового лазера сконструирован офтальмокоагулятор.

  При использовании Л. и. в онкологии для удаления поверхностных опухолей (до глубины 3-4 см) чаще применяют импульсные лазеры или лазеры на стекле с примесью Nd с мощностью импульса до 1500 вт.Разрушение опухоли происходит почти мгновенно и сопровождается интенсивным парообразованием и выбросом ткани из области облучения в виде султана. Чтобы предупредить разбрасывание злокачественных клеток в результате «взрывного» эффекта, применяют воздушные отсосы. Операции с применением Л. и. обеспечивают хороший косметический эффект. Перспективы использования лазерного «скальпеля» в нейрохирургии связаны с операциями на обнажённом мозге.

  Терапия Л. и. основана преимущественно на нетермических эффектах и представляет собой светотерапию с использованием в качестве источников монохроматического излучения гелий-неоновых лазеров с длиной волны 6328  Терапевтическое воздействие на организм осуществляется Л. и. с плотностью облучения в несколько мвт/см 2,что полностью исключает возможность проявления теплового эффекта. На пораженный орган или участок тела воздействуют как местно, так и через соответствующие рефлексогенные зоны и точки (см. ) .Л. и. применяют при лечении длительно незаживающих язв и ран; изучается возможность его применения и при др. заболеваниях (ревматоидный полиартрит, бронхиальная астма, некоторые гинекологические заболевания и т.д.). Соединение лазера с волоконной оптикой позволяет резко расширить возможности его применения в медицине. По гибкому светопроводу Л. и. достигает полостей и органов, что позволяет провести голографическое исследование (см. ) ,а при необходимости и облучение пораженного участка. Исследуется возможность просвечивания и фотографирования с помощью Л. и. структуры зубов, состояния сосудов и др. тканей.

  Работа с Л. и. требует строгого соблюдения соответствующих правил техники безопасности. Прежде всего необходима защита глаз. Эффективны, например, теневые защитные устройства. Следует оберегать от поражения Л. и. кожные покровы, особенно пигментированные участки. Для защиты от поражения отражённым Л. и. с возможного пути луча удаляют блестящие (зеркальные) поверхности. Предположения о возможности возникновения ионизирующего излучения при работе высокоинтенсивных лазеров не подтвердились.

  В. А. Думчев, Н. Н. Шуйский.

  Лит.:Файн С., Клейн Э., Биологическое действие излучения лазера, пер. с англ., М., 1968; Лазеры в биологии и медицине, К., 1969; Гамалея Н. Ф., Лазеры в эксперименте и клинике, М., 1972; Некоторые вопросы биодинамики и биоэлектроники организма в норме и патологии, биостимуляция лазерным излучением. (Материалы Республиканской конференции 11-13 мая 1972 г.), А.-А., 1972.

Рис. 4. Схема реакции тетрафторгидразина (N2F4) и окиси азота (NO) при нагревании (вверху) и при резонансном возбуждении связи N - F лазерным излучением (внизу). Спиральки изображают химические связи.

Рис. 3. В фокусе лазерного пучка в воздухе образуется лазерная искра.

Рис. 1. Движение пара вблизи поверхности металла и передача мишени механического импульса от воздействующего на неё лазерного излучения: Q - вектор количества движения испаренного вещества, - Q - импульс, полученный твёрдой мишенью.

Рис. 2. Спектральные линии многозарядных ионов Са, образующиеся в плазме от твёрдой мишени, содержащей Са.

Лазерные материалы

Ла'зерные материа'лы, вещества, применяемые в в качестве активных сред. В 1960 был создан первый лазер, в котором роль активной среды выполнял кристалл рубина (Al 2O 3- Сг 3+). Позднее стали использоваться смесь газов Ne и Не (1960), силикатное стекло с примесью ионов Nd 3+(1961), кристаллы полупроводникового соединения GaAs (1962), растворы неодима в неорганической жидкости SeOCl 2и растворы органических красителей (1966). К 1973 было известно около 200 различных Л. м., охватывающих вещества во всех агрегатных состояниях: твёрдом, жидком, газообразном и в состоянии .Л. м. должны удовлетворять ряду требований: иметь набор энергетических уровней, позволяющих эффективно воспринимать подводимую извне энергию и с возможно меньшими потерями преобразовывать её в электромагнитное излучение; обладать высокой оптической однородностью, с тем чтобы исключить потери света из-за рассеяния, а также высокой теплопроводностью и малым коэффициентом термического расширения; быть стойкими по отношению к различным физико-химическим воздействиям, перепадам температуры, влажности и т.п.; сохранять состав и свойства в процессе работы. Твёрдые Л. м. должны обладать, кроме того, высокой прочностью и выдерживать без разрушения механическую обработку (резку, шлифовку, полировку), необходимую при изготовлении из них активных элементов.

  Ионные кристаллы с примесями - наиболее представительная группа Л. м. Кристаллы неорганических соединений фторидов (CaF 2, LaF 3, LiYF 4и др.), окислов (например, Al 2O 3) или сложных соединений (CaWO 4, Y 3Al 5O 12, Са 5(РО 4) 3Р и др.) содержат в своей кристаллич. решётке ионы активных примесей: редкоземельных (Sm 2+, Dy 2+, Tu 2+, Pr 3+, Nd 3+, Er 3+, Ho 3+, Tu 3+), переходных (Cr 3+, Ni 2+, Co 3+, V 2+) элементов или ионов U 3+. Концентрация активных примесей в кристаллах составляет от 0,05 до нескольких % по массе. Возбуждение генерации производится методом оптической накачки, причём энергия поглощается, как правило, непосредственно примесными ионами. Эти Л. м. отличает: высокая концентрация активных частиц (10 19-10 21ионов на см 3) ,малая ширина линии генерации (0,001-0,1 нм) и малая угловая расходимость генерируемого излучения, способность обеспечить как импульсный, так и непрерывный режимы работы лазера. Недостатки - низкий (1-5%) кпд преобразования электрической энергии в энергию лазерного излучения в системе лампа накачки - кристалл, трудность изготовления лазерных стержней больших размеров и необходимой оптической однородности. Лазерные кристаллы с примесями выращиваются преимущественно путём направленной кристаллизации расплава в кристаллизационных аппаратах, обеспечивающих высокую стабильность температуры расплава и скорости роста кристалла. Содержание посторонних примесей в исходных веществах для выращивания кристаллов не должно превышать 0,01% по массе, а некоторых - наиболее опасных - 0,0001%. Из выращенных кристаллов вырезаются цилиндрические стержни длиной до 250 мми диаметром 2-20 мм.Торцы стержней шлифуются, а затем полируются. Как правило, стержни изготовляются с плоскими торцами, параллельными друг другу, с точностью 3-5’’ и строго перпендикулярными геометрической оси стержня; в некоторых случаях применяются торцы сферической или др. конфигурации. В табл. 1 приведены химический состав и физические свойства наиболее важных Л. м. на основе примесных кристаллов.

Табл. 1. - Состав и физические свойства лазерных материалов на основе кристаллов с примесями

Кристалл Активная примесь Плот ность, кг/м 3 Показатель преломления Температура плавления, K Твердость (по минера логической шкале) Основные длины волн генерации, мкм
Вещество Содержание, % (по массе)
Al 2O 3 Cr 3+ 0,03-0.7 3980 1,764 2303 9 0,6943 R 1линия 0,6929 R 2линия
Y 3Al 5O 12 Nd 3+ 0,5-2,5 4560 1,8347 2203±20 8,5 1,0641 при 300 K
CaWO 4 Nd 3+ 0.5-3 6066 1,926 1843 4,5-5 1,058 при 300 K
CaF 2 Dy 2+ 0.02-0,06 3180 1,4335 1639 4 2,36 при 77 K
LaF 3 Nd 3+ 0.5-2 - - 1766 1,0633 при 295 K 1,0631 при 77 K 1,0399 при 77 K

  В отличие от кристаллов, лазерные стекла имеют неупорядоченную внутреннюю структуру. Наряду со стеклообразующими компонентами SiO 2, В 2О 3, P 2O 3, BeF 2и др., В них содержатся Na 2O, K 2O, Li 2O, MgO, СаО, BaO, Al 2O 3, La 2O 3, Sb 2O 3и др. соединения. Активными примесями служат чаще всего ионы Nd 3+; используются также Gd 3+, Er 3+, Ho 3+, Yb 3+. Концентрация Nd 3+в стеклах доходит до 6% по массе. Достоинством стекол как Л. м., кроме высокой концентрации активных частиц, является возможность изготовления активных элементов больших размеров (до 1,8 мдлиной и до 70 ммдиаметром) практически любой формы с очень высокой оптической однородностью. Недостатки - большая ширина линии генерации - 3-10 нми низкая теплопроводность, препятствующая быстрому отводу тепла при мощной оптической накачке. В табл. 2 приведены химический состав и физические свойства лазерных стекол. Стекла варят в платиновых или керамических тиглях. Платина, попадающая в стекло из тигля, снижает мощность лазерного излучения, т.к. создаёт в рабочем элементе очаги механического разрушения. Исходные компоненты шихты для варки стекол не должны содержать посторонних примесей более 0,01-0,001% по массе. Особо опасными для неодимовых стекол являются примеси Fe 2+, Sm 3+, Pr 3+, Dy 3+, Co, Ni, Cu.

Табл. 2. - Состав и физические свойства лазерных стекол с неодимом (длина волны генерации 1,06 мкм)

Наименование или шифр стекла Состав, % (по массе) Плотность, кг/м 3 Показатель преломления
Баритовый крон SiO 2-59, BaO-25, Sb 2O 3-1, K 2O-15 (добавки Nd 2O 3-0,13-10) 3000 1,54
0580 SiO 2-67,17, Na 2O-15,93, CaO-10,8, Nd 2O 3-4,78, Al 2O 3-0,75, Sb 2O 3и As 2O 3-0,38, K 2O-0,19 2630 1,5337
Боратное BaO-35, B 2O 3-45, Nd 2O 3-20 3870,4 1,65
Лантаноборосиликатное добавка Nd 2O 3-2 4340 1,691

  Полупроводниковые Л. м. - кристаллы соединений типа A IIB VI(ZnS, ZnSe, CdS, CdSe, CdTe, PbS, PbSe, PbTe) и A IIIB V(GaPAs, GaAs, GaSb, InAs, InSb), а также кристаллы Те и др. Кристаллы полупроводников выращивают либо из расплава, либо из газовой фазы. Кристаллы для инжекционных лазеров, возбуждаемых путём пропускания через рабочий элемент электрического тока, имеют так называемый р - n переход (см. ) .Толщина р - n перехода составляет 0,1 мкм.Излучение возникает в слое р - n перехода, однако излучающий слой имеет толщину бо'льшую, чем р - n переход (~ 2 мкм) .Рабочие элементы для инжекционных лазеров, изготовляемые из полупроводниковых кристаллов, имеют форму прямоугольных пластинок размерами 1ґ1ґ0,2 мм.Наилучшими энергетическими параметрами обладают р - n переходы в кристаллах GaAs. Достоинства полупроводниковых Л. м. с р - n переходом: высокий (доходящий до 50%) кпд, малые размеры рабочих элементов, большая мощность излучения, получаемая с 1 см 2излучающей поверхности. Недостатки - технологические трудности при получении однородных, высококачественных р - n переходов, широкая линия излучения (~10 нмпри комнатной температуре), большая угловая расходимость излучения (1-2°). В полупроводниковых лазерах с электронным возбуждением или оптической накачкой используются кристаллы: чистых соединений без введения каких-либо примесей.

  Особенностями газовых Л. м. являются точное соответствие схемы энергетических уровней газа уровням отдельных атомов или молекул, составляющих этот газ, высокая оптическая однородность (световой луч, проходящий в среде газа, практически не рассеивается), очень малая угловая расходимость и узкие линии генерации. Недостаток - низкая концентрация рабочих частиц (всего 10 14- 10 17в см 3) .В газоразрядных лазерах, где возбуждение осуществляется путём создания электрического разряда в газе, давление колеблется от сотых долей am,т. е. 10 3 н/м 2до нескольких am, т. е. (1-9)Ч10 5 н/м 2.Рабочими частицами являются либо атомы газа (Ne, Хе), либо положительно заряженные ионы (Ne 2+, Ne 3+, Ar 2+, Kr 2+), либо молекулы (N 2, CO 2, H 2O, HCN). В некоторых случаях к основному рабочему газу для улучшения его работы примешивают другой газ. Так, в гелиево-неоновом лазере активными излучающими частицами являются атомы Ne. Примесь Не улучшает условия возбуждения атомов Ne путём резонансной передачи энергии на их верхние рабочие уровни. В лазерах, возбуждаемых в результате фотодиссоциации, используется газ CFзI при давлении 6,7 кн/м 2(50 мм pm. cm.) .В газовых лазерах с возбуждением внешним источником света используются пары щелочного металла Cs.

  Жидкие Л. м. по оптической однородности сравнимы с газовыми и имеют высокую плотность активных частиц. Кроме того, жидкость может циркулировать в резонаторе лазера, что обеспечивает эффективный отвод выделяющегося тепла. Недостаток - низкая стойкость к действию мощного излучения оптической накачки и лазерного излучения. В неорганических жидкостях активная примесь - ионы Nd 3+- в концентрации нескольких % по массе растворена в оксихлоридах селена (SeOCl 2) или фосфора (POCl 3), содержащих хлориды некоторых металлов. Ширина линии генерации не превышает десятых долей нм.Жидкие Л. м. на органических красителях представляют собой растворы молекул родаминов, пиронина, трипафлавина, 3-аминофталамида и др. в этиловом спирте, глицерине, воде, растворах серной кислоты. Возбуждение генерации осуществляется излучением лазеров на кристаллах рубина, неодимовом стекле или светом импульсных газоразрядных ламп. Благодаря широким спектрам излучения растворов органических красителей возможна плавная перестройка длины волны излучения лазера в пределах полосы излучения.

  Лит.:Каминский А. А., Осико В. В., Неорганические лазерные материалы с ионной структурой, «Изв. АН СССР. Неорганические материалы», 1966, т. 1, № 12, с. 2049-87; там же, 1967, т. 3, № 3, с. 417-63; там же, 1970, т. 6, № 4, с. 629-696; Карапетян Г. О., Рейшахрит А. Л., Люминесцирующие стекла, как материал для оптических квантовых генераторов, там же, 1967, т. 3, № 2, с. 217-59; «Тр. института инженеров по электротехнике и электронике», 1966, т. 54, № 10, с. 57-70; Оптические квантовые генераторы на жидкостях, «Вестник АН СССР», 1969, № 2, с. 52-57; Степанов Б. И., Рубинов А. Н., Оптические квантовые генераторы на растворах органических красителей, «Успехи физических наук», 1968, т. 95, в. 1, с. 46.

  В. В. Осико.

Лазерный гироскоп

Ла'зерный гироско'п,см. .

Лазерпициум

Лазерпи'циум(Laserpitium), гладыш, род растений семейства зонтичных. Многолетние, редко двулетние травы с дважды-, триждыперистыми и тройчатыми листьями. Зубцы чашечки яйце- или шиловидные. Лепестки белые, розовые или желтоватые, обратносердцевидные, с загнутыми внутрь верхушками. Плоды эллиптические или продолговатые, с крыловидными ребрами. Около 20 (по др. данным, до 35) видов - от Канарских островов до Ирана и Сибири, но главным образом в Средиземноморье. В СССР 5 - 6 видов. Наиболее распространены Л. широколистный (L. latifolium), Л. прусский (L. pruthenicum), растущие в лесах, кустарниках, на вырубках. Л. волосистый (L. hispidum), встречающийся по горным склонам и в лесах на юге Европейской части СССР и на Кавказе, культивируют как эфирномасличное растение. Получаемое из его плодов эфирное масло содержит до 64% гераниола (используется в парфюмерной и пищевой промышленности).

Лазика

Ла'зика, Лазское царство (местное название - Эгриси), государство в Западной Грузии 2-6 вв.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45