ModernLib.Net

()

ModernLib.Net / / / () - (. 19)
:
:

 

 


Л. А. Орбели (Ереван), институте физиологии им. А. И. Караева (Баку), институтах физиологии (Ташкент и Алма-Ата), институте физиологии им. А. А. Ухтомского (Ленинград), институте нейрокибернетики (Ростов-на-Дону), институте физиологии (Киев) и др. В 1917 основано Всесоюзное физиологическое общество им. И. П. Павлова, объединяющее работу крупных филиалов в Москве, Ленинграде, Киеве и др. городах СССР. В 1963 организовано Отделение физиологии АН СССР, возглавившее работу физиологических учреждений АН СССР и Всесоюзного физиологического общества. Издаётся около 10 журналов по вопросам Ф. (см. Физиологические журналы ) .Педагогическая и научная деятельность проводится кафедрами Ф. медицинских, педагогических и с.-х. высших учебных заведений, а также университетов.

  Начиная с 1889 каждые 3 года (с перерывом в 7 лет в связи с первой и в 9 лет в связи со второй мировыми войнами) созываются международные физиологические конгрессы: 1-й в 1889 в Базеле (Швейцария); 2-й в 1892 в Льеже (Бельгия); 3-й в 1895 в Берне (Швейцария); 4-й в 1898 в Кембридже (Великобритания); 5-й в 1901 в Турине (Италия); 6-й в 1904 в Брюсселе (Бельгия); 7-й в 1907 в Гейдельберге (Германия); 8-й в 1910 в Вене (Австрия); 9-й в 1913 в Гронингене (Нидерланды); 10-й в 1920 в Париже (Франция); 11-й в 1923 в Эдинбурге (Великобритания); 12-й в 1926 в Стокгольме (Швеция); 13-й в 1929 в Бостоне (США); 14-й в 1932 в Риме (Италия); 15-й в 1935 в Ленинграде – Москве (СССР); 16-й в 1938 в Цюрихе (Швейцария); 17-й в 1947 в Оксфорде (Великобритания); 18-й в 1950 в Копенгагене (Дания); 19-й в 1953 в Монреале (Канада); 20-й в 1956 в Брюсселе (Бельгия); 21-й в 1959 в Буэнос-Айресе (Аргентина); 22-й в 1962 в Лейдене (Нидерланды); 23-й в 1965 в Токио (Япония); 24-й в 1968 в Вашингтоне (США); 25-й в 1971 в Мюнхене (ФРГ); 26-й в 1974 в Нью-Дели (Индия); 27-й в 1977 в Париже (Франция). В 1970 организован Международный союз физиологических наук (JUPS); печатный орган – Newsletter. В СССР физиологические съезды созываются с 1917: 1-й в 1917 в Петрограде; 2-й в 1926 в Ленинграде; 3-й в 1928 в Москве; 4-й в 1930 в Харькове; 5-й в 1934 в Москве; 6-й в 1937 в Тбилиси; 7-й в 1947 в Москве; 8-й в 1955 в Киеве; 9-й в 1959 в Минске; 10-й в 1964 в Ереване; 11-й в 1970 в Ленинграде; 12-й в 1975 в Тбилиси.

  Лит.: История– Анохин П. К., От Декарта до Павлова, М., 1945; Коштоянц Х. С., Очерки по истории физиологии в России, М. – Л., 1946; Лункевич В. В., От Гераклита до Дарвина. Очерки по истории биологии, 2 изд., т. 1–2, М., 1960; Майоров Ф. П., История учения об условных рефлексах, 2 изд., М. – Л., 1954; Развитие биологии в СССР, М., 1967; История биологии с древнейших времен до начала XX века, М., 1972; История биологии с начала XX века до наших дней, М., 1975.

Собрания трудов, монографии– Лазарев П. П., Сочинения, т. 2, М. – Л., 1950; Ухтомский А. А., Собр. соч., т. 1–6, Л., 1950–62; Павлов И. П., Полное собрание соч., 2 изд., т. 1–6, М., 1951–52; Введенский Н, Е., Полное собрание соч., т. 1–7, Л., 1951–63; Миславский Н. А., Избр. произв., М., 1952; Сеченов И. М., Избр. произв., т. 1, М., 1952; Быков К. М., Избр. произв., т. 1–2, М., 1953–58; Бехтерев В. М., Избр. произв., М., 1954; Орбели Л. А., Лекции по вопросам высшей нервной деятельности, М. – Л., 1945; его же, Избр. труды, т. 1–5, М. – Л., 1961–68; Овсянников Ф. В., Избр. произв., М., 1955; Сперанский А. Д., Избр. труды, М., 1955; Беритов И. С., Общая физиология мышечной и нервной системы, 3 изд., т. 1–2, М., 1959–66; Экклс Дж., Физиология нервных клеток, пер. с англ., М., 1959; Черниговский В. Н., Интерорецепторы, М., 1960: Штерн Л, С., Непосредственная питательная среда органов и тканей. Физиологические механизмы, определяющие её состав и свойства. Избр. труды, М., 1960; Беритов И. С., Нервные механизмы поведения высших позвоночных животных, М., 1961; Гоффман Б., Крейнфилд П., Электрофизиология сердца, пер. с англ., М., 1962; Магнус Р., Установка тела, пер. с нем., М. – Л., 1962; Парин В. В., Меерсон Ф. З., Очерки клинической физиологии кровообращения, 2 изд., М., 1965; Ходжкин А., Нервный импульс, пер. с англ., М., 1965; Гельгорн Э., Луфборроу Дж., Эмоции и эмоциональные расстройства, пер. с англ., М., 1966; Анохин П. К., Биология и нейрофизиология условного рефлекса, М., 1968; Тонких А. В., Гипоталамо-гипофизарная область и регуляция физиологических функций организма, 2 изд., Л., 1968; Русинов В. С., Доминанта, М., 1969; Экклс Дж., Тормозные пути центральной нервной системы, пер. с англ., М., 1971; Судаков К. В., Биологические мотивации, М., 1971; Шеррингтон Ч., Интегративная деятельность нервной системы, пер. с англ., Л., 1969; Дельгадо Х., Мозг и сознание, пер. с англ., М., 1971; Уголев А. М., Мембранное пищеварение. Полисубстратные процессы, организация и регуляция, Л., 1972; Гранит Р., Основы регуляции движений, пер. с англ., М., 1973; Асратян Э. А., И. П. Павлов, М., 1974; Бериташвили И. С., Память позвоночных животных, ее характеристика и происхождение, 2 изд., М., 1974; Сеченов И. М., Лекции по физиологии, М., 1974; Анохин П. К., Очерки по физиологии функциональных систем, М., 1975.

  Учебники и руководства– Коштоянц Х. С., Основы сравнительной физиологии, 2 изд., т. 1–2, М., 1950–57; Физиология человека, под ред. Бабского Е. Б., 2 изд., М., 1972; Костин А. П., Сысоев А. А., Мещеряков Ф. А., Физиология сельскохозяйственных животных, М., 1974; Костюк П. Г., Физиология центральной нервной системы, К., 1971; Коган А. Б., Электрофизиология, М., 1969; Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967; Иост Х., Физиология клетки, пер. с англ., М., 1975.

  Руководства по физиологии– Физиология системы крови, Л., 1968; Общая и частная физиология нервной системы, Л., 1969; Физиология мышечной деятельности, труда и спорта, Л., 1969; Физиология высшей нервной деятельности, ч. 1–2, Л., 1970–71; Физиология сенсорных систем, ч. 1–3, Л., 1971–75; Клиническая нейрофизиология, Л., 1972; Физиология почки, Л., 1972; Физиология дыхания, Л., 1973; Физиология пищеварения, Л., 1974; Грачев И. И., Галанцев В. П., Физиология лактации, Л., 1973; Ходоров Б. А., Общая физиология возбудимых мембран, Л., 1975; Возрастная физиология, Л., 1975; Физиология движений, Л., 1976; Физиология речи, Л,, 1976; Lehrbuch der Physiologic, Hrsg. W. Rьdiger, B., 1971; Ochs S.. Elements of neurophysiology, N. Y. – L. – Sydney, 1965; Physiology and biophysics, 19 ed., Phil. – L., 1965; Ganong W. F., Review of Medical physiology, 5 ed., Los Altos, 1971.

  К. В. Судаков.

Физиология растений

Физиоло'гия расте'ний,биологическая наука, изучающая общие закономерности жизнедеятельности растительных организмов. Ф. р. изучает процессы поглощения растительными организмами минеральных веществ и воды, процессы роста и развития, цветения и плодоношения, корневого (минерального) и воздушного (фотосинтез) питания, дыхания, биосинтеза и накопления различных веществ, совокупность которых обеспечивает способность растения строить своё тело и воспроизводить себя в потомстве. Раскрывая зависимость жизненных процессов от внешних условий, Ф. р. создаёт теоретическую основу приёмов и методов повышения общей продуктивности растительных организмов, питательной ценности, технологического качества их тканей и органов. Физиологические исследования служат научной основой рационального размещения растений в почвенно-климатических условиях, наиболее полно соответствующих их потребностям.

  Круг вопросов, составляющих предмет Ф. р., во многом определяется специфическими особенностями её объекта – зелёного растения. Зелёные растения отличаются от всех др. форм живых существ способностью использовать в качестве источника энергии солнечный свет и преобразовывать его энергию в химическую (свободную) энергию органических соединений, т. е. осуществлять процесс фотосинтеза.Благодаря этому зелёные растения способны использовать для своего питания неорганические соединения, лишённые существенных запасов легко мобилизуемой свободной энергии. В процессе фотосинтеза растения обогащают энергией поглощаемые ими и преобразуемые минеральные соединения, синтезируют различные богатые энергией органические вещества и тем самым создают основную базу пищи и энергии для существования всех прочих форм жизни на Земле. В этом состоит принципиальное отличие зелёных растений от животных и др. бесхлорофилльных организмов (грибы, бактерии), для существования которых необходимы готовые органические соединения. Специфические свойства растений тесно связаны с особенностями их общей анатомо-морфологической структуры. В отличие от животных, для которых характерно «компактное» строение, растительные организмы, как правило, обладают значительно большей поверхностью благодаря ветвлению как надземных, так и подземных органов. Это позволяет растению взаимодействовать с большими объёмами почвы и воздуха как источниками питания. Кроме того, у растения на протяжении почти всей жизни не прекращается рост, т.к. наряду со старыми имеются молодые ткани (меристемы), сохраняющие способность к образованию новых клеток. Другая специфическая особенность зелёных растений – отсутствие у них постоянной внутренней среды: температура тканей, содержание в них кислорода, углекислого газа и др. параметры могут меняться. В силу этого приспособление растений к изменяющимся условиям внешней среды (адаптация) осуществляется принципиально иным путём, чем у животных.

  Исторический очерк.Ф. р. возникла и развивалась первоначально как составная часть ботаники,занимающаяся преимущественно проблемой почвенного питания растений. Первые попытки экспериментально решить вопрос о том, за счёт чего строят свои ткани растения, сделал голландский естествоиспытатель Ян ван Гельмонт (1629). Выращивая в течение 5 лет ивовую ветвь в горшке со взвешенной почвой, он установил, что за время опыта вес ветви увеличился в 30 раз, тогда как вес почвы почти не изменился. Гельмонт пришёл к заключению, что основной источник питания растения не почва, а вода. Несмотря на ошибочность такого вывода, этот опыт имел большое значение, т.к. при изучении растений впервые был применен количественный метод – взвешивание. В конце 17 в. было установлено наличие у растений пола. В 1727 англичанин С. Гейлс обнаружил передвижение веществ и воды по тканям растения. Важнейшую роль в последующем развитии Ф. р. и всего естествознания в целом сыграло открытие англ. химика Джозефа Пристли, который установил, что зелёные растения в ходе своей жизнедеятельности изменяют состав воздуха, возвращают ему способность поддерживать горение и сохранять жизнь животных (1771). Это явление получило в дальнейшем название фотосинтеза. Впервые идею о воздушном питании растений высказал в 1753 М. В. Ломоносов, который отметил, что тучные деревья, растущие на бедном питательном веществами песке, не могут получить через корни необходимого количества питательных веществ, и сделал вывод, что растения получают питание через листья из воздуха. Работы голл. естествоиспытателя Я. Ингенхауза (1779) и особенно швейц. учёных Ж. Сенебье и Н. Т. Соссюра (конца 18 – начала 19 вв.), а позднее нем. учёного Ю. Р. Майера, французского агрохимика Ж. Б. Буссенго (1868) и др. позволили расшифровать отдельные стороны фотосинтеза как процесса усвоения углекислого газа и воды, происходящего с выделением кислорода при обязательном участии света. Большое влияние на развитие Ф. р. оказали работы французского. учёного А. Лавуазье по химии горения и окисления (1774–84). В начале 19 в. были отмечены ростовые движения у растений – тропизмы, которые позднее детально исследовал Ч. Дарвин. Особенно бурно развивались работы в области почвенного питания растения. Нем. учёный А. Тэер сформулировал гумусовую теорию (1810–19), в которой решающую роль в питании растений отводил органическому веществу почвы. В 40-х гг. 19 в. на смену гумусовой теории питания растений пришла минеральная теория нем. химика Ю. Либиха, в которой подчёркивалась роль минеральных элементов почвы в корневом питании растений. Работы Либиха содействовали развитию физиологических исследований и внедрению минеральных удобрений в с.-х. практику. Ж. Буссенго использовал разработанный им вегетационный метод для изучения закономерностей поступления азота и др. минеральных элементов в растение. Буссенго и немецкийучёный Г. Гельригель выявили специфические особенности бобовых растений как азотфиксаторов, а рус. ботаник М. С. Воронин в 1866 доказал, что клубеньки, образующиеся на корнях этих растений, имеют бактериальную природу. Большую роль в развитии Ф. р. в 19 в. сыграли нем. учёные Ю. Сакс, В. Пфеффер, австрийские ботаники Ю. Визнер, Х. Молиш, чешские учёные Б. Немец и Ю. Стокласа, исследователи ряда др. стран, 2-я половина 19 в. ознаменовалась важными исследованиями К. А. Тимирязева о роли хлорофилла в процессе фотосинтеза. Доказав приложимость к фотосинтезу растений закона сохранения энергии, Тимирязев обосновал и развил представления о космической роли зелёных растений, которые, осуществляя уникальную функцию фотосинтеза, связывают жизнь на Земле с энергией Солнца.

  Большой вклад в развитие Ф. р. и, в частности, учения о фотосинтезе внесли сов. ботаники – А. А. Рихтер, открывший явление адаптивных изменений качественного состава пигментов фотосинтеза, Е. Ф. Вотчал, детально изучивший взаимосвязь фотосинтеза с водообменом растений, Ф. Н. Крашенинников, который, используя методы калориметрии, первый доказал, что наряду с углеводами при фотосинтезе образуются соединения др. химической природы. Е. Ф. Вотчал был одним из основоположников украинской школы физиологов растений, к которой принадлежали В. Р. Заленский, раскрывший роль сосущей силы как решающего регулятора водного баланса растения, В. В. Колкунов, установивший взаимосвязь между анатомическим строением свекловичного корня и его сахаристостью, В. Н. Любименко, доказавший, что хлорофилл в хлоропластах находится не в свободном состоянии, а связан с белками.

  Во 2-й половине 19 в. и начале 20 в. были сделаны основополагающие открытия в области изучения обмена веществ и энергии в растительных организмах. С этого времени связь физиологии и биохимии растений становится особенно тесной. Впервые термин «обмен веществ» применительно к растениям ввёл рус. ботаник А. С. Фаминцын (1883). С конца 19 в. начались интенсивные исследования природы механизмов дыхания – процессов окисления органических веществ, осуществляющихся в биологических условиях без использования внешних источников энергии. Русский биохимик А. Н. Бах в 1896–97 создал перекисную теорию биологического окисления, являющуюся фундаментом современной теории радикалов. Перекисная теория послужила толчком к интенсивному изучению химизма и энзимологии дыхания. В. И. Палладии (1912) обосновал представления о биологическом окислении, в основе которого лежит дегидрирование, как об одном из основных этапов дыхания, что в дальнейшем получило развитие в работах немецкого учёного Г. Виланда. Существенный вклад в изучение дыхания и др. процессов внёс С. П. Костычев. Немецкий биохимик О. Варбург открыл роль железа как структурного элемента ферментов, связанных с биологическим окислением. Вскоре после этого английский учёный Д. Кейлин открыл цитохромы – важнейшую группу соединений, участвующих в транспорте электронов как в фотосинтезе, так и в дыхании. Сов. физиолог В. О. Таусон первым начал исследовать энергетические параметры дыхания.

  Детальным изучением процессов обмена азотистых веществ в растении, результаты которого привели к коренным изменениям в практике применения азотсодержащих удобрений, наука обязана сов. агрохимику Д. Н. Прянишникову. Большое значение имели работы Прянишникова и его школы в области фосфорного и калийного питания растений, известкования почв и во многих др. областях физиологии минерального питания. Важную роль сыграли работы его учеников. Г. Г. Петров детально изучил процессы метаболизма азота в растении в зависимости от условий освещения, И. С. Шулов создал ряд вариантов вегетационного метода (метод текучих растворов, стирильных культур и др.), с помощью которых он доказал способность корней растений ассимилировать органические соединения, в том числе и некоторые белковые соединения, Ф. В. Чириков исследовал физиологические особенности с.-х. растений, различающихся по способности усваивать труднорастворимые формы фосфатов почвы. В области водообмена и засухоустойчивости растений фундаментальные работы принадлежат Н. А. Максимову. На основе работ в области физиологии микроорганизмов, среди которых особое место принадлежит открытию С. Н. Виноградским хемосинтеза (1887), стали всё более четко вырисовываться закономерности круговорота отдельных элементов в природе, выявляться роль в этом процессе растений и их симбиотических взаимоотношений с микрофлорой почвы.

  Современное состояние и достижения Ф. р.К числу принципиально важных достижений современной Ф. р. относится расшифровка тонких механизмов, регулирующему влиянию которых подчинён энергетический обмен зелёного растения. Т. о. выяснено, что фотосинтез и дыхание представляют собой две стороны единого процесса обмена веществ и энергии. Установлена роль биохимических процессов дыхания как источника промежуточных продуктов, используемых клеткой для синтеза основных структурных и физиологически активных компонентов протоплазмы. По своему значению дыхание в определённых условиях аналогично фотосинтезу, т.к. в отсутствие фотосинтеза растения могут усваивать питательные вещества только в результате окислительно-восстановительных превращений, осуществляемых при дыхании.


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86