Большая Советская Энциклопедия (ГИ)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ГИ) - Чтение
(стр. 16)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(2,00 Мб)
- Скачать в формате fb2
(6,00 Мб)
- Скачать в формате doc
(425 Кб)
- Скачать в формате txt
(398 Кб)
- Скачать в формате html
(6,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
|
|
Гидротаксис
Гидрота'ксис(от
и греч. tбxis — расположение, порядок), движение свободно передвигающихся одноклеточных и колониальных растений и некоторых животных в сторону большей влажности (положительный Г.) или меньшей влажности (отрицательный Г.). Г., как и др.
, определяется потребностями организма. Так, личинки некоторых насекомых (проволочные черви и др.) при высыхании верхних слоев почвы передвигаются в более глубокие, влажные её слои.
Гидротерапия
Гидротерапи'я(от
и
), наружное применение воды с лечебными и профилактическими целями; то же, что
.
Гидротермальные месторождения
Гидротерма'льные месторожде'ния(от
и греч. therme — теплота, жар), большая группа месторождений полезных ископаемых, образующихся из осадков циркулирующих в недрах Земли горячих водных растворов, Выделяются 4 группы источников воды гидротермальных растворов: 1) магматическая вода, отделяющаяся из магматических расплавов в процессе их застывания и формирования изверженных пород; 2) метаморфическая вода, высвобождающаяся в глубоких зонах земной коры из водосодержащих минералов при их перекристаллизации; 3) захороненная вода в порах морских осадочных пород, приходящая в движение вследствие смещений в земной коре или под воздействием внутриземного тепла; 4) метеорная вода, проникающая по водопроницаемым пластам в глубины Земли. Минеральное вещество, находящееся в растворе, при отложении которого формируются Г. м., может быть выделено остывающей магмой или мобилизовано из пород, сквозь которые фильтруются подземные воды. Г. м. формировались в широком интервале от поверхности Земли до глубины свыше 10
км; оптимальные условия для их образования определяются глубиной от нескольких сот
мдо 5
км. Начальная температура этого процесса могла соответствовать 700—600 °С и, постепенно снижаясь, достигать 50—25 °С; наиболее обильное гидротермальное рудообразование происходит в интервале 400—100 °С. На раннем этапе вода существовала как пар, который при постепенном охлаждении конденсировался и переходил в жидкое состояние. Это был истинный ионный раствор комплексных соединений различных элементов, выпадающих при изменении давления, температуры, кислотно-щелочной и окислительно-восстановительной характеристик. Их отложение могло происходить в открытых полостях и вследствие замещения пород, по которым протекали гидротермальные растворы: в первом случае возникали жильные, а во втором — метасоматические тела полезных ископаемых. Наиболее распространённой формой гидротермальных тел являются жилы, штокверки, пластообразные и неправильные по очертаниям залежи. Они достигают длины несколько
кмпри ширине от несколько
смдо десятков
м. Гидротермальные тела окаймлены ореолом рассеяния составляющих их элементов (первичные ореолы рассеяния), а прилегающие к ним породы бывают гидротермально преобразованы. Среди процессов гидротермального изменения пород наиболее распространено их окварцевание, а также щелочное преобразование, при привносе калия приводящее к развитию мусковита, серицита и глинистых минералов, а под воздействием натрия — к образованию альбита. По составу преобладающей части минералов выделяются следующие главнейшие типы гидротермальных руд: 1) сульфидные, формирующие месторождения меди, цинка, свинца, молибдена, висмута, никеля, кобальта, сурьмы, ртути; 2) окисные, типичные для месторождений железа, вольфрама, тантала, ниобия, олова, урана; 3) карбонатные, свойственные некоторым месторождениям железа и марганца; 4) самородные, известные для золота и серебра; 5) силикатные, создающие месторождения неметаллических полезных ископаемых (асбест, слюды) и некоторые месторождения редких металлов (бериллий, литий, торий, редкоземельные элементы). Гидротермальные руды отличаются большим количеством входящих в их состав минералов. Обычно они неравномерно распределены в контурах рудных тел, образуя чередующиеся зоны повышенной и пониженной их концентрации, определяющие первичную минеральную и геохимическую зональность гидротермальных месторождений. Существует несколько вариантов генетических классификаций. Американский геолог В. Линдгрен (1907) предложил выделять среди них 3 класса, учитывающих глубину и температуру образования (гипотермальный, мезотермальный и эпитермальный). Другой американский геолог А. Бэтман (1940) намечал 2 класса месторождений — отложенных в пустотах и образовавшихся путём замещения. Швейцарский геолог П. Ниггли (1941) разделял эти месторождения по признакам их отношения к магматическим породам и температуре формирования. Советский геолог М. А. Усов (1931) и немецкий геолог П. Шнейдерхён (1950) расчленяли Г. м. по уровню застывания рудоносных магм. Советские геологи С. С. Смирнов (1937) и Ю. А. Билибин (1950) группировали Г. м. по их связи с тектономагматическими комплексами изверженных горных пород. В. И. Смирнов (1965) предложил группировать Г. м. по естественным ассоциациям слагающих их минеральных комплексов, отражающим их генезис. Г. м. имеют огромное значение для добычи многих важнейших полезных ископаемых. Особенно они существенны для получения цветных, редких, благородных и радиоактивных металлов. Г. м., кроме того, служат источником добычи асбеста, магнезита, плавикового шпата, барита, горного хрусталя, исландского шпата, графита и некоторых драгоценных камней (турмалин, топаз, берилл).
Лит.:Смирнов С. С., О современном состояния теории образования магматогенных рудных месторождений, «Записки Всероссийского минералогического общества», 1947, ч. 76, в. 1; Бетехтин А. Г., Гидротермальные растворы, их природа и процессы рудообразования, в сборнике: Основные проблемы в учении о магматогенных рудных месторождениях, 2 изд., М., 1955; Николаев В. А., К вопросу о генезисе гидротермальных растворов и этапах глубинного магматического процесса, там же; Смирнов В. И. Геология полезных ископаемых, М., 1969; Генезис эндогенных рудных месторождений, М., 1968.
В. И. Смирнов.
Гидротермическая обработка древесины
Гидротерми'ческая обрабо'тка древеси'ны, обработка древесины нагретыми газом, паром или жидкостью с целью изменения её физических и эксплуатационных свойств. Процессы Г. о. д. разделяются на 3 группы: тепловая обработка (нагревание или оттаивание древесины), сушка (удаление влаги из древесины) и пропитка (введение в древесину различных пропитывающих веществ). Тепловая обработка производится нагретой водой (проварка) или насыщенным паром (пропарка) для временного снижения твёрдости и повышения пластичности древесины и облегчения процессов её рамного пиления, лущения, строгания, гнутья и прессования. Применяется в
(оттаивание пиловочника в открытых бассейнах), в производстве клеёной фанеры (проварка чураков в закрытых бассейнах) и строганого шпона (пропарка кряжей в парильных ямах), в спичечном производстве (оттаивание чураков в парильных камерах или ямах), в производстве гнутой мебели и изготовлении прессованной древесины (пропарка заготовок в парильных автоклавах). Сушка древесины осуществляется в среде влажного воздуха, топочных газов или перегретого пара. Цель сушки — доведение влажности материала до величины, соответствующей условиям эксплуатации изготовленных из древесины изделий, что предупреждает их размеро- и формоизменяемость. Древесина высушивается в виде пиломатериалов (в камерных сушилках и на открытых складах), лущёного и строганого шпона (преимущественно в роликовых сушилках), стружки, щепы и мелких полуфабрикатов (в барабанных, пневматических, ленточных сушилках). Пропитка древесины производится органическими жидкостями или растворами минеральных и органических веществ преимущественно для её консервирования, т. е. длительной защиты материала от загнивания или поражения насекомыми. Консервированию подвергаются лесоматериалы (шпалы, столбы, брусья, доски) для сооружений, эксплуатируемых на открытом воздухе и в соприкосновении с грунтом. В отдельных случаях пропитку производят для огнезащиты, а также для изменения некоторых физических свойств древесины (цвета, электрических характеристик и др.). Наиболее эффективна т. н. автоклавная пропитка под давлением в специальных пропиточных цилиндрах или автоклавах и пропитка в горячехолодных ваннах. На строительных площадках иногда используют диффузную пропитку (обмазка столбов антисептическими пастами или покрытие бандажами). Г. о. д. имеет большое хозяйственное значение, Правильное и своевременное проведение её (особенно сушки и пропитки) существенно удлиняет сроки службы изделий и сооружений из древесины.
Лит.:Серговский П. С., Гидротермическая обработка и консервирование древесины, 2 изд., М., 1968.
П. С. Серговский.
Гидротехника
Гидроте'хника(от
. и
), отрасль науки и техники, занимающаяся изучением водных ресурсов, их использованием для различных хозяйственных целей и борьбой с вредным действием вод при помощи инженерных сооружений (см.
). Г. имеет следующие основные направления (в зависимости от обслуживаемой отрасли водного хозяйства): использование водной энергии (см.
); обеспечение судоходства и лесосплава по водным путям;
,
и осушение сельскохозяйственных земель;
населения, транспортных и промышленных предприятий; отведение с благоустроенных территорий избыточных, сточных и загрязнённых вод: обеспечение необходимых условий для рыбного хозяйства (пропуск рыбы через гидротехнические сооружения, создание водоёмов для нереста рыбы, её искусственного разведения и др.); защита населённых пунктов, промышленных объектов, линий транспорта, связи, различных сооружений от вредного действия водной стихии. Такое деление Г. является в известной мере условным, т.к. в большинстве случаев использование вод носит комплексный характер, т. е. одновременно решается несколько водохозяйственных задач. Примерами многостороннего использования водных ресурсов могут служить, например, канал им. Москвы, Волго-Донской комплекс, гидроузлы на рр. Волга, Днепр, Дон, Енисей и др. Являясь прикладной наукой, Г. опирается на ряд др. наук о воде — гидрологию, гидромеханику, гидравлику и ряд научных дисциплин инженерно-строительного цикла — инженерную геологию, механику грунтов, строительную механику, теорию упругости, строительные конструкции, технологию строительного производства и др. К важнейшим задачам Г. как науки относятся: изучение воздействий водных потоков на русла и гидротехнические сооружения, способов защиты прибрежных территорий от вредного воздействия водных потоков, разработка методов регулирования речного стока, исследование фильтрации воды через грунты оснований и сооружения (в особенности — земляные); разработка теории устойчивости гидротехнических сооружений и их оснований, прочности и надёжности гидротехнических конструкций, долговечности материалов для возведения сооружений и др. На основе изучения теоретических проблем Г. разрабатывает методы расчёта и конструирования гидротехнических сооружений, способы их возведения и эксплуатации. Кроме проведения теоретических исследований, многие вопросы Г. решаются экспериментальным путём, посредством лабораторного моделирования и с помощью режима сооружений, напряжённого состояния и деформаций элементов и конструкций сооружений, процессов формирования речных русел, ледовых явлений и пр.). Г. — одна из древнейших отраслей науки и техники. Ещё за 4400 лет до н. э. в Египте строились каналы для орошения земель в долине р. Нил; примерно за 4 тыс. лет до н. э. в Египте была сооружена древнейшая каменная плотина (у Кошейш), а земляные плотины строились, по-видимому, и раньше; в Вавилоне за 4—3 тыс. лет до н. э. существовали города с водопроводами и артезианскими колодцами; известны гидротехнические сооружения Древнего Хорезма (8—6 вв. до н. э.). В период расцвета Греции и Рима Г. получила большое развитие: построен водопровод Аппия, осуществлена канализация в Риме, были попытки осушения Понтийских болот. Около 2 тыс. лет до н. э. на территории современных Нидерландов строились дамбы для защиты низменных мест от затопления, а в Древней Грузии и Армении — каналы. За 400—500 лет до н. э. в Самосе существовал морской порт с молами; примерно к тому же периоду относятся первые судоходные сооружения (например, канал от Нила к Красному морю). В период феодальной раздробленности в западноевропейских странах гидротехническое строительство свелось к малым сооружениям — устройству водяных мельниц, водоснабжению городов, замков и т.п. С развитием торговли и ремёсел в 13—14 вв. появляются более совершенные водяные установки, строятся судоходные шлюзы и др. сооружения на водных путях и в портах, проводятся осушительные и оросительные работы. В 17—18 вв. появление мануфактур, расширение торговли и рост городов повлекли за собой новый подъём гидротехнического строительства. Работы Г. Галилея, Б. Паскаля, И. Ньютона, М. В. Ломоносова, Д. Бернулли значительно подняли теоретическую базу Г., что позволило перейти к строительству более сложных гидротехнических сооружений. В 18 и начале 19 вв. существенно возросло значение водных путей, было построено много судоходных каналов во Франции, Англии и др. странах, развивалось портовое строительство (лондонские и ливерпульские доки, волноломы в Шербуре и Генуе и др.). В России Г. достигла подъёма в 17—18 вв., в этот период было создано более 200 заводских плотин и гидроустановок на Урале, Алтае и в др. местах (выделяются Змеиногорская земляная плотина высотой 18
ми гидросиловая установка, построенная в 80-х гг. 18 в. К. Д.
); построены новые водные пути — Вышневолоцкая, Мариинская и Тихвинская (соединившие Волгу с Балтийским м.), Северо-Двинская и др. системы. В начале 19 в. изобретение паровой машины и появление железных дорог в западноевропейских странах ослабили интерес к гидравлическим установкам и водному транспорту. Лишь во 2-й половине 19 в. в связи с ростом промышленности, сельского хозяйства и развитием крупных городов, нуждавшихся в водоснабжении, наблюдается новый подъём гидротехнического строительства: реконструируются старые и строятся новые водные пути, осуществляются в больших масштабах ирригационные и осушительные работы, появляются гидроэлектрические установки современного типа. Всему этому способствует общий прогресс техники: развитие машиностроения, передача электрической энергии на большие расстояния, применение бетона и железобетона, механизация строительства и пр. В России в конце 19 — начале 20 вв. экономическое развитие страны вызвало некоторое оживление гидротехническое строительства, главным образом в области водного транспорта, орошения и осушения земель, водоснабжения; однако водная энергия рек практически не использовалась. Хотя гидротехническое строительство в России было ограниченным, гидротехническая наука находилась на достаточно высоком уровне и развивалась, опережая практику (труды Н. Е. Жуковского, С. А. Чаплыгина, Д. К. Бобылева в области гидромеханики и гидравлики; Н. С. Лелявского, В. М. Лохтина и др. по гидрологии и регулированию рек; И. И. Жилинского, В. Е. Тимонова, Ф. Г. Зброжека, Н. П. Пузыревского, Б. Н. Кандибы и др. в области водных путей, водоснабжения, ирригации). Огромное развитие Г. получила после Великой Октябрьской социалистической революции. Крупное гидротехническое строительство потребовало разработки новых, не применявшихся ранее в России, типов гидротехнических сооружений, а также решения проблем, вытекавших из особенностей природных условий СССР. Так, например, была успешно решена задача возведения плотин на глинистых и песчаных основаниях, характерных для равнинных рек страны (Свирская, Рыбинская, Цимлянская и др. плотины); разработаны новые типы земляных, облегчённых бетонных и железобетонных плотин, созданы новые конструкции судоходных шлюзов, водозаборных, регуляционных и портовых сооружений, усовершенствованы способы производства работ, внедрены новые эффективные методы возведения плотин и гидроузлов (например, без предварительного осушения места постройки, отсыпкой грунта в текущую воду к др.). Совершенствование гидротехнического строительства осуществлялось на основе использования результатов научных исследований. Особое развитие получили научно-исследовательские работы в области гидравлики сооружений и открытых русел (академики Н. Н. Павловский, профессора М. Д. Чертоусов, А. Н. Ахутин и др.), теории движения наносов и эрозии русел (член-корреспондент АН СССР М. А. Великанов, профессора В. Н. Гончаров, И. И. Леви, С. Т. Алтунин и др.), теории фильтрации в гидротехнических сооружениях (академики Н. Н. Павловский, П. Я. Кочина, профессора Е. А. Замарин, Ф. Б. Нельсон-Скорняков и др.). В области теории гидротехнических сооружений и их оснований значительны работы академика Б. Г. Галёркина, член-корреспондента АН СССР Н. М. Герсеванова, В. А. Флорина, профессоров Н. П. Пузыревского; В. П. Скрыльникова, Г. Н. Маслова и др. В развитии советской Г. большие заслуги принадлежат выдающимся учёным и инженерам — руководителям крупных коллективов гидротехников — академикам Б. Е. Веденееву, А. В. Винтеру, Г. О. Графтио, И. Г. Александрову, С. Я. Жуку, профессорам В. Д. Журину, И. И. Кандалову и др. В СССР научные исследования в области Г. проводит ряд научно-исследовательских и проектных институтов: Всесоюзный научно-исследовательский институт гидротехники им. Б. Е. Веденеева (ВНИИГ), Гидропроект им. С. Я. Жука, Всесоюзный научно-исследовательский институт гидротехники и мелиорации им. А. Н. Костякова (ВНИИГиМ), Всесоюзный научно-исследовательский институт водоснабжения, канализации, гидротехнических сооружений и инженерной гидрогеологии (ВНИИВОДГЕО) и др., а также вузы — Московский инженерно-строительный институт им. В. В. Куйбышева, Ленинградский политехнический институт им. М. И. Калинина и др. За рубежом наиболее известными являются: Экспериментальный институт моделей и сооружений в Бергамо (Италия), Гидравлическая лаборатория в Гренобле (Франция), Лаборатория по исследованию плотин при Бюро мелиорации (США), Лаборатория Калифорнийского университета (США), Техническая лаборатория Центрального научно-исследовательский института энергетической промышленности (Япония) и др. Подготовка инженеров-гидротехников в СССР осуществляется на соответствующих факультетах Московского инженерно-строительного института им. В. В. Куйбышева, Ленинградского политехнического института им. М. И. Калинина, Московского гидромелиоративного института и др., в которых основные профилирующие кафедры возглавляют видные учёные — профессора М. М. Гришин, А. В. Михайлов, П. Д. Глебов, Б. Д. Качановский, А. Л. Можевитинов, С. Ф. Аверьянов и др. Советская школа Г. получила всемирное признание и по праву считается ведущей в строительстве крупных гидротехнических сооружений на мягких грунтах, уникальных сооружений на скальных и вечномёрзлых грунтах, высоконапорных гидротехнических сооружений из бетона и местных материалов, в создании больших искусственных водохранилищ и оросительных систем, глубоководных транспортных путей значительной протяжённости. Степень использования водных ресурсов в СССР непрерывно возрастает, что приводит к расширению областей применения Г. Перспективы развития Г. в Советском Союзе связаны с намечаемым значительным увеличением выработки электроэнергии всеми гидроэлектростанциями страны. Предусматривается дальнейшее освоение рек Сибири, Средней Азии, Дальнего Востока, будут завершены каскады гидроузлов на Волге, Каме, Днепре, значительное развитие получат орошение, обводнение и осушение. Будут завершены строящиеся и сооружены новые каналы в целях водообеспечения промышленности (Днепр — Кривой Рог, Днепр — Донбасс, Иртыш — Караганда и др.). Намечается выполнить большие объёмы работ по реконструкции и расширению внутренних водных путей Единой глубоководной системы Европейской части СССР. Решение вопросов Г. потребует проведения дальнейших научных исследований, разработки новых экономичных конструкций высоконапорных плотин, гидротехнических сооружений облегчённого типа, каналов и туннелей большого сечения, эффективных способов их строительства, особенно в районах сурового климата и повышенной сейсмичности.
Лит.:Берг В. А., Основы гидротехники, Л., 1963; Денисов И. П., Основы использования водной энергии, [2 изд.], М. — Л., 1964; Грацианский М. Н., Инженерная мелиорация, М., 1965; Порты и портовые сооружения, ч. 1—2, М., 1964—1967; Введение в гидротехнику, под ред. Н. Н. Джунковского, М., 1955; Михайлов А. В., Судоходные шлюзы, М,, 1966; Гришин М. М., Гидротехнические сооружения, М., 1968; Волков И. М., Кононенко П. Ф., Федичкин И. К., Гидротехнические сооружения, М., 1968.
В. Н. Поспелов.
Новороссийский порт. Головная часть пирса. Участок Волго-Балтийского водного пути. Акведук через селевое русло на Каракумском канале. Арочная плотина на р. Заале. ГДР. Общий вид водоприёмника плотины «Ал. Стамболийский». Болгария. Плотина Пеарес. Испания. Многоарочная плотина Бартлет. США. Плотина Тагокура. Япония. Плотина Братской ГЭС им. 50-летия Октября. Мингечаурская ГЭС. Общий вид гидроузла Йохенштейн. Австрия. Оросительная система на р. Чу. Плотина и распределительный узел. Плотина Мальга Биссина. Италия. Асуанская плотина. АРЕ. Волжская ГЭС им. В. И. Ленина. Многоарочная плотина Жирот. Франция. Усть-Каменогорская ГЭС. Куйбышевское водохранилище на участке судоходного шлюза.
«Гидротехника и мелиорация»
«Гидроте'хника и мелиора'ция», ежемесячный научно-производственный журнал министерства сельского хозяйства СССР и министерства мелиорации и водного хозяйства СССР. Издаётся в Москве с апреля 1949. Рассчитан на научных работников, инженеров-гидротехников, мелиораторов, механизаторов, агрономов, преподавателей и студентов гидромелиоративных вузов, специалистов колхозов и совхозов. Публикует научные и производственные статьи по вопросам орошения, осушения, с.-х. водоснабжения, механизации мелиоративных работ. Тираж (1971) 20 тыс. экз.
А. И. Шкляревский.
Гидротехники и мелиорации институт
Гидроте'хники и мелиора'ции институ'тВсесоюзный научно-исследовательский им. А. Н. Костякова (ВНИИГиМ), основан в 1929 в Москве на базе Государственного института. с.-х. мелиорации. В 1958 институту присвоено имя член-корреспондента АН СССР, академика ВАСХНИЛ А. Н. Костякова. Имеет (1970): отделы — орошения; оросительных систем; осушения; с.-х. водоснабжения и обводнения; гидротехнических сооружений (лаборатории: гидротехническая, оснований гидротехнических сооружений); механизации мелиоративных работ (лаборатория гидромеханизации); исследования сооружений мелиоративных систем и рабочих органов мелиоративных машин; мелиоративной гидрогеологии; конструкторскоисследовательский; экономических исследований (лаборатории: экономики орошения, экономики осушения, инженерно-экономических исследований); математических методов и средств вычислительной техники (лаборатории: водохозяйственных и гидрологических расчётов, математических методов исследований, вычислительной техники, автоматизации систем управления); координации научно-исследовательских работ; научно-технической информации; лаборатории — почвенно-мелиоративную; дренажа и промывок засоленных почв; измерительных приборов; Харьковские научно-исследовательские лаборатории; зональные опытно-мелиоративные станции — Смоленскую, (Смоленск), Курскую (Льговский район), Мещерскую (Рязанская обл., поселок Солотча), Повадинский опорный пункт (Московская обл., Подольский район), Западносибирский филиал (г. Тюмень). институт выполняет научно-исследовательские работы в области орошения с.-х. культур, осушения болот и заболоченных земель, с.-х. водоснабжения и обводнения, механизации мелиоративных работ, гидромеханизации, методов проектирования и конструкций оросительных систем и гидротехнических сооружений, мелиоративной гидрогеологии, прогнозов развития мелиорации и повышения экономической эффективности мелиорации земель, математических методов исследования с применением ЭВМ. Осуществляет координацию научно-исследовательских работ и научно-техническую информацию в области мелиорации. Имеет очную и заочную аспирантуру. Издаёт научные «Труды» (с 1928).
Гидротехники институт
Гидроте'хники институ'тВсесоюзный научно-исследовательский им. Б. Е. Веденеева (ВНИИГ), организован в Ленинграде в 1921 для решения проблемных вопросов в области мелиорации (ГНМИ), а с 1931 — в области гидроэнергетики и гидротехнических сооружений. В 1946 институту присвоено имя академика АН СССР Б. Е. Веденеева. ВНИИГ имеет филиал в Красноярске и отделения в Днепродзержинске, Ивангороде и Нарве. В составе института в 1970 было 32 научных лаборатории, объединённые в отделы: бетонных и железобетонных гидротехнических сооружений, гидравлики, оснований и земляных гидротехнических сооружений, динамики и сейсмики сооружений, промышленных охладителей ТЭС. институт разрабатывает новые и совершенствует существующие конструкции гидротехнических сооружений, методы исследований, расчёта, возведения и эксплуатации их, эффективные виды стройматериалов и способы производства работ. ВНИНГ осуществляет в СССР координацию научных исследований в области гидротехнического строительства; имеет аспирантуру, издаёт «Известия» (с 1931).
Лит.:Всесоюзный научно-исследовательский институт гидротехники имени Б. Е. Веденеева, М. — Л., 1965.
М. Ф. Складнев.
Гидротехническая мелиорация
Гидротехни'ческая мелиора'ция, система мероприятий для коренного улучшения неблагоприятного водного режима земель. В СССР применяют следующие виды Г. м.:
— в основном в южных и юго-восточных районах;
— преимущественно на С. и С.-З. страны:
— в безводных и маловодных степных и полупустынных районах: промывку засоленных земель; борьбу с
на размываемых склонах и оврагообразованием; регулирование речного стока и русел рек; использование сточных вод для орошения (см.
) — вблизи больших городов и насел, пунктов;
— на полях со скелетными (с большим количеством обломков горных пород) или маломощными почвами, на заболоченных или пониженных участках. Г. м. позволяет управлять водным режимом почвы, придаёт устойчивость с.-х. производству, даёт возможность производительно использовать землю. Урожайность с.-х. культур на поливных землях в несколько раз больше, чем на неорошаемых (зерновых в 1,5—2 раза, кормовых в 4—5 раз); высоки и устойчивы урожаи на осушенных землях, особенно на низинных болотах. Г. м. тесно связана с агролесомелиорацией, химической мелиорацией, культуртехническими работами, составляющими единый комплекс по улучшению природных условий с.-х. производства. Г. м. необходимо сочетать с освоением и правильным использованием земель (севообороты, подбор культур и сортов, высокая агротехника и т.п.). Только в этом случае Г. м. будет экономически эффективной и явится важнейшим средством интенсификации сельского хозяйства. Для осуществления Г. м. строят гидротехнические сооружения. Комплекс инженерных сооружений и устройств, обеспечивающих подачу и распределение воды на орошаемых землях (вместе с орошаемой территорией) составляет
, для осушения —
. При обводнении сооружают колодцы, пруды, каналы, водопроводы. Для регулирования рек углубляют и расширяют их русла, возводят дамбы и валы, а для регулирования стока сооружают водохранилища. На засоленных почвах промывные воды, содержащие соли, удаляют через дренажные системы (см.
). Для борьбы с водной эрозией на склонах устраивают водосборные каналы, водозадерживающие валы, проводят террасирование склонов, устраивают сбросные сооружения в оврагах и балках. Г. м. на местах выполняют специальные строительно-монтажные управления, машинно-мелиоративные и луго-мелиоративные станции, машинно-мелиоративные отряды, совхозы и колхозы. Большая часть гидромелиоративных работ проводится за счёт государственного бюджета.
Лит. см. при ст.
.
В. А. Кутергин, Н. Г. Раевская.
Гидротехнические сооружения
Гидротехни'ческие сооруже'ния, сооружения, предназначенные для использования водных ресурсов (рек, озёр, морей, грунтовых вод) или для борьбы с разрушительным действием водной стихии. В зависимости от места расположения Г. с. могут быть морскими, речными, озёрными, прудовыми. Различают также наземные и подземные Г. с. В соответствии с обслуживаемыми отраслями водного хозяйства Г. с. бывают: водноэнергетические, мелиоративные, воднотранспортные, лесосплавные, рыбохозяйственные, для водоснабжения и канализации, для использования водных недр, для благоустройства городов, спортивных целей и др.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
|
|