Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ГИ)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ГИ) - Чтение (стр. 18)
Автор: БСЭ
Жанр: Энциклопедии

 

 


         М. Ф. Красильников.
      Рис. 7. Проточная часть реактивной гидротурбины.
      Рис. 2. Схема реактивной гидротурбины: а — рабочее колесо; б — направляющий аппарат.
      Рис. 5. Универсальные характеристики для модели гидротурбины.
      Рис. 3. Треугольники скоростей на входе в рабочее колесо гидротурбины и на выходе из него.
      Рис. 1. Схема активной гидротурбины: а — рабочее колесо; б — сопла.
      Рис. 4. Характеристики гидротурбины при постоянном напоре и частоте вращения колеса: h — кпд; Q — расход воды; N — нагрузка гидротурбины.
      Рис. 6. Эксплуатационные характеристики для натурной гидротурбины.

Гидроуголь

       Гидроу'голь, Всесоюзный научно-исследовательский и проектно-конструкторский институт добычи угля гидравлическим способом (ВНИИГидроуголь), организован в 1955 в Новокузнецке Кемеровской обл. Основная тематика института: создание и совершенствование техники и технологии подземной добычи угля гидравлических способом. По структуре институт является комплексным. Включает научную и проектную части, экспериментальный завод, шахтомонтажное управление пуско-наладочных работ и вычислительный центр. Издаёт «Труды» (с 1962).

Гидроударное бурение

       Гидроуда'рное буре'ние, способ проходки скважин, при котором разрушение породы на забое осуществляется погружными (работающими непосредственно в скважине) гидравлическими забойными машинами ударного действия.
        Первые патенты на гидроударные машины были выданы в конце 19 в., а работоспособные модели созданы в 1900—07 и применялись для бурения скважин на нефть на Кавказе.
        Гидроударная машина приводится в действие энергией потока жидкости, нагнетаемой насосом с поверхности по колонне бурильных труб. Эта жидкость очищает забой от продуктов разрушения породы и удаляет их на поверхность. При бурении с отбором керна применяются , армированные вставками из твёрдого сплава; при бурении сплошным забоем — лопастные и шарошечные долота. Гидроударные машины для бурения на твёрдые полезные ископаемые при расходе промывочной жидкости 100—300 л/минимеют энергию единичного удара 70—80 дж(7—8 кгс( м) и частоту ударов 1200—1500 в мин; осевая нагрузка на забой создаётся в пределах 4000—8000 н(400—800 кгс), частота вращения снаряда 25—100 об/минв зависимости от твёрдости и абразивности проходимых пород.
        Рациональная область применения Г. б. — породы средней и высокой твёрдости, которые наиболее эффективно разрушаются под действием ударных нагрузок. Гидроударные машины обеспечивают повышение производительности бурения в 1,5—1,8 раза при снижении стоимости на 20—30% по сравнению с твердосплавным и алмазным бурением вращательным способом.
        Лит.:Ударно-вращательное бурение скважин гидроударниками, М., 1963; Теория и практика ударно-вращательного бурения, М., 1967.
         Л. Э. Граф, А. Т. Киселев.

Гидроузел

       Гидроу'зел, узел гидротехнических сооружений, группа гидротехнических сооружений, объединённых по расположению и условиям их совместной работы. В зависимости от основного назначения Г. делятся на энергетические, водно-транспортные, водозаборные и др. Г. чаще всего бывают комплексные, одновременно выполняющие несколько водохозяйственных функций.
        Различают Г.: низконапорные, — когда разность уровней воды верхнего и нижнего бьефов (напор) не превышает 10 м, — устраиваемые на равнинных реках, преимущественно в пределах их русла (главным образом для транспортных или энергетических целей), и на горных реках (для забора воды с целью получения электроэнергии или орошения земель); средненапорные (с напором 10—40 м) — на равнинных или предгорных участках рек, предназначенные главным образом для транспортно-энергетических, а также ирригационных целей (создаваемый ими подпор приводит к затоплению поймы реки в верхнем бьефе, образуя , используемое для суточного и сезонного регулирования стока реки, осветления воды, борьбы с наводнениями и т.п.); высоконапорные (с напором более 40 м), служащие обычно для комплексных целей — энергетики, транспорта, ирригации и др.
        Сооружения, входящие в состав Г., подразделяются на основные н вспомогательные. Основные сооружения, обеспечивающие нормальную работу Г., в свою очередь, делятся на общие (плотины, поверхностные и глубинные водосбросы, сооружения для удаления льда, шуги, наносов, регуляционные, сопрягающие и др.), обеспечивающие необходимые напор и ёмкость водохранилища, а также гидравлические условия, отвечающие измененному гидрологическому режиму реки (см. ), и специальные (ГЭС, судоходные шлюзы, судоподъёмники, рыбоходы, бревноспуски, плотоходы и т.д.), выполняющие те функции, для которых был создан Г. К вспомогательным сооружениям относятся жилые, административно-хозяйственные и культурно-бытовые здания, сооружения водопровода и канализации, дороги и т.п. Временные сооружения (перемычки, склады строительных материалов, бетонные и арматурные заводы, мастерские, подъездные пути и пр.) обычно функционируют в период строительства Г., но некоторые из них иногда совмещают с постоянными (например, путём включения перемычек в состав плотины). Прочие сооружения — транзитные дороги и мосты, проходящие в зоне Г. (например, пересечение Калининской ж. д. с каналом им. Москвы в районе расположения шлюза № 8), промышленные предприятия, возникшие на его базе и использующие его электроэнергию и т.п., связываются с Г. главным образом территориально.
        Место размещения Г., т. е. тех его сооружений, которые образуют т. н. напорный фронт, называется створом. Взаимное расположение основных сооружений, называемое компоновкой Г., представляет собой сложную инженерную задачу, решаемую с учётом эксплуатационных, строительных и технико-экономических требований. Большое разнообразие природных и местных условий не позволяет установить единые правила для размещения и компоновки Г. Эти вопросы решаются каждый раз индивидуально с учётом всего комплекса условий, требований и характера взаимодействия сооружений.
        Помимо разрешения водохозяйственных задач, сооружения Г. должны отвечать и эстетическим требованиям; они служат созданию архитектурного ансамбля, органически связанного с окружающей природой. Вся территория гидроузла имеет чёткое архитектурно-функциональное зонирование. Нередко гидротехнический комплекс влияет на планировку и застройку расположенных поблизости старых и вновь возникающих городов, посёлков, заводов (Волховская ГЭС и г. Волхов, Днепрогэс и г. Запорожье). Гидроузлы, расположенные на небольшом расстоянии друг от друга, могут иметь единое архитектурно-стилевое решение (каскад Верхневолжских гидроузлов, СССР). Главные сооружения, организующие архитектурный ансамбль Г., — плотина, гидроэлектростанция, судоходный шлюз с подходными каналами. На рис. 1 показана схема Красноярского Г. на р. Енисей транспортно-энергетического назначения. В его состав входят водосливная и глухая бетонные плотины, ГЭС мощностью 5 млн. квти судоподъёмник, расположенный на левом берегу реки. На рис. 2 приведён план строящегося Нурекского Г. на р. Вахш, который предназначен для регулирования стока реки в целях орошения и получения гидроэнергии. Г. включает самую высокую в мире каменно-земляную плотину (высота 300 м), береговой водосброс, туннельный водозабор, здание ГЭС и др.
         Лит. см. при ст. .
         В. Н. Поспелов.
      Новороссийский порт. Головная часть пирса.
      Участок Волго-Балтийского водного пути.
      Акведук через селевое русло на Каракумском канале.
      Рис. 2. Схема гидроузла Нурекской ГЭС на р. Вахш: 1 — плотина; 2 — водоприемник ГЭС; 3 — напорные водоподводящие туннели; 4 — уравнительные резервуары; 5 — турбинные водопроводы; 6 — здание ГЭС; 7 — открытое распределительное устройство; 8 — открытый водосброс с отводящим каналом; 9 — строительные туннели; 10 — верховая и низовая перемычки.
      Арочная плотина на р. Заале. ГДР.
      Общий вид водоприёмника плотины «Ал. Стамболийский». Болгария.
      Плотина Пеарес. Испания.
      Многоарочная плотина Бартлет. США.
      Плотина Тагокура. Япония.
      Плотина Братской ГЭС им. 50-летия Октября.
      Мингечаурская ГЭС.
      Общий вид гидроузла Йохенштейн. Австрия.
      Оросительная система на р. Чу. Плотина и распределительный узел.
      Рис. 1. Схема гидроузла Красноярской ГЭС на р. Енисей: 1 — здание ГЭС; 2 — водосливная часть плотины; 3 — глухая часть плотины; 4 — открытое распределительное устройство; 5 — наклонный судоподъемник; 6 — поворотный круг (мост) судоподъемника; ВБ — верхний бьеф; НБ — нижний бьеф.
      Плотина Мальга Биссина. Италия.
      Асуанская плотина. АРЕ.
      Волжская ГЭС им. В. И. Ленина.
      Многоарочная плотина Жирот. Франция.
      Усть-Каменогорская ГЭС.
      Куйбышевское водохранилище на участке судоходного шлюза.

Гидрофизика

       Гидрофи'зика, раздел , изучающий физические процессы, протекающие в водной оболочке Земли ( ). К общим вопросам, изучаемым Г., относятся: молекулярное строение воды во всех трёх её состояниях (жидком, твёрдом, газообразном); физические свойства воды, снега, льда — тепловые (теплопроводность, теплоёмкость), радиационные, электрические, радиоактивные, акустические, механические (упругость, вязкость и др.), а также процессы, происходящие в водоёмах — динамические (течения, волны, приливы и отливы), термические (нагревание и охлаждение водоёмов, испарение и конденсация, образование и таяние льда и снега), распространение, поглощение и рассеяние света в толще воды, снега и льда.
        Г. подразделяется на физику моря и физику вод суши. Последняя исследует реки, озёра, водохранилища, подземные воды и др. водные объекты на материках применительно к задачам , а также термические и динамические процессы изменения запасов влаги в речных бассейнах (в верхнем, корнеобитаемом слое почвогрунтов и на поверхности — в снежном покрове, ледниках и снежниках). В физике вод суши развитие получили вопросы турбулентного движения воды, перенос турбулентными потоками наносов и взаимодействия потока и русла. Эта совокупность вопросов выделилась в особую дисциплину — . Довольно широко разработана термика пресных водоёмов — закономерности образования и роста поверхностного и внутриводного льда, тепловой баланс водоёмов и снежного покрова и т.п. В изучаются процессы, происходящие в морях и океанах: динамика морских течений, приливных, поверхностных и внутренних волн, взаимодействие моря с атмосферой, термика, акустика, оптика моря и др.
        Лит.:Шулейкин В. В., Физика моря, 4 изд., М., 1968; Великанов М. А., Гидрология суши, 5 изд., Л., 1964; Лебедев А. Ф., Почвенные и грунтовые воды, 4 изд., М. — Л., 1936.
         П. П. Кузьмин.

Гидрофилия

       Гидрофили'я(от и греч. philia — любовь), приспособленность цветков некоторых водных растений к опылению под водой (например, у роголистника, наяды, взморника). Гидрофилами называют также погруженные в воду растения (см. ).

Гидрофильность и гидрофобность

       Гидрофи'льность и гидрофо'бность, понятия, характеризующие сродство веществ или образованных ими тел к воде: это сродство обусловлено силами межмолекулярного взаимодействия. Слова «гидрофильный» и «гидрофобный» могут относиться в равной степени к веществу, к поверхности тела и к тонкому (в пределе — толщиной в одну молекулу) слою на границе раздела фаз (тел). Г. и г. — частный случай — характеристик молекулярного взаимодействия веществ с различными жидкостями.
        Общей мерой гидрофильности служит энергия связи молекул воды с поверхностью тела; её можно определить по теплоте , если вещество данного тела нерастворимо. Гидрофобность следует рассматривать как малую степень гидрофильности, т.к. между молекулами воды и любого тела всегда будут действовать в большей или меньшей степени межмолекулярные силы притяжения. Г. и г. можно оценить по растеканию капли воды на гладкой поверхности тела. На гидрофильной поверхности капля растекается полностью, а на гидрофобной — частично, причём величина угла между поверхностями капли и смачиваемого тела зависит от того, насколько данное тело гидрофобно. Гидрофильны все тела, в которых интенсивность молекулярных (атомных, ионных) взаимодействий достаточно велика. Особенно резко выражена гидрофильность минералов с ионными кристаллическими решётками (например, карбонатов, силикатов, сульфатов, глин и др.), а также силикатных стекол. Гидрофобны металлы, лишённые окисных плёнок, органические соединения с преобладанием углеводородных групп в молекуле (например, парафины, жиры, воски, некоторые пластмассы), графит, сера и др. вещества со слабым межмолекулярным взаимодействием.
        Понятия Г. и г. применимы не только к телам или их поверхностям, но и к единичным молекулам или отдельным частям молекул. Так, в молекулах различают гидрофильные (полярные) и гидрофобные (углеводородные) группы. Гидрофильность поверхности тела может резко измениться в результате адсорбции таких веществ.
        Повышение гидрофильности называют гидрофилизацией, а понижение — гидрофобизацией. Оба эти явления играют важную роль при обогащении руд методом . В текстильной технологии гидрофилизация тканей (волокон) необходима для успешного крашения, беления, стирки и т.д., а гидрофобизация — для придания тканям водостойкости и непромокаемости (см. ).

Гидрофильные коллоиды

       Гидрофи'льные колло'иды, дисперсные системы, в которых диспергированное вещество взаимодействует с дисперсной средой (водой). См. .

Гидрофиты

       Гидрофи'ты(от и греч. phэton — растение), водные растения, прикрепленные к почве и погруженные в воду только нижними своими частями. Г. обитают по берегам рек, озёр, прудов и морей, а также на болотах и заболоченных лугах (т. н. ). Некоторые Г. могут расти на влажных полях в качестве сорняков, как, например, частуха, тростник и др. Корневая система у Г. хорошо развита и служит как для проведения воды и растворённых в ней питательных веществ, так и для укрепления растений на местах их обитания. В отличие от , Г. имеют хорошо развитые механические ткани и сосуды, проводящие воду. В тканях Г. много межклетников и воздушных полостей, по которым доставляется воздух в нижние части растения, т.к. в воде меньше кислорода, чем в воздухе. Из культурных растений к Г. относится . Многие Г., участвуя в процессе зарастания водоёмов, являются торфообразователями. Некоторые Г., особенно среди однодольных растений, служат кормом для скота. См. также .

Гидрофицированная крепь

       Гидрофици'рованная крепь, гидравлическая крепь, горная крепь, в которой работа несущих элементов (стоек), передвижение крепи, перемещение перекрытий, защитных кожухов и вспомогательных узлов осуществляются с помощью гидравлических устройств. См. .

Гидрофобия

       Гидрофо'бия(от и греч. phуbos — боязнь, страх), водобоязнь, устаревшее название .

Гидрофобные коллоиды

       Гидрофо'бные колло'иды, дисперсные системы, в которых диспергированное вещество не взаимодействует с дисперсной средой (водой). См. .

Гидрофобные покрытия

       Гидрофо'бные покры'тия, тонкие слои несмачивающихся водой веществ на поверхности гидрофильных материалов. Г. п. часто называют водоотталкивающими, что неправильно, т.к. молекулы воды не отталкиваются от них, а притягиваются, но крайне слабо (см. ). Г. п. в виде (адсорбционных ориентированных слоев толщиной в одну молекулу) или плёнок типа лаковой получают обработкой материала растворами, эмульсиями или (реже) парами гидрофобизаторов — веществ, слабо взаимодействующих с водой, но прочно удерживающихся на поверхности. В качестве гидрофобизаторов применяют соли жирных кислот и таких металлов, как медь, алюминий, цирконий и др., катионоактивные , низко- и высокомолекулярные кремнийорганические и фторорганические соединения.
        Г. п. служат для защиты различных материалов (металла, древесины, пластмасс, кожи, тканых и нетканых волокнистых материалов) от разрушающего действия воды или намокания. Особенно широко их применяют в машиностроении, строительстве и текстильном производстве.

Гидрофобный цемент

       Гидрофо'бный цеме'нт, гидрофобный портландцемент, гидравлическое вяжущее вещество, получаемое в результате тонкого измельчения портландцементного клинкера (см. ) совместно с гипсом и гидрофобизующей добавкой (асидол, мылонафт, олеиновая кислота, окисленный петролатум, кубовые остатки синтетических жирных кислот и др.). Добавка, вводимая в количестве 0,1—0,3% от массы цемента, образует на поверхности его частиц тончайшие (мономолекулярные) гидрофобные плёнки, уменьшающие гигроскопичность цемента и поэтому предохраняющие его от порчи при длительном хранении даже в условиях повышенной влажности. Бетоны и растворы на Г. ц. отличаются меньшим водопоглощением, большей морозостойкостью и водонепроницаемостью, чем на обычном цементе, Наряду с портландцементом, можно гидрофобизировать также шлаковые, глиноземистые и др. виды цемента.
         М. И. Хигерович.

Гидрофон

       Гидрофо'н(от и греч. phone — звук), гидроакустический звукоприёмник, Г. являются и применяются в для прослушивания подводных сигналов и шумов, для измерительных целей, а также как составные элементы направленных приёмных гидроакустических антенн. Наиболее распространены Г., основанные на электродинамическом, пьезоэлектрическом и магнитострикционном эффектах. Электродинамические Г. по принципу действия не отличаются от воздушных электродинамических , если не считать особенностей конструкции, связанных с изоляцией от воды.
        В пьезоэлектрическом Г. используется прямой пьезоэффект (см. ) некоторых кристаллов (сегнетова соль, кварц, дигидрофосфат аммония, сульфат лития и т.д.), при котором переменная деформация кристалла вызывает появление переменных поверхностных электрических зарядов и соответственно переменной электродвижущей силы на электродах-обкладках. Широко пользуются пьезоэлектрическими керамическими материалами (типа керамики титаната бария, титаната-цирконата свинца и др.). Чувствительные элементы пьезоэлектрических Г. изготавливают в виде пакетов прямоугольной или цилиндрической формы.
        Магнитострикционные Г. основаны на обратном магнитострикционном эффекте (см. ) некоторых ферромагнитных металлов (в основном никеля и его сплавов), при котором деформация вызывает появление переменной магнитной индукции в магнитопроводе и как следствие — переменной эдс на обмотке. Чувствительные элементы Г. (сердечники) набираются, как правило, из тонких пластин для избежания потерь на токи Фуко (см. ).
        Г., предназначенные для измерительных целей, должны быть ненаправленными и обладать ровной частотной характеристикой во всей области исследуемых частот. Для этой цели удобно пользоваться малыми по сравнению с длиной волны полыми сферическими приёмниками из пьезокерамики, совершающими сферические симметричные колебания.
        Одна из важнейших характеристик Г. — чувствительность, представляющая собой отношение электрического напряжения к звуковому давлению в мкв/бар; она лежит в пределах от долей мкв/бардля малых (диаметром в несколько мм) керамических сферических приёмников до сотен мкв/бардля пакетов из пьезоэлектрических кристаллов. Для увеличения чувствительности (а также для устранения шунтирующего действия кабеля) пользуются Г. с предварительными усилителями, которые монтируются в одном корпусе с приёмником и вместе опускаются в воду.
        Лит.:Тюрин А. М., Сташкевич А. П.. Таранов Э. С., Основы гидроакустики, Л., 1966.
         Б. Ф. Курьянов.

Гидроформинг

       Гидрофо'рминг, один из способов переработки нефтепродуктов. См. .

Гидрофтальм

       Гидрофта'льм(от и греч. ophthalmos — глаз), водянка глаза, увеличение у детей глазного яблока при врождённой .

Гидрохимия

       Гидрохи'мия, наука о химическом составе природных вод и закономерностях его изменения в зависимости от химических, физических и биологических процессов, протекающих в окружающей среде. Г. как наука о химии гидросферы является частью геохимии и одновременно частью гидрологии. Г. имеет большое значение для развития ряда смежных наук: петрографии, минералогии, почвоведения, гидрогеологии, гидробиологии и др. Знание химического состава воды (определяющего её качество) необходимо для таких областей практической деятельности, как водоснабжение, орошение, рыбное хозяйство; гидрохимические сведения важны для оценки коррозии строительных материалов (бетон, металлы), для характеристик минеральных вод, при поисках полезных ископаемых (нефть, рудные месторождения, радиоактивные вещества) и т.д. Изучение химического состава воды приобретает громадное значение при борьбе с загрязнением водоёмов . В России начало изучения Г. связано с работами М. В. Ломоносова и т. н. академическими экспедициями 18 в. Теперь изучение химического состава воды ведётся в различных научных и высших учебных заведениях, в лабораториях предприятий промышленности и транспорта, в санитарных и гигиенических учреждениях и инспекциях, в лабораториях системы водоснабжения. Особенно важны стационарные гидрохимические работы, проводимые на станциях (морских, речных, озёрных) гидрометеорологической сети Гидрометслужбы. В СССР издано большое число научных работ по Г., существует постоянный печатный орган «Гидрохимические материалы» (с 1915); в 1921 создан единственный в мире Научно-исследовательский институт гидрохимии, в соответствующих вузах читается курс Г.
        На современном этапе развития Г. можно различать следующие её разделы: 1) Формирование химического состава природных вод. Этот раздел включает изучение воды как растворителя сложного комплекса минералов земной коры и исследование химических процессов, происходящих в воде при взаимодействии с породами, почвами, организмами и атмосферой. Рассматривается растворимость веществ, встречающихся в природе, их состояние в растворе и стабильность, а также сорбционные, обменные, окислительно-восстановительные процессы и многие др. К этому разделу, весьма близкому геохимии, следует отнести общие вопросы круговорота веществ и вопросы в гидросфере.
        2) Химический состав и гидрохимический режим определённых видов природных вод, зависимость их изменений от физико-географических условий окружающей среды. Этот обширный раздел близко примыкает к гидрологии, и его частями являются химия рек и озёр, химия моря, химия подземных и атмосферных вод.
        Химия поверхностных вод изучает химический состав воды в реках, озёрах, искусств. водоёмах, его изменения по территории или акватории и по глубинам, сезонные суточные колебания, а также условия формирования состава в зависимости от окружающей среды. Большое значение приобретает прогнозирование химического состава водохранилищ, создаваемых в засушливых областях, и борьба с загрязнениями, вносимыми в водоёмы. Исследования соляных озёр, богатых минеральным сырьём, очень важны для химической промышленности.
        Химия моря, тесно примыкающая к океанологии, наряду с изучением солёности, биогенных веществ и растворённых газов в зависимости от гидродинамических, гидрометеорологических и гидробиологических факторов, изучает формы и содержание микроэлементов, генезис и процессы метаморфизации органических веществ, процессы взаимодействия морской воды с речной и морскими донными осадками и пр.
        Химия подземных вод включает изучение химического состава грунтовых, пластовых, артезианских, минеральных вод и вод нефтяных месторождений. Важнейшие направления здесь — формирование состава вод, процессы взаимодействия воды с окружающими породами, происходящие под высокими давлениями и часто повышенными температурами при замедленном водообмене и своеобразных микробиологических условиях. Большое значение издавна имеет изучение минеральных вод, весьма разнообразных по составу и происхождению.
        3) Методика гидрохимических исследований. Этот раздел является специальной ветвью , применительно к специфике анализа природных вод. В настоящее время в Г. широко применяются методы спектроскопии, хроматографии, полярографии, меченых атомов и др. физико-химические методы. Большой раздел анализа — определение компонентов загрязнений воды.
        Лит.:Алекин О. А., Основы гидрохимии, Л., 1953; его же, Химия океана. Л., 1966; его же, Гидрохимия за 50 лет, «Гидрохимические материалы», 1968, т. 46; Вернадский В. И., Избр. соч., т. 4, кн. 2 — История природных вод, М., 1960; Виноградов А. П.. Введение в геохимию океана, М., 1967; Приёмы санитарного изучения водоемов, под ред. С. М. Драчева, М., 1960; Драчев С. М., Борьба с загрязнением рек, озёр и водохранилищ промышленными и бытовыми стоками, М. — Л., 1964; Химический состав атмосферных осадков на Европейской территории СССР, под ред. Е. С. Селезневой, Л., 1964; Резников А. А., Муликовская Е. П., Соколов И. Ю., Методы анализа природных вод, М., 1963; Овчинников А. М., Гидрогеохимия, М., 1970.
         О. А. Алекин.

Гидрохинон

       Гидрохино'н, n-диоксибензол, бесцветные кристаллы, t пл170,3 °С; плотность 1,358 г/см 2; возгоняется в вакууме.
      
        Г. хорошо растворим в спирте, эфире, плохо — в бензоле; 5,7 гГ. растворяется в 100 гводы при15 °С. Г. —сильный восстановитель; в водных, особенно в щелочных, растворах окисляется кислородом воздуха. В промышленности Г. получают восстановлением , а также щелочным плавлением n-фенолсульфокислоты или n-хлорфенола.
      
        Г. применяют как проявитель в фотографии, как антиоксидант. Г. служит полупродуктом в синтезе многих органических красителей. Его применяют в аналитической химии при фотометрическом определении ряда элементов. Молекулярное соединение Г. с хиноном C 6H 4O 2· C 6H 4(OH) 2, т. н. хингидрон, применяют при определении концентрации водородных ионов. Соединение Г. с глюкозой — арбутин — широко распространено в природе. Г. впервые получен немецким химиком Ф. Вёлером в 1844.

Гидрохория

       Гидрохори'я(от и греч. choreo — продвигаюсь, распространяюсь), распространение плодов, семян и др. зачатков растений водными течениями. Г. характерна преимущественно для болотных и водных растений, водорослей и некоторых грибов. Приспособлениями для такого способа переноса служат различные вздутия и выросты на плодовых или семенных оболочках (или особые клетки — в спорах грибов), наполненные воздухом и действующие как плавательные пузыри. Г. наблюдается у частухи, стрелолиста, сусака, ежеголовника, рдеста и др.

Гидроцеле

       Гидроце'ле(от и греч. kele — опухоль), водянка яичка, скопление серозной жидкости в оболочках яичка, возникающее вследствие затруднения оттока её по лимфатическим сосудам. Может быть врождённым или возникать при воспалительных заболеваниях яичка (см. ), его придатков (см. ), семенного канатика, при травмах или новообразованиях. Развитию Г. способствуют паховые грыжи и расширение вен семенного канатика. Лечение: при остром Г., не сопровождающемся сильными болями и повышением температуры тела, — устранение основного заболевания; при хроническом Г. — хирургическое вмешательство.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37