Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ГЕ)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ГЕ) - Чтение (стр. 39)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  Для вычисления координат пунктов государственной геодезической сети СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид ), который характеризуется следующими данными:

  большая полуось а =6 37 8 245 м,

  полярное сжатие a =1:298,3,

  а исходным пунктом служит Пулковская астрономическая обсерватория (центр её Круглого зала), причём для неё приняты следующие геодезические координаты:

  широта В= 59° 4618,55»,

  долгота L=30°19'42,09»,

  полученные путём исправления её астрономической широты и долготы за влияние отклонения отвесной линии от нормали к поверхности эллипсоида Красовского. Высота геоида в Пулково над поверхностью этого эллипсоида принята равной нулю.

  Один из разделов высшей Г. рассматривает геометрию земного эллипсоида и называется сфероидической Г. В её задачи входит разработка методов приведения геодезических измерений к поверхности референц-эллипсоида, методов решения треугольников и вычисления координат опорных пунктов на этой поверхности. Сфероидическая Г. даёт и математические основы методов определения фигуры и размеров Земли из градусных измерений.

  Приведение геодезических измерений к поверхности референц-эллипсоида состоит в проектировании соответствующих пунктов на эту поверхность нормалями к ней. Это достигается тем, что в результаты геодезических измерений, например в длины линий и величины углов, вводятся поправки за высоту земной поверхности над поверхностью референц-эллипсоида и отклонения отвесной линии в определяемых пунктах.

  Проекции определяемых пунктов на поверхности референц-эллипсоида соединяют геодезическими линиями , а их координаты получают последовательным вычислением и суммированием разностей координат каждых 2 смежных пунктов по длине и направлению соединяющей их геодезической линии (см. Геодезическая задача ). Т. к. геодезические координаты выражаются в угловой мере и для практических целей неудобны, то они обычно заменяются прямоугольными координатами на плоскости путём отображения на ней поверхности референц-эллипсоида по тому или иному математическому закону точечного соответствия (см. Геодезические проекции ). Сфероидическая Г. рассматривает теории отображения на плоскость только ограниченных частей поверхности земного эллипсоида. Отображение же всей поверхности земного эллипсоида на плоскость для построения географических карт рассматривается в математической картографии (см. Картографические проекции ).

  Высоты опорных геодезических пунктов определяют методами геометрического нивелирования , которое состоит в измерении и суммировании разностей высот каждых двух последовательных точек, расположенных на расстоянии (в зависимости от класса) 100-300 модна от другой по некоторой линии, образующей нивелирный ход. Разности высот определяют нивелиром как разность отсчётов по имеющим точные деления рейкам, когда они установлены по отвесу, а визирная линия трубы нивелира строго горизонтальна. Линии геометрического нивелирования в зависимости от последовательности и точности выполнения работы подразделяются на классы.

  В СССР нивелирование 1 класса производится по особо намеченным линиям, образующим замкнутые полигоны с периметром около 1600 км, и выполняется с наивысшей точностью, достижимой при применении современных инструментов и методов работы. Так, по линиям I класса случайная ошибка нивелирования не превышает 0,5 мми систематическая ошибка составляет всего лишь 0,03 ммна 1 кмнивелирного хода. Нивелирная сеть II класса строится из линий, прокладываемых вдоль железных, шоссейных, грунтовых дорог и больших рек и образующих замкнутые полигоны с периметром около 600 км. По линиям нивелирования II класса разности высот определяются со средней случайной ошибкой не более 1 мми систематической - не более 0,2 ммна 1 кмнивелирной линии. Нивелирные сети I и II классов сгущаются линиями нивелирования III и IV классов.

  Линии нивелирования всех классов закрепляются на местности реперами или марками, которые закладываются через каждые 3-5 кмв грунт, стены каменных зданий ( рис. 5 ) и т. д. На линиях нивелирования I, II и III классов через 50-80 кми в местах их пересечения закладывают т. н. фундаментальные реперы, рассчитанные на долговременную сохранность. Высоты реперов и марок нивелирования вычисляют в той или иной системе высот над уровнем моря в каком-нибудь исходном пункте. В нивелирных работах СССР принята система нормальных высот, а исходным пунктом служит Кронштадтский футшток, нуль которого совпадает с многолетним средним уровнем Балтийского моря.

  Для определения координат и высот пунктов опорной геодезической сети необходимы данные о распределении силы тяжести на земной поверхности. Вопросы измерения силы тяжести рассматриваются в гравиметрии , которая представляет собой самостоятельный раздел геодезических знаний. Методы использования гравиметрических данных для решения научных и практических задач Г. составляют содержание геодезической гравиметрии , созданной трудами советского учёного М. С. Молоденского.

  В области геодезии рассматриваются методы, техника и организация работ, связанных с измерениями на земной поверхности для отображения её на планах и картах. Совокупность этих работ представляет топографическую съёмку местности и поэтому соответствующий раздел Г. часто называют топографией . В прошлом топографические съёмки производились наземным способом, который теперь применяется для съёмки лишь небольших участков местности. Топографические съёмки значительных площадей земной поверхности производятся путём сплошного фотографирования местности с летательных аппаратов (см. Аэрофотосъёмка ) и последующей фотограмметрической обработки аэроснимков (см. Фотограмметрия ). Результатом топографических съёмок являются топографические карты, которые служат исходным материалом для составления различных карт в более мелких масштабах. Методы составления и издания всевозможных карт рассматриваются в картографии.

 Изучение методов, техники и организации геодезических работ, связанных с проведением различных инженерных мероприятий (строительство гидротехнических сооружений, путей сообщения, крупных высотных зданий, промышленных предприятий и т. д.), составляет содержание инженерной геодезии . Рассмотрение аналогичных вопросов, относящихся к строительству шахт, тоннелей и метро, также входит в задачи инженерной Г. и вместе с тем является составной частью маркшейдерии.

 Т. к. геодезические измерения сопровождаются неизбежными ошибками различного характера, то в Г. принято каждую величину измерять многократно, а также измерять большее количество величин, чем необходимо для решения данной задачи. Измерение каждой избыточной величины создаёт одно условие, которое связывает её с другими величинами и которое не выполняется из-за их ошибок. Методы оценки точности геодезических измерений изучаются в теории ошибок (см. Наименьших квадратов метод ), а приведение геодезических измерений в соответствие с теми математическими условиями, которым они должны удовлетворять, составляет содержание уравнительных вычислений.

  Краткие исторические сведения. Г. возникла в глубокой древности, когда появилась необходимость землеизмерения и составления планов и карт для хозяйственных целей. В 7 в. до н. э. в Вавилоне и Ассирии на глиняных дощечках составлялись географические карты, на которых давались сведения также и экономического характера. В 6-4 вв. до н. э. были высказаны предположения о шарообразности Земли и найдены некоторые доказательства этого. В 3 в. до н. э. в Египте греческий учёный Эратосфен произвёл первое определение радиуса земного шара на основании правильных геометрических принципов, получивших название градусных измерений. В это время в трудах Аристотеля впервые появилось название «Г.» как отрасли человеческих знаний, связанной с астрономией, картографией и географией. Во 2 в. до н. э. астрономы и математики установили понятия о географической широте и долготе места, разработали первые картографические проекции, ввели сетку меридианов и параллелей на картах, предложили первые методы определения взаимного положения точек земной поверхности из астрономических наблюдений. В начале 9 в. по поручению багдадского халифа Мамуна было произведено одно из первых градусных измерений вблизи Мосула и достаточно точно определён радиус земного шара.

  Начало геодезических работ в России относится к 10 в. В сборнике законов «Русская правда» (11-12 вв.) содержатся постановления об определении земельных границ путём измерений. Одна из первых карт Московского государства, т. н. Большой чертёж, время составления которой относится к 16 в., основывалась на маршрутных съёмках и на опросных данных.

  Развитие современной Г. и геодезических работ началось в 17 в. В начале 17 в. была изобретена зрительная труба. Большим шагом в развитии Г. явилось изобретение нидерландским учёным В. Снеллиусом в 1615-1617 метода триангуляции, который до сих пор служит одним из основных методов определения опорных пунктов для топографических съёмок. Появление угломерного инструмента, называемого теодолитом , и сочетание его со зрительной трубой, снабженной сеткой нитей, повысило точность угловых измерений в триангуляции. В середине 17 в. был изобретён барометр, явившийся первым инструментом для определения высоты точек земной поверхности. Были разработаны также графические методы топографической съёмки, упростившие составление топографических карт.

  Открытие английским учёным И. Ньютоном закона всемирного тяготения во 2-й пол. 17 в. привело к возникновению идеи о сфероидичности Земли, т. е. сплюснутости её в направлении полюсов. Исходя из закона тяготения и гипотез о внутреннем строении Земли, И. Ньютон и нидерландский учёный X. Гюйгенс определили сжатие земного сфероида чисто теоретическим путём и получили сильно противоречивые результаты, вызвавшие сомнения в сплюснутости фигуры Земли и даже в обоснованности закона всемирного тяготения. В связи с этим в 1-й половине 18 в. Парижской АН были направлены в Перу и Лапландию геодезические экспедиции, которые произвели там градусные измерения, подтвердившие правильность идеи о сфероидичности Земли и доказавшие обоснованность закона всемирного тяготения. В середине 18 в. французский учёный А. Клеро разработал основы теории фигуры Земли и обосновал закон изменения силы тяжести на земном сфероиде в зависимости от географической широты. Эпоха открытия закона тяготения и упомянутых геодезических экспедиций явилась эпохой становления Г. как самостоятельной науки о фигуре Земли и методах её изучения. В конце 18 в. во Франции П. Мешен и Ж. Деламбр измерили дугу меридиана от Дюнкерка до Барселоны для установления длины метра как 1:10000000 доли четверти меридиана и получили один из первых достоверных выводов о размерах земного эллипсоида.

  Развитие геодезических работ в России усилилось при Петре I, который в 1701 основал в Москве первую в России астрономическую обсерваторию и Школу математических и навигацких наук, готовившую математиков, астрономов, геодезистов и географов. Первые топографические съёмки в России были начаты на рубеже 17 и 18 вв. В 1720 Петр I топографические и картографические работы в России подчинил Сенату, подчеркнув тем самым их большое государственное значение. В 1739 в Петербургской АН был организован Географический департамент, который руководил всеми геодезическими и картографическими работами в России. По изданному в 1765 манифесту о генеральном межевании проводились геодезические работы по составлению планов землевладений, продолжавшиеся почти до середины 19 в. и доставившие обширный материал для картографирования страны. В 1779 в Москве возникла землемерная школа, которая в 1819 была преобразована в Константиновское землемерное училище, а в 1835 - в Константиновский межевой институт, позднее - крупное высшее учебное заведение по подготовке геодезистов и картографов. В связи с возросшими требованиями военного дела к топографическим картам в 1797 при Генеральном штабе было организовано Депо карт , которое в 1812 было преобразовано в Военно-топографическое депо, а в 1822 создан Корпус военных топографов. Все основные астрономо-геодезические и топографические работы в дореволюционной России выполнялись этим учреждением, труды которого являются замечательным памятником развития отечественной геодезической и картографической науки. В 1816 под руководством русского военного геодезиста К. И. Теннера и астронома В. Я. Струве в западных пограничных губерниях России были начаты большие астрономо-геодезические работы, которые в 1855 завершились градусным измерением огромной (более 25° по широте) дуги меридиана, простирающейся по меридиану 30° от устья Дуная до берегов Северного Ледовитого океана ( рис. 6 ).

  Немецкие учёные К. Ф. Гаусс в 1821-24 в Ганновере и Ф. В. Бессель в 1831-34 в Восточной Пруссии выполнили небольшие градусные измерения. Они усовершенствовали также методы и инструменты геодезических работ и разработали новые способы решения геодезических задач на поверхности земного эллипсоида. В 1828 Гаусс предложил принять за математическую поверхность Земли средний уровень моря. Русский военный геодезист Ф. Ф. Шуберт в 1859 впервые высказал мысль о возможной трёхосности Земли и определил размеры трёхосного земного эллипсоида. Немецкий физик И. Листинг в 1873 ввёл понятие о геоиде для обозначения фигуры Земли. В 1888 русский учёный Ф. А. Слудский создал оригинальную теорию фигуры Земли и обосновал некоторые методы её изучения.

  В течение 19 в. был получен ряд определений размеров земного эллипсоида. Для успешного решения основной проблемы Г. в 1864 была создана Европейская, а затем и Международная комиссия по измерению Земли, которая явилась родоначальницей Международного геодезического и геофизического союза . Во 2-й половине 19 в. геодезические методы стали применяться для изучения внутреннего строения Земли и движений земной коры.

  После Октябрьской революции наступила новая эпоха развития Г. и геодезических работ в нашей стране. По Декрету СНК РСФСР от 15 марта 1919, подписанному В. И. Лениным, было создано Высшее геодезическое управление, преобразованное впоследствии в Главное управление геодезии и картографии при Совете Министров СССР и являющееся центром государственной геодезической службы страны. Затем были образованы геодезические институты СССР и средние технические учебные заведения, выпускающие инженеров и техников по всем видам геодезических и картографических работ. В конце 1928 в Москве организован Центральный научно-исследовательский институт геодезии, аэросъёмки и картографии, превратившийся в крупнейший центр развития научной мысли в области геодезических знаний.

  В 1928 сов. геодезист Ф. Н. Красовский разработал стройную и научно обоснованную схему и программу построения опорной геодезической сети, предусматривающую создание астрономо-геодезической сети на всей территории СССР. В ходе построения этой сети усовершенствовались теории, методы и инструменты астрономических определений и геодезических измерений. В СССР усовершенствован базисный прибор с подвесными мерными проволоками из инвара , освоено изготовление инварных мерных проволок с любым заданным коэффициентом расширения, разработаны оригинальные типы электрооптических дальномеров, радиодальномеров и радиогеодезических систем, позволяющих измерять расстояния с высокой точностью. Возникла промышленность, выпускающая астрономо-геодезические инструменты, аэросъёмочную аппаратуру и фотограмметрические приборы.

  В 1932 по постановлению Совета труда и обороны СССР началась общая гравиметрическая съёмка страны, получившая впоследствии большое значение для решения научных и практических задач Г. и геофизики. Из исследований А. А. Михайлова, М. С. Молоденского и др. возникла геодезическая гравиметрия, являющаяся теперь важным разделом геодезических знаний. В связи с трудностями определения фигуры геоида М. С. Молоденский обосновал теорию изучения фигуры физической поверхности и внешнего гравитационного поля Земли. И. Д. Жонголович разработал методы определения фигуры, размеров и гравитационного поля Земли по наблюдениям искусственных спутников.

  По градусным измерениям СССР и других стран Ф. Н. Красовский и А. А. Изотов в 1940 определили новые размеры земного эллипсоида, которые применяются теперь в СССР и других социалистических странах. Позднее А. А. Изотов и М. С. Молоденский определили ориентировку эллипсоида Красовского в теле Земли. В 1942-45 под руководством Д. А. Ларина было произведено общее уравнивание образовавшейся к тому времени обширной астрономо-геодезической сети СССР. Сов. геодезисты разработали методы уравнивания больших астрономо-геодезических сетей и сплошных сетей триангуляции (Ф. Н. Красовский, Н. А. Урмаев, И. Ю. Пранис-Праневич и др.).

  Широкое развитие в СССР получили топографические съёмки и картографические работы, связанные с нуждами народного хозяйства и обороны страны. С 1925 в топографических съёмках стали применяться аэрофотосъёмка и фотограмметрические методы, разработанные советскими учёными (Ф. В. Дробышев, М. Д. Коншин, Г. В. Романовский и др.). В 1945 завершилась работа по созданию многолистной государственной топографической карты СССР в масштабе 1:1000000. Позднее была создана топографическая карта в масштабе 1:100000 на всю территорию страны, значительная часть которой покрыта съёмками и в более крупных масштабах.

  Геодезические работы производились в связи с землеустройством, строительством городов, гражданских сооружений, промышленных предприятий, путей сообщения и т. д. Методы Г. применялись также при строительстве атомных электростанций, крупных ускорителей заряженных частиц и т. д.

  Развитие Г. в СССР ознаменовалось постановкой и решением таких крупнейших научных проблем и практических задач, которые никогда не ставились в других странах.

Лит.: Руководства и монографии: Красовский Ф. Н. и Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1-2, М., 1938-39; Красовский Ф. Н., Руководство по высшей геодезии, ч. 2, М., 1942; Закатов П. С., Курс высшей геодезии, 3 изд., М., 1964; Чеботарев А. С., Геодезия, 2 изд., ч. 1, М., 1955; Чеботарев А. С., Селиханович В. Г. и Соколов М. Н., Геодезия, ч. 2, М., 1962; Гержула Б. И., Основы инженерной геодезии, М., 1960; Топография, под ред. Д. А. Слободчикова, ч. 1-2, М., 1954; Михайлов А. А., Курс гравиметрии и теории фигуры Земли, 2 изд., М., 1939; Бровар В. В., Магницкий В. А. и Шимбирев Б. П., Теория фигуры Земли, М., 1961; Шокин П. Ф., Гравиметрия, М., 1960; Молоденский М. С., Юркина М. И. и Еремеев В. Ф., Методы изучения внешнего гравитационного поля и фигуры Земли, «Тр. Центрального научно-исследовательского института геодезии, аэросъемки и картографии», 1960, в. 131; Изотов А. А., Форма и размеры Земли по современным данным, там же, 1950, в. 73; Елисеев С. В., Геодезические инструменты и приборы, 2 изд., М., 1959; Чеботарев А. С., Способ наименьших квадратов с основами теории вероятностей, М., 1958; Пранис-Праневич И. Ю., Руководство по уравнительным вычислениям триангуляции, 2 изд., М., 1956; Вейс Г., Геодезическое использование искусственных спутников Земли, пер. с англ., М., 1967; Меллер И., Введение в спутниковую геодезию, пер. с англ., М., 1967; Беррот А. и Хофман В., Космическая геодезия, пер. с нем., М., 1963; Helmert F. R., Die mathematischen und physikalischen Theorien der hцheren Geodдsie, 2 Aufl., Bd 1-2, Lpz., 1962; Jordan W., Eggert О., Kneissl М., Handbuch der Vermessungskunde, 10 Aufl., Bd 1-4, Stuttg., 1955-61; Ryaavy J., Vyaai geodesie, Praha, 1947.

  История. Котельников С. К., Молодой геодет, или первые основания геодезии, содержащие все геодетское знание, предложенное вкратце, изъясненное правилами и примерами, СПБ, 1766; Болотов А. П., Курс высшей и низшей геодезии, ч. 1-2, СПБ, 1845-49; Струве В. Я., Дуга меридиана, т. 1-2, СПБ, 1861; Евтеев О. А., Первые русские геодезисты на Тихом океане, М., 1950; 50 лет советской геодезии и картографии, под ред. А. Н. Баранова и М. К. Кудрявцева, М., 1967; Бируни, Геодезия, Избр. произв., т. 3, Таш., 1966.

  Справочники. Геодезия. Справочное руководство, под ред. М. Д. Бонч-Бруевича, т. 1-9, М. - Л., 1939-1949; Справочник геодезиста, под ред. В. Д. Большакова и Г. П. Левчука, М., 1966: Библиографический указатель геодезической литературы с начала книгопечатания до 1917 г., сост. Е. Ф. Беликов, Л. П. Соловьев, М., 1971.

  А. А. Изотов.

Рис. 4. Геодезический сигнал.

Рис. 5. Нивелирный репер, заложенный в стене здания.

Рис. 2. Схема триангуляции.

Рис. 3. Разрез подземного центра геодезического пункта.

Рис. 1. Разрез земной поверхности вертикальной плоскостью.

Рис. 6. Монумент на южном конце дуги меридиана Струве (Старо-Некрасовка, близ Измаила) с надписью: «Южный предел Дуги меридиaна 25° 20' от реки Дунай до Океана Ледовитого чрез Pocсию, Швецию и Норвегию... Постоянно трудясь с 1816 по 1852 измерили геометры трех народов. Широта 45° 20' 28"».

«Геодезия и картография»

«Геоде'зия и картогра'фия», научно-технический и производственный журнал, орган Главного управления геодезии и картографии при Совете Министров СССР. Издаётся с 1956 в Москве. Выходит 12 раз в год. Его предшественниками были журнал «Геодезист» (1925-40) и «Сборник научно-технических и производственных статей по геодезии, картографии, топографии, аэросъёмке и гравиметрии» (1941-50). Публикует статьи по актуальным вопросам технической политики государственной топографо-геодезической и картографической службы, теоретические и производственные статьи по геодезии, картографии, фотограмметрии, геодезической астрономии и гравиметрии, космической триангуляции и инженерной геодезии и др. вопросам. Тираж (1971) около 8,5 тыс. экз.

  С. Г. Судаков.

Геодиметр

Геоди'метр, то же, что электрооптический дальномер.

Геоид

Гео'ид(греч. geoeides, от ge - Земля и eidos - вид), фигура, которую образовала бы поверхность Мирового океана и сообщающихся с ним морей при некотором среднем уровне воды, свободной от возмущений приливами, течениями, разностями атмосферного давления и т.д. Поверхность Г. является одной из уровенных поверхностей потенциала силы тяжести. Эта поверхность, мысленно продолженная под материками, образует замкнутую фигуру, которую принимают за сглаженную фигуру Земли. Часто под Г. понимают уровенную поверхность, проходящую через некоторую фиксированную точку земной поверхности у берега моря. Надобность в таком определении понятия о Г. возникла из-за трудностей установления связи реальной Земли и невозмущённого среднего уровня моря. Понятие о Г. сложилось в результате длительного развития представлений о фигуре Земли как планеты, а самый термин «Г.» предложен И. Листингом в 1873. От Г. отсчитывают нивелирные высоты. По современным данным, средняя величина отступления Г. от наиболее удачно подобранного земного сфероида составляет около ± 50 м, а максимальное отступление не превышает ±100 м. Высота Г. в сумме с ортометрической высотой (см. Нивелирование ) определяет высоту Нсоответственной точки над земным эллипсоидом. Поскольку распределение плотности внутри Земли с необходимой точностью неизвестно, высоту Нв геодезической гравиметрии и геодезии, согласно предложению М. С. Молоденского , определяют как сумму нормальной высоты и высоты квазигеоида (высота Ннеобходима для вывода координат точек земной поверхности околоземного пространства в единой декартовой системе). Поверхность квазигеоида («почти Г.") определена значениями потенциала силы тяжести на земной поверхности, и для изучения квазигеоида результаты измерений не нужно редуцировать внутрь притягивающей массы. Квазигеоид отступает от Г. в высоких горах на 2-3 м, на низменных равнинах - на 2-3 см, на морях и океанах поверхности Г. и квазигеоида совпадают. Фигуру квазигеоида определяют методом астрономо-гравиметрического нивелирования или через предварительное определение возмущающего потенциала по материалам наземных гравиметрических съёмок и наблюдений за движением искусственных спутников Земли. Последние данные необходимы в связи с недостаточной гравиметрической изученностью некоторых областей Земли.

  См. рис. 1 при статье Геодезия .

  Лит.:Закатов П. С., Курс высшей геодезии, 3 изд., М., 1964.

  М. И. Юркина.

Геокарпия

Геока'рпия(от гео... и греч. karpos - плод), способ распространения у растений плодов путём внедрения в почву завязи. Г. характерна, например, для арахиса , одного из видов клевера и др. растений. Плоды попадают в почву обычно вследствие сложных и своеобразных изгибов плодоножки. У арахиса под завязью образуется особый орган - гинофор , который растет, пока не внедрит завязь в почву на глубину до 10 см, затем рост его прекращается и начинает разрастаться завязь, превращаясь в плод. У некоторых геокарпных растений, как, например, у южно-американского сердечника, наряду с подземными имеются и воздушные плоды. Иногда Г. связана с клейстогамией.

Геократические периоды

Геократи'ческие пери'одыв истории Земли (от гео... и греч. kratos - сила, власть), периоды значительного увеличения площади суши, в противоположность талассократическим периодам , характеризующимся увеличением площади моря. Г. п. приурочены ко второй половине тектонических циклов , когда общие поднятия земной коры превращают в сушу значительную часть затопленных ранее мелким морем материков. Характеризуются большой контрастностью климатов, в частности резким увеличением площадей сухой (аридной) и холодной климатических зон. Для Г. п. типично накопление континентальных красноцветных толщ, сложенных эоловыми, аллювиальными и озёрными осадками засушливых равнин, частью и настоящих пустынь, а также ледниковых отложений. Не менее типичны отложения внутренних замкнутых и полузамкнутых морских бассейнов с повышенной солёностью осадков сильно пересоленных лагун (доломиты, гипсы, соли). К Г. п. могут быть отнесены: конец силурийского и значительная часть девонского периодов, конец каменноугольного, пермский и часть триасового периодов, неогеновый и антропогеновый периоды (включая современную эпоху).

  Е. В. Шанцер.

Геокриология

Геокриоло'гия(от гео… , греч. kryos - холод, мороз и …логия ), мерзлотоведение, наука о мёрзлых горных породах (почвах, грунтах). Изучает происхождение, историю развития, условия существования мёрзлых толщ в земной коре; процессы и явления, происходящие в промерзающих, мёрзлых и оттаивающих горных породах (почвах, грунтах); их строение, состав и свойства; геофизические., физико-геологические, геоморфологические и гидрогеологические явления, связанные с процессами промерзания, оттаивания и диагенеза мёрзлых толщ. Наряду с разработкой теории таких процессов Г. занимается выработкой приёмов воздействия на мерзлотные процессы в интересах строительства, транспорта, сельского хозяйства и т.п. В связи с этим развиваются два основных направления (отрасли) - общая Г. и имеющая прикладное значение инженерная Г.

  Мерзлотоведение как самостоятельная отрасль знаний о мёрзлых горных породах (почвах, грунтах) оформилось в СССР в 20-х гг. 20 в. на стыке геологических, географических, геофизических и инженерно-технических дисциплин. Основная заслуга в создании мерзлотоведения в СССР принадлежит М. И. Сумгину . С развитием науки термины «мерзлота», «вечная мерзлота» и др. подверглись критике как разноречивые, многозначные. В 50-х гг. 20 века институт мерзлотоведения АН СССР им. В. А. Обручева предложил изменить название науки «мерзлотоведение» на «геокриология», однако до настоящего времени оба термина сосуществуют.

  Охватывая обширный круг вопросов, Г. использует различные методы исследований: комплекс полевых (экспедиционных) и камеральных методов геологических, географических и геофизических наук, физические, физико-химические лабораторные методы; экспериментальные исследования Г. сочетает с теоретическими, широко применяет математические методы. Значение Г. в развитии производительных сил СССР определяется расширением и интенсификацией народно-хозяйственно освоения северных и восточных территорий СССР, находящихся в области распространения многолетнемёрзлых горных пород. Исследования проводят многие научные и производственные организации, в том числе институт мерзлотоведения Сибирского отделения АН СССР в Якутске, географический и геологический факультеты МГУ, Всесоюзный научно-исследовательский институт гидрогеологии и инженерной геологии (ВСЕГИНГЕО), Производственный и научно-исследовательский институт инженерных изысканий Госстроя СССР (ПНИИИС) в Москве и др.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85