Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ФЛ)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ФЛ) - Чтение (стр. 7)
Автор: БСЭ
Жанр: Энциклопедии

 

 


Например, добавление сульфида натрия сульфидизирует поверхность окисленных минералов цветных металлов и позволяет закрепиться на них молекулам ксантогената. Медный купорос оказывает активирующее действие на флотацию сфалерита. Регулятор, затрудняющий взаимодействие минерала с собирателем, называется подавителем или депрессором. Например, жидкое стекло предотвращает закрепление мыл на силикатных минералах, подавляя их флотацию; известь и цианиды подавляют флотацию пирита. Кроме активаторов и подавителей, имеются реагенты-регуляторы, придающие среде определенную щёлочность и кислотность (регуляторы среды). Регуляторы, разобщающие (пептизирующие) частицы микронных размеров (тонких шламов), например силикат натрия, уменьшая их отрицательное действие на флотацию, называются реагентами-пептизаторами и чаще всего являются неорганическими соединениями; реже используют органические регуляторы (карбоксилметилцеллюлоза и др.).
        Пенообразователи(вспениватели) повышают устойчивость минерализованной пены, способствуют лучшему диспергированию воздуха в пульпе и образованию мельчайших пузырьков. Обычно это органические ,молекулы которых имеют полярную и неполярную группы и адсорбируются на поверхности раздела фаз газ – жидкость, понижая поверхностное натяжение. Полярные группы обращены в воду, в результате чего пузырьки воздуха окружаются устойчивыми гидратными оболочками, препятствующими их слиянию. В качестве пенообразователей применяются различные технические спирты и их смеси, пиридиновые основания. Некоторые собиратели (мыла, амины) обладают пенообразующим эффектом.
        Действие Ф. р. зависит от природного состава поверхности минералов, щёлочности и кислотности среды, температуры пульпы (для жирных кислот и их солей) и др. факторов. Расход Ф. р. – от нескольких гдо нескольких кгна 1 тфлотируемого материала. При флотации применяют определённый ассортимент реагентов и порядок их подачи, что составляет основу флотационного режима. Обычно в пульпу добавляется регулятор (или регуляторы), затем – собиратель и впоследствии – пенообразователь. Выдерживается оптимальное время контакта пульпы с каждым реагентом. Во многих случаях действие реагентов комплексное и приведённая их классификация несколько условна.
        Лит.см. при статьях и .
         В. И. Классен.

Флотация

       Флота'ция(франц. flottation, от flotter – плавать), процесс разделения мелких твёрдых частиц (главным образом минералов), основанный на различии их в смачиваемости водой. Гидрофобные (плохо смачиваемые водой) частицы избирательно закрепляются на границе раздела фаз, обычно газа и воды, и отделяются от гидрофильных (хорошо смачиваемых водой) частиц. При Ф. пузырьки газа или капли масла прилипают к плохо смачиваемым водой частицам и поднимают их к поверхности.
        Ф. – один из основных методов ,применяется также для очистки воды от органических веществ и твёрдых взвесей, разделения смесей, ускорения отстаивания в химической, нефтеперерабатывающей, пищевой и др. отраслях промышленности. В зависимости от характера и способа образования межфазных границ (вода – масло – газ), на которых происходит закрепление разделяемых компонентов (см. ) различают несколько видов Ф.
        Первой была предложена масляная Ф., на которую в 1860 В. Хайнсу (Великобритания) был выдан патент. При перемешивании измельченной руды с маслом и водой сульфидные минералы избирательно смачиваются маслом и всплывают вместе с ним на поверхность воды, а порода (кварц, полевые шпаты) осаждается. В России масляная Ф. графита была осуществлена в 1904 в г. Мариуполе (ныне Жданов, УССР).
        Способность гидрофобных минеральных частиц удерживаться на поверхности воды, в то время как гидрофильные тонут в ней, была использована А. Нибелиусом (США, 1892) и Маквистеном (Великобритания, 1904) для создания аппаратов плёночной Ф., в процессе которой из тонкого слоя измельченной руды, находящегося на поверхности потока воды, выпадают гидрофильные частицы.
        Увеличение объёмов и расширение области применения Ф. связано с пенной Ф., при которой обработанные реагентами частицы выносятся на поверхность воды пузырьками воздуха, образуя пенный слой, устойчивость которого регулируется добавлением пенообразователей. Для образования пузырьков предлагались различные методы: образование углекислого газа за счёт химической реакции (С. Поттер, США, 1902), выделение газа из раствора при понижении давления (Ф. Элмор, Великобритания, 1906) – вакуумная Ф., энергичное перемешивание пульпы, пропускание воздуха сквозь мелкие отверстия.
        Для проведения пенной Ф. производят измельчение руды до крупности 0,5–1,0 мм вслучае природногидрофобных неметаллических полезных ископаемых с небольшой плотностью (сера, уголь, тальк) и до 0,1–0,2 ммдля руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу, а также при возникновении на частицах пузырьков газов, выделяющихся из раствора. На Ф. влияют ионный состав жидкой фазы пульпы, растворённые в ней газы (особенно кислород), температура, плотность пульпы. На основе изучения минералого-петрографического состава обогащаемого полезного ископаемого выбирают схему Ф., реагентный режим и степень измельчения, которые обеспечивают достаточно полное разделение минералов. Лучше всего Ф. разделяются зёрна размером 0,1–0,04 мм.Более мелкие частицы разделяются хуже, а частицы мельче 5 мкухудшают Ф. более крупных частиц. Отрицательное действие частиц микронных размеров уменьшается специфическими реагентами. Крупные (1–3 мм) частицы при Ф. отрываются от пузырьков и не флотируются. Поэтому для Ф. крупных частиц (0,5–5 мм) в СССР разработаны способы пенной сепарации, при которых пульпа подаётся на слой пены, удерживающей только гидрофобизированные частицы. С той же целью созданы флотационные машины кипящего слоя с восходящими потоками аэрированной жидкости. Это – гораздо более производительные процессы, чем масляная и плёночная Ф.
        Для очистки воды, а также извлечения компонентов из разбавленных растворов в 50-х гг. был разработан метод ионной Ф., перспективный для переработки промышленных стоков, минерализованных подземных термальных и шахтных вод, а также морской воды. При ионной Ф. отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимодействуют с флотационными реагентами-собирателями, чаще всего катионного типа, и извлекаются пузырьками в пену или плёнку на поверхности раствора. Тонкодисперсные пузырьки для Ф. из растворов получают также при электролитическом разложении воды с образованием газообразных кислорода и водорода (электрофлотация). При электрофлотации расход реагентов существенно меньше, а в некоторых случаях они не требуются.
        Широкое использование Ф. для обогащения полезных ископаемых привело к созданию различных конструкций флотационных машин с камерами большого размера (до 10–30 м 3) ,обладающих высокой производительностью. Флотационная машина состоит из ряда последовательно расположенных камер с приёмными и разгрузочными устройствами для пульпы. Каждая камера снабжена аэрирующим устройством и пеносъёмником.
        В СССР и за рубежом благодаря Ф. вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Фабрики выпускают до пяти видов .В ряде случаев Ф. не являются отходами, а используются в качестве стройматериалов, удобрений для сельского хозяйства и в др. целях. Ф. является ведущим процессом при обогащении руд цветных металлов. Внедряется использование оборотной воды, что снижает загрязнение водоёмов.
        В развитии теории Ф. сыграли важную роль работы рус. физикохимиков – И. С. ,впервые сформулировавшего в конце 19 в. основные положения процесса смачивания, и Л. Г. ,разработавшего в начале 20 в. положения о гидрофобности и гидрофильности. Существенное влияние на развитие современной теории Ф. оказали труды А. Годена, А. Таггарта (США), И. Уорка (Австралия), сов. учёных П. А. ,А. Н. ,И. Н. ,Б. В. и др.
        Лит.:Мещеряков Н. Ф., Флотационные машины, М., 1972; Глембоцкий В. А., Классен В. И., Флотация, М., 1973; Справочник по обогащению руд, М., 1974.
         В. И. Классен, Л. А. Барский.

Флотилия

       Флоти'лия(франц. flottille, итал. flottiglia), 1) оперативное объединение (морская, речная, озёрная Ф.) в ВМФ некоторых государств, предназначенное для выполнения задач в определенном районе моря, на реке или озере. Состоит из соединений кораблей и авиации, частей морской пехоты, а также служб, обеспечивающих её боевую и повседневную деятельность. Свои задачи Ф. выполняет самостоятельно или во взаимодействии с соединениями и частями др. видов вооруженных сил (родов войск). О Ф. в СССР см. , , и др.
        2) Тактическое соединение в ВМФ некоторых иностранных государств (США, Великобритания, Франция и др.), состоящее из двух или более эскадр (или дивизионов) подводных лодок, эскадренных миноносцев, ракетных или торпедных катеров, тральщиков, а также др. кораблей и судов.
        3) Оперативное объединение атомных ракетных подводных лодок стратегического назначения в некоторых государствах (ВМС Франции и др.). 4) Соединение промысловых, экспедиционных или спортивных судов (например, китобойная антарктическая флотилия «Слава»).

Флотов Фридрих

       Фло'тов(Flotow) Фридрих (26.4.1812, Тёйтендорф, – 24.1.1883, Дармщтадт), немецкий композитор. Музыкальное образование получил в Париже у И. Пиксиса (фортепиано) и А. Рейха (композиция). Создавал главным образом оперы для парижской сцены, а также для Вены. Музыка его мелодична и легка для восприятия, несколько поверхностна. Одна из первых его опер «Петр и Катерина» (Шверин, 1835) написана на сюжет из рус. истории. Известность принесла ему опера «Кораблекрушение Медузы» (Париж, 1839; 2-я редакция под названием «Матросы», 1845). Среди лучших его произведений: «Алессандро Страделла» (Гамбург, 1844) и «Марта, или Ричмондский рынок» (Вена, 1847). В 1855–63 был придворным интендантом в Шверине, с 1868 жил близ Вены, с 1880 – близ Дармштадта.
        Лит.:Серов А. Н., «Марта». Опера в четырех действиях, соч. Флотова, в его кн.: Избр. статьи, т. 2, М., 1957.

Флоэма

       Флоэ'ма(от греч. phloiуs – кора, лыко), ткань высших растений, служащая для проведения органических веществ к различным органам. Вместе с составляет т. н. проводящие пучки. У архегониальных растений проводящие элементы Ф. представлены ситовидными клетками, у покрытосеменных – ситовидными трубками с сопровождающими клетками-спутницами. В Ф. имеются также паренхимные клетки, а у многих растений – и механическиек элементы. Подробнее см. .

Флуд Генри

       Флуд(Flood) Генри (1732–1791), ирландский политический деятель. См. Г.

Флуер

       Флу'ер, народный духовой музыкальный инструмент; род деревянной продольной открытой с клювообразным мундштуком. Распространён в Молдавии и балканских странах. Длина 250–350 мм.Имеет 6 игровых отверстий (расположены 2 группами по 3). Звук сильный, яркий. Звукоряд диатонический, диапазон – септима (передуванием расширяется до 3 октав).

Флуктуации

       Флуктуа'ции(от лат. fluctuatio – колебание), случайные отклонения наблюдаемых физических величин от их средних значений. Ф. происходят у любых величин, зависящих от случайных факторов и описываемых методами статистики (см. ) .Количественная характеристика Ф. основана на методах и .Простейшей мерой Ф. величины хслужит её s 2 x , т. е .средний квадрат отклонения хот её среднего значения ,s 2 x = , где черта сверху означает статистическое усреднение. Эквивалентной мерой Ф. является Ox,равное корню квадратному из дисперсии, или его относительная величина d x = s х/х.
        В наблюдаемые значения физических величин очень близки к их средним статистическим значениям, т. е. Ф., вызванные случайным тепловым движением частиц (например, Ф. средней энергии, плотности, давления), очень малы. Однако они имеют принципиальное значение, ограничивая пределы применимости термодинамических понятий лишь большими (содержащими очень много частиц) системами, для которых Ф. значительно меньше самих флуктуирующих величин. Существование Ф. уточняет смысл :утверждение о невозможности вечного двигателя 2-го рода остаётся справедливым, но оказываются возможными Ф. системы из равновесного состояния в неравновесные, обладающие меньшей ;однако на основе таких Ф. нельзя построить вечный двигатель 2-го рода. Для средних величин остаётся справедливым закон возрастания энтропии в изолированной системе.
        Основы теории Ф. были заложены в работах Дж. ,А. ,М. .
        С помощью можно вычислить Ф. в состоянии статистического равновесия для систем, находящихся в различных физических условиях; при этом Ф. выражаются через равновесные термодинамические параметры и производные .Например, для систем с постоянным объёмом Vи постоянным числом частиц N,находящихся в контакте с термостатом (с температурой Т), каноническое распределение Гиббса даёт для Ф. энергии ( Е):  = ( kT) 2 C V,где k , C V–теплоёмкость при постоянном объёме. Такое же выражение для Ф. справедливо и в случае квантовой статистики, различаются лишь явные выражения для C V.Для систем с постоянным объёмом в контакте с термостатом и резервуаром частиц большое каноническое распределение Гиббса даёт для Ф. числа частиц: ,где m – .В приведённых примерах флуктуируют пропорциональные объёму (т. н. экстенсивные) величины. Их относительные квадратичные Ф.  пропорциональны величине 1/ N(нормальные Ф.) и, следовательно, очень малы. В точках фазовых переходов Ф. сильно возрастают, и их относительное убывание с Nможет быть более медленным.
        Для более детальной характеристики Ф. нужно знать функцию распределения их вероятностей. Вероятность w( x 1,..., х п) Ф. некоторых величин x 1,..., х пиз состояния неполного термодинамического равновесия с энтропией S( ,...,
) в состояние с энтропией S( x 1,..., х п) определяется формулой Больцмана:
       w( x 1,..., х п) /w( ,...,
) = exp { S( x 1,..., х п) – S( ,...,
)}
      (поскольку энтропия равна логарифму ,или термодинамической вероятности состояния). Под энтропией состояния неполного равновесия понимают энтропию вспомогательного равновесного состояния, которое характеризуется такими же средними значениями x i,как и данное неравновесное. Для малых D x i= x i– x iэта формула переходит в распределение Гаусса:
       w( x 1,..., х п) = А
,
      где А –константа, определяемая из условия нормировки вероятности к 1.
        Можно найти не только Ф. величин x i,но и корреляции между ними ,определяющие их взаимное влияние (лишь в случае статистически независимых величин ); примером могут служить корреляции температуры и давления:  (температура связана со средней энергией), объёма и давления: .Для физических величин А( х, t) , В( х, t) ,зависящих от координат ( x) и времени ( t) ,вообще говоря, имеют место пространственно-временные корреляции между их Ф. в различных точках пространства в различные моменты времени:
       ;
      функции Fназываются пространственно-временными корреляционными (или коррелятивными) функциями и в состоянии статистического равновесия зависят лишь от разностей координат и времени. Функции Fдля плотности ( n) числа частиц  могут быть экспериментально измерены по рассеянию медленных нейтронов или рентгеновских лучей: дважды дифференциальное сечение рассеяния нейтронов определяет фурье-образ пространственно-временной корреляционной функции плотностей частиц в среде.
        Ф. связаны с .Такие неравновесные характеристики системы, как кинетические коэффициенты (см. ) ,пропорциональны интегралам по времени от временных корреляционных функций потоков физических величин (формулы Грина – Кубо). Например, электропроводность пропорциональна интегралу от корреляционных функций плотностей токов, коэффициенты теплопроводности, вязкости, диффузии пропорциональны соответственно интегралам от корреляционных функций плотностей потоков тепла, импульса и диффузионного потока.
        В общем случае существует связь между Ф. физических величин и диссипативными свойствами системы при внешнем возмущении. Реакция системы на некоторое возмущение (т. е. соответствующее изменение некоторой физической величины) определяется т. н. обобщённой восприимчивостью, мнимая часть которой пропорциональна фурье-компоненте временной корреляционной функции возмущений, связанных с данным воздействием (флуктуационно-диссипативная теорема).
        Ф. в системах заряженных частиц проявляются как хаотические изменения потенциалов, токов или зарядов; они обусловлены как дискретностью электрического заряда, так и тепловым движением носителей заряда. Эти Ф. являются причиной электрических и определяют предел чувствительности приборов для регистрации слабых электрических сигналов (см. ) .
        Ф. можно наблюдать по рассеянию света: случайные изменения плотности среды из-за Ф. вызывают случайные изменения по объёму показателя преломления, и в однородной по составу среде или даже в химически чистом веществе может происходить рассеяние света, как в мутной среде. Это явление особенно заметно в бинарных растворах при температуре, близкой к критической температуре расслаивания, – т. н. критическое рассеяние света. Ф. также очень велики в критической точке равновесия жидкость – пар (см. ) .Ф. давления проявляются в взвешенных в жидкости (или газе) малых частиц под влиянием нескомпенсированных точно ударов молекул окружающей среды.
        Лит.:Эйнштейн А., Смолуховский М., Брауновское движение. Сб., пер. с нем., М. – Л., 1936; Леонтович М. А., Статистическая физика, М. – Л., 1944; Мюнстер А., Теория флуктуаций, в сборнике: Термодинамика необратимых процессов, пер. с англ., М., 1962; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Левин М. Л., Рытов С. М., Теория равновесных тепловых флуктуаций в электродинамике, М., 1967. См. также лит. при ст. .
         Д. Н. Зубарев.

Флуктуации электрические

       Флуктуа'ции электри'ческие,хаотические изменения потенциалов, токов и зарядов в электрических цепях и линиях связи. Ф. э. вызываются тепловым движением и др. физическими процессами в веществе, обусловленными дискретной природой электричества (естественные Ф. э.), а также случайными изменениями и нестабильностью характеристик цепей (технические Ф. э.). Ф. э. возникают в пассивных элементах цепей (металлических и неметаллических проводниках), в активных элементах (электронных, ионных и полупроводниковых приборах), а также в атмосфере, в которой происходит .
         ТепловыеФ. э. (тепловой шум) обусловлены тепловым движением носителей заряда в проводнике, в результате чего на концах проводника возникает флуктуирующая разность потенциалов. В из-за большой концентрации электронов проводимости и малой длины свободного пробега тепловые скорости электронов во много раз превосходят скорость направленного движения в электрическом поле (дрейфа). Поэтому Ф. э. в металлах зависят от температуры, но не зависят от приложенного напряжения ( ) .При комнатной температуре интенсивность тепловых Ф. э. остаётся постоянной до частот ~ 10 12 гц.Хотя тепловые Ф. э. возникают только в активных сопротивлениях, наличие реактивных элементов (ёмкостей и индуктивностей) может изменить частотный спектр Ф. э. В неметаллических проводниках Ф. э. на низких частотах на несколько порядков превышают тепловые Ф. э. Эти избыточные шумы объясняются медленной случайной перестройкой структуры проводника под действием тока.
        Ф. э. в электровакуумных и ионных приборах связаны главным образом со случайным характером с катода ( ) .Интенсивность дробовых Ф. э. практически постоянна для частот (10 8 гци зависит от присутствия остаточных ионов и величины объёмного заряда (см. ) .Дополнительные источники Ф. э. в этих приборах – с анода и сеток электронных ламп, динодов и т.п., а также случайное перераспределение тока между электродами. В электровакуумных и ионных приборах наблюдаются также медленные Ф. э., связанные с различными процессами на катоде (см. ) .В газоразрядных приборах низкого давления Ф. э. возникают из-за теплового движения электронов.
        В Ф. э. обусловлены случайным характером процессов генерации и рекомбинации электронов и дырок (генерационно-рекомбинационный шум) и диффузии носителей заряда (диффузионный шум). Оба процесса дают вклад как в тепловой, так и в дробовой шумы полупроводниковых приборов. Частотный спектр этих Ф. э. определяется временами жизни и дрейфа носителей. В полупроводниковых приборах наблюдаются также Ф. э., обусловленные «улавливанием» электронов и дырок дефектами кристаллической структуры (см. , ) .
        В приборах, работающих на принципе вынужденного излучения ( и др.), проявляются шумы спонтанной эмиссии, обусловленные квантовым характером электромагнитного излучения.
        Технические Ф. э. связаны с температурными изменениями параметров цепей и их старением, нестабильностью источников питания, с помехами от промышленных установок, вибрацией и толчками, с нарушениями электрических контактов и т.п.
        Ф. э. в генераторах электрических колебаний вызывают модуляцию амплитуды и частоты колебаний (см. ) ,что приводит к появлению непрерывного частотного спектра колебаний или к уширению спектральной линии генерируемых колебаний, составляющему величину 10 -7–10 -12от несущей частоты.
        Ф. э. приводят к появлению ложных сигналов – шумов на выходе усилителей электрических сигналов, ограничивают их чувствительность и ,уменьшают стабильность генераторов и устойчивость систем автоматического регулирования и т.д.
        Лит.:Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960, гл. 13; Бонч-Бруевич А. М., Радиоэлектроника в экспериментальной физике, М., 1966; Левин М. Л., Рытов С. М., Теория равновесных тепловых флуктуаций в электродинамике, М., 1967; Малахов А. Н., Флуктуации в автоколебательных системах, М., 1968; Ван дер Зил А., Шум, пер. с англ., М., 1973.
         И. Т. Трофименко.

Флуктуационная гипотеза

       Флуктуацио'нная гипо'теза,космологическая гипотеза Л. ,согласно которой весь наблюдаемый звёздный мир, включая Солнечную систему, является одной из грандиозных во Вселенной, находящейся в целом в состоянии термодинамического равновесия ( ). Распространение на системы космологического масштабов приводило к выводу о неизбежности для этих систем, а в конечном счёте и для всей Вселенной, конечного состояния термодинамического равновесия (максимума ) ,при котором невозможны какие бы то ни было макроскопические изменения и движения, существование организованных структур любой природы. В то же время наблюдаемая нами часть Вселенной далека от такого состояния. В качестве возможного объяснения этого противоречия (парадокса) и была предложена Ф. г. (80-е гг. 19 в.). В рамках статистической существование неравновесных подсистем в равновесной системе возможно, хотя и мало вероятно. Согласно же Ф. г., в равновесной Вселенной, если она достаточно велика, должны возникать не только малые, но и грандиозные (и тем более маловероятные) флуктуации.
        Ф. г. была наиболее выдающейся попыткой преодолеть упомянутый парадокс в рамках классической (дорелятивистской) физики и космологии. Однако, сточки зрения физики, вероятность флуктуации нужных масштабов настолько мала, а время ожидания её появления настолько велико, что различие между понятиями «маловероятно» и «невозможно» становится, в сущности, формальным. С мировоззренческой точки зрения представляется неудовлетворительным, что существование жизни (и вообще организованных структур) оказывается почти чудом, и, т. о., парадокс тепловой смерти, по сути дела, не устраняется, а всего лишь смягчается. Как и другие космологические парадоксы, этот парадокс вообще не мог быть последовательно преодолен в рамках классической физической картины мира: к явлениям космологического масштаба применима не классическая, а релятивистская физика (в частности, релятивистская термодинамика). Английский физик Р. Толмен показал (1928), что учёт ведёт к выводу, неожиданному с точки зрения классической термодинамики: энтропия системы может расти безгранично, не достигая какого-либо конечного состояния с максимальной энтропией. См. также .
      
         Лит.:Больцман Л., Статьи и речи, М., 1970; Толмен Р., Относительность, термодинамика и космология, пер. с англ., М., 1974; Зельдорич Я. Б., Новиков И. Д., Строение и эволюция Вселенной, М., 1975.
         Г. И. Наан.

Флуоресцеин

       Флуоресцеи'н,диоксифлуоран, жёлтые кристаллы, плохо растворимые в воде, лучше – в спирте и водных щелочах, t пл314–316 °С (с разложением); в водных растворах существует в виде смеси (1: 1) бензоидной (1) и хиноидной форм и обладает сильной жёлто-зелёной флуоресценцией (отсюда и название).
      
      Ф. относится к группе триарилметановых (ксантеновых) красителей; окрашивает в жёлтый цвет шёлк и шерсть. Однако в текстильной промышленности его не применяют вследствие малой прочности выкрасок. Ф. используют для изучения путей следования подземных вод, его динатриевую соль (уранин) – как компонент флуоресцирующих составов, изотиоцианатные производные Ф. – в качестве биологических красок для определения антигенов и антител. Практическое значение имеют также некоторые галогензамещённые Ф., например .Получают Ф. конденсацией с .
      Флуоресцеин.

Флуоресцентная микроскопия

       Флуоресце'нтная микроскопи'я,то же, что .См. также [метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия)] и .

Флуоресценция

       Флуоресце'нция,флюоресценция (от название минерала ,у которого впервые была обнаружена Ф., и лат. -escent – суффикс, означающий слабое действие), ,затухающая в течение времени t ~ 10 -8–10 -9 сек.Разделение люминесценции на Ф. и устарело, приобрело условный смысл качественной характеристики длительности люминесценции. По механизму преобразования энергии возбуждения Ф., как правило, является спонтанной люминесценцией, поэтому т определяется на возбуждённом уровне.
        В атомных парах наблюдается резонансная Ф., её частота совпадает с частотой возбуждающего излучения (см. ) .Ф. молекул может происходить в сильно разреженных парах, причём увеличение давления паров или добавление посторонних примесей приводит к тушению Ф. Многие органические вещества (особенно ароматические соединения) обладают Ф. в жидких и твёрдых растворах, а также в кристаллическом состоянии.
        Спектры Ф., её поляризация и кинетика связаны со структурой и симметрией молекул, характером их взаимодействия, зависят от концентрации растворов, вида возбуждения и т.д. С помощью Ф. изучают структуру кристаллов и экситонные процессы в них (см. ) ,энергетические уровни молекул, их структуру и взаимодействие, процессы миграции энергии возбуждения и др. Ф. используют в , ,минералогических исследованиях.
        Время затухания Ф. измеряют с помощью .
      
         Лит.см. при ст. .

Флуоресценция минералов

       Флуоресце'нция минера'лов,свечение, возбуждаемое в минералах светом, рентгеновскими или катодными лучами и быстро затухающее (через 10 -2–10 -1 сек) после прекращения возбуждения, что отличает его от и .Как физическое явление Ф. м. впервые была обнаружена у ,с чем связано происхождение термина. Ф. м. характерна для минералов-диэлектриков и полупроводников, прозрачных для видимого света и света из ближних ультрафиолетовой и инфракрасной областей спектра (см. ) .Ф .м. связана с примесями, реже с собственными ионами или комплексами, образующими ;иногда частично или полностью погашена некоторыми изоморфными примесями (например, ионами двухвалентного железа).

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8