Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ЭК)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ЭК) - Чтение (стр. 23)
Автор: БСЭ
Жанр: Энциклопедии

 

 


Точное значение Кпока не может быть рассчитано теоретическим путём, поэтому эффективность процесса Э. выражают, как и при ректификации или абсорбции, числом ступеней равновесия (идеальных тарелок). Графическое определение числа ступеней равновесия показано на рис. 1 , а .В случае частичной растворимости растворителя Аи экстрагента С равновесие системы изображается в плоскости равностороннего треугольника ( рис. 1 , в). Каждой точке внутри треугольника соответствует тройная смесь, в которой концентрации компонентов А, В, Сизмеряются длинами перпендикуляров, опущенных на противолежащие стороны. Под кривой EG(бинодальной кривой) расположена область гетерогенных смесей, а над кривой - гомогенных растворов. Процессы Э., поскольку в них чередуются акты смешения и расслаивания фаз, протекают только в гетерогенной области. Смешав исходный раствор с некоторым количеством экстрагента, получим тройную гетерогенную смесь Р,которая расслаивается на экстракт Qи рафинат Rс концентрацией экстрагируемого вещества В.Если теперь смешать рафинат со свежей порцией экстрагента, получим новую гетерогенную смесь P 1, которая расслоится на экстракт Q 1и рафинат R 1 с более низкой концентрацией Q 1. Положение прямых QRи Q 1 R 1 ,называется конодами, определяется для каждой системы экспериментальным путём. Продолжая акты смешения и расслаивания, можно добиваться дальнейшего понижения концентрации компонента Вв рафинате, т. е. повышения степени Э. Совершенно очевидно, что число построенных конод (их может быть сколько угодно) равно числу ступеней равновесия. В приведённом примере периодической Э. после каждого акта смешения и расслаивания падает концентрация Вкак в рафинате, так и в экстракте. Для повышения концентрации вещества Вв экстракте и большего его исчерпывания из рафината во многих случаях прибегают к Э. с так называемой обратной флегмой. Сущность этого процесса сводится к частичному отделению экстрагента от экстракта и исходного растворителя от рафината и обратному возвращению долей этих фракций в аппарат навстречу уходящим потокам.

  Для экстракционного разделения двух компонентов ( B 1и B 2), особенно с близкой растворимостью в исходном растворителе, часто используют два экстрагента с различной селективностью. Исходный раствор поступает в среднюю часть экстрактора, один из экстрагентов - в верхнюю часть, другой - в нижнюю. В результате компонент B 1переходит в фазу одного экстрагента, компонент B 2 -в фазу другого ( рис. 2 ).

  Наиболее эффективна непрерывная Э., осуществляемая в многоступенчатых аппаратах (экстракторах) при противотоке исходного раствора и экстрагента. В этом случае заданная степень Э. достигается при наименьшем расходе экстрагента. Многоступенчатые экстракторы (см. рис. 3 , а, б, в) обычно представляют собой вертикальные колонны, разделённые поперечными перфорированными тарелками, вращающимися дисками, мешалками и т. п. на ступени (секции). В каждой ступени происходит перемешивание взаимодействующих фаз и их расслаивание. Т. о., исходный раствор и экстрагент многократно перемешиваются и расслаиваются. Эффективность этих аппаратов оценивается кпд отдельных ступеней или высотой аппарата, эквивалентной одной ступени равновесия - теоретической тарелке (см. ) .

 Значит, распространение получили экстракторы ситчатые и с механическим перемешиванием. В ситчатых ( рис. 3 , а) ступени разграничены перфорированными горизонтальными тарелками и сообщаются между собой переливными трубками. Одна из контактирующих жидкостей, проходя через отверстия тарелок, диспергируется, чем создаётся большая поверхность контакта с встречной жидкостью, протекающей по переливным трубкам в виде сплошной фазы. Экстракторы с механическим перемешиванием делятся на роторно-дисковые ( рис. 3 , б) и с чередующимися смесительными и отстойными насадочными секциями ( рис. 3 , в). В роторно-дисковых экстракторах вращающиеся диски перемешивают и диспергируют жидкости, после чего они расслаиваются. В экстракторах со смесительными и насадочными секциями лопастные или турбинные мешалки размещены на общем вертикальном валу попеременно со слоями неподвижной насадки (кольца Рашига, спирали, пакеты сеток и пр.). Перемешанные жидкости, пройдя через слои насадки, расслаиваются. Применяются также экстракторы с непрерывным контактом взаимодействующих фаз (распылительные, насадочные), не разделённые на отд. ступени, их эффективность при достаточной высоте измеряется несколькими ступенями. Распылительные экстракторы ( рис. 3 , г) снабжены соплами, инжекторами и т. п. для диспергирования взаимодействующих жидкостей. Такие аппараты отличаются простотой и высокой производительностью, но сравнительно невысокой эффективностью. Несколько более эффективны, но менее производительны насадочные экстракторы ( рис. 3 , д), наполненные кольцами Рашига, кольцами Паля и др. Часто используются ящичные экстракторы, которые разделены вертикальными перегородками на ступени, каждая из которых состоит из смесительной и отстойной камер ( рис. 4 ). Расположенные в смесительной камере турбинные мешалки перемешивают жидкости и одновременно транспортируют их из ступени в ступень.

  Такие экстракторы могут работать при любом соотношении исходного раствора и экстрагента, сохраняя при этом рабочие концентрации жидкостей при прекращении процесса.

  Для Э. неустойчивых соединений (например, антибиотиков) используются центробежные экстракторы, ротор которых состоит из набора цилиндров, перфорированных с обоих концов, или спиральных лент. Исходный раствор и экстрагент движутся навстречу друг другу, причём более тяжёлая жидкость - от центра к периферии, а более лёгкая - в обратном направлении. Контакт жидкостей происходит на пути их движения, а диспергирование - при прохождении через перфорированные части цилиндров.

  Э. из твёрдых веществ изображается диаграммой фазового равновесия, показанной на рис. 1, а.В этом случае в зависимости от конструкции используемого аппарата экстрагент проходит либо через слой неподвижной твёрдой фазы, либо перемешивается с нею, либо движется в противотоке к твёрдой фазе, перемещаемой различными транспортными устройствами. Применяется, например, непрерывный противоточный экстрактор ( рис. 5 ), где твёрдая фаза перемещается перфорированными шнеками вдоль U-образного цилиндрического корпуса навстречу экстрагенту. Экстракт отводится через процеживатель - цилиндрический лист с вертикальными прорезями.

  Э. широко применяется в химической, нефтеперерабатывающей, металлургической, фармацевтической, пищевой и др. отраслях промышленности, например для извлечения ароматических углеводородов из нефтепродуктов, масляных фракций из сернистых нефтей, фенола из сточных вод, антибиотиков из культуральных жидкостей, металлов (в т. ч. редких) или их соединений из руд, многих природных органических соединений из растительного сырья (сахара из свёклы и тростника, масла из соевых бобов и масличных семян, таннина из древесной коры, фармацевтических препаратов из корней и листьев растений и т. п.).

  Н. И. Гельперин, В. Л. Пебалк.

 Э. в аналитической химии и радиохимии. Для химического анализа элементов, а также при разделении, концентрировании и очистке радиоактивных изотопов наибольшее применение нашла Э. из водных растворов. Экстрагентами при этом служат спирты, кетоны, простые и сложные эфиры, амины, эфиры фосфорной кислоты, хелатообразующие соединения и др. Экстрагенты используют в смесях с разбавителями - жидкостями, которые служат для улучшения физеских (вязкость, плотность) или экстракционных свойств экстрагентов. Разбавителями могут быть керосин, бензол, хлороформ и т. п.

  Основные направления Э. в аналитической химии следующие: 1) избирательное извлечение целевых элементов из смесей для количеств, анализа; 2) определение содержания примесей в исследуемых веществах, что особенно важно в технике получения особо чистых веществ. Достоинствами Э. в аналитической химии являются: высокая избирательность, простота осуществления, универсальность (т. е. возможность выделения практически любого элемента). В радиохимии Э. используется главным образом для очистки различных радиоактивных веществ от примесей; извлечения и разделения радиоактивных изотопов из облученных мишеней; выделения естественных радиоактивных изотопов из различных объектов и т. д.

  Достоинством Э. при работе с короткоживущими радиоактивными изотопами является также экспрессность. В таких процессах экстрагенты должны обладать радиационной устойчивостью. Для обеспечения безопасности человека при Э. радиоактивных веществ применяют дистанционное управление.

  Во многих случаях использование Э. в аналитической химии и радиохимии сочетают с другими методами ( ,соосаждением, и т. д.).

  С. С. Бердоносов.

  Лит.:Пратт Г. Р. К., Экстракция жидкость - жидкость в теории и практике, в сборнике: Жидкостная экстракция, М., 1958; Фомин В. В., Химия экстракционных процессов, М., 1960; Моррисон Дж., Фрейзер Г., Экстракция в аналитической химии, пер. с англ., Л., 1960; Экстракция в аналитической химии и радиохимии. [Сб. ст.]. под ред. Ю. А. Золотова, М., 1961; Шкоропад Д. Е., Лысковцов И. В., Центробежные жидкостные экстракторы, М., 1962; Зюлковский 3., Жидкостная экстракция в химической промышленности, пер. с польск., Л., 1963; Трейбал P., Жидкостная экстракция, пер. с англ., М., 1966; Броунштейн Б. И., Железняк А. С., Физико-химические основы жидкостной экстракции, М.- Л., 1966; 3олотов Ю. А., Кузьмин Н. М., Экстрактционное концентрирование, М., 1971; Химия процессов экстракции, М., 1972; Аксельруд Г. А., Лысянский В. М., Экстрагирование, Л., 1974.

Рис. 4. Ящичный экстрактор: 1 - камера смешения; 2 - жалюзийная перегородка; 3 - отстойная камера; 4 - граница раздела фаз; 5, 6 - регулирующие трубки; 7 - рециркуляционная трубка; 8 - всасывающий коллектор; 9 - турбинная мешалка.

Рис. 5. Непрерывный противоточный экстрактор: 1 - корпус; 2 - перфорированные шнеки; 3 - ввод твердой фазы; 4 - отвод твердой фазы; 5 - ввод экстрагента; 6 - отвод экстрагента; 7 - процеживатель.

Рис. 1: а - диаграмма равновесия для систем, в которых экстрагент и растворитель исходного раствора взаимно нерастворимы; б - схема однократной экстракции при встречном движении исходного раствора и экстрагента; в - диаграмма равновесия для систем, в которых экстрагент и растворитель исходного раствора частично растворимы.

Рис. 2. Схема установки непрерывного действия для экстракции двумя растворителями: 1 - колонна; II - установка для регенерации экстрагента SB2, III- установка для регенерации экстрагента SB1, IV- дополнительные смесители (в случае работы с флегмой); 1,2,3, ..., n-1, n-номера ступеней: L - исходный раствор; N - сырой экстракт; Rn - сырой рафинат; B1, B2 - экстрагируемые компоненты.

Рис. 3. Схемы экстракционных колонн: а - колонна с ситчатыми тарелками; б - роторно-дисковый экстрактор; в - колонна с чередующимися смесительными и отстойными насадочными секциями; г - распылительная колонна; д - насадочная колонна; 1 - колонна; 2, 6 - распылители; 3 - ситчатая тарелка; 4 - переливные трубки; 5, 12 - насадки; 7, 10 - валы; 8 - плоский ротор; 9 - кольцевые перегородки; 11 - мешалки;

Экстранормальная фонетика

Экстранорма'льная фоне'тика(от ...и ) ,раздел ,изучающий особые, неканоничные звукообразования, не свойственные нормальной речи, ориентированной на передачу языкового сообщения. В сферу Э. ф. включаются звуки, не имеющие в языке соответствующей ,и необычные звукосочетания, возникающие в специфических междометиях, звукоподражаниях, звуковых жестах, командах животным, в звуковых комплексах, служащих для привлечения или отвлечения животных, в спонтанной детской речи и т. д. (например, «гм», «кыш», «те», «фьюить»). Элементы Э. ф. могут использоваться в художественной речи в качестве экспрессивно-изобразительных средств, например при описании пения соловья. К Э. ф. относятся и факты поэтического «звукотворчества», а также специфические разновидности каноничных звуков и звукосочетаний, образующиеся в быстрой, небрежной речи.

  В. А. Виноградов.

Экстрапирамидная система

Экстрапирами'дная систе'ма(от и греч. pyramнs - пирамида), совокупность структур мозга, расположенных в больших полушариях и стволе головного мозга и участвующих в центр, управлении движениями, минуя кортикоспинальную, или .Эволюционно наиболее древняя система моторного контроля. К Э. с. относятся базальные ганглии, красное и интерстициальные ядра, тектум, чёрная субстанция (см. ) , моста и продолговатого мозга, ядра вестибулярного комплекса и .Одни образования Э. с. не имеют непосредственного выхода к спинальным моторным центрам, другие связаны проводящими путями с сегментарными уровнями спинного мозга и служат обязательной станцией переключения импульсации, направленной из мозга к мотонейронам. Импульсы, распространяющиеся по волокнам Э. с., могут достигать мотонейронов как через прямые моносинаптические связи, так и через посредство переключений в различных вставочных нейронах спинного мозга. Э. с. имеет важное значение в координации движений, локомоции, поддержании позы и мышечного тонуса; особенно тесно она связана с контролем мышц туловища и проксимальных отделов конечностей. Э. с. участвует в эмоциональных проявлениях (смех, плач). При поражении Э. с. нарушаются двигательные функции (например, могут возникнуть , ) ,снижается мышечный тонус.

  Лит.:Костюк П. Г., Структура и функция нисходящих систем спинного мозга, Л., 1973; Шаповалов А. И., Нейроны и синапсы супраспинальных моторных систем, Л., 1975.

  А. И. Шаповалов.

Экстраполяция

Экстраполя'ция(от и лат. polio - приглаживаю, выправляю, изменяю) в математике и статистике, приближённое определение значений функции f( x) в точках х,лежащих вне отрезка [ x 0, xn] ,по её значениям в точках x 0< x 1 <... < xn.Наиболее распространённым видом Э. является параболическая Э., при которой в качестве значения f( x) в точке хберётся значение многочлена Pn( х) степени n,принимающего в n+ 1 точке xiзаданные значения y i= f( x). Для параболической Э. пользуются .

Экстрасистолия

Экстрасистоли'я(от и ) ,самая распространённая форма ,характеризующаяся внеочередными сокращениями сердца (экстрасистолы), обусловленными импульсами из возникшего в миокарде дополнительного очага возбуждения. Поскольку мышца сердца после каждого сокращения остаётся некоторое время невозбудимой, очередной нормальный импульс, как правило, не может вызвать систолу и возникает более длительная, чем после нормального сокращения, т. н. компенсаторная пауза. Э. обычно ощущается как кратковременное замирание, «перебои в сердце». В зависимости от места возникновения выделяют, в частности, экстрасистолы предсердные и желудочковые. Экстрасистолы могут быть единичными и множественными, появляться беспорядочно или с определённой ритмичностью, например после каждого нормального сокращения (бигеминия); иногда они возникают подряд (групповые экстрасистолы). Э. может наблюдаться у здоровых лиц. В большинстве случаев единичные редкие экстрасистолы не имеют существенного клинического значения. Предсердные экстрасистолы могут возникать при поражении миокарда (митральные пороки сердца, кардиосклероз). Частая предсердная Э., особенно групповая, при этих болезнях является предвестником .Желудочковые экстрасистолы могут быть следствием как поражений миокарда, так и нервно-психических и других нарушений. Частая групповая и политопная (исходящая из различных участков) желудочковая Э. может предшествовать тяжёлому нарушению ритма - фибрилляции желудочков (см. ) .В распознавании Э. важную роль играет электрокардиография. Лечение определяется причиной возникновения Э.; иногда необходимы антиаритмические препараты (например, пропранолол, препараты калия).

  Н. Р. Палеев, И. М. Кельман.

Экстремаль

Экстрема'ль(от лат. extremus - крайний), интегральная кривая дифференциального уравнения Эйлера в .

Экстремальное регулирование

Экстрема'льное регули'рование,способ автоматического регулирования, состоящий в установлении и поддержании такого режима работы управляемого объекта, при котором достигается экстремальное (минимальное или максимальное) значение некоторого критерия, характеризующего качество функционирования объекта. Критерием качества, который обычно называется целевой функцией, показателем экстремума или экстремальной характеристикой, может быть либо непосредственно измеряемая физическая величина (например, температура, ток, напряжение, давление), либо кпд, производительность и др. Э. р. осуществляется в условиях неопределённости в отношении поведения объекта управления. Поэтому при Э. р. сначала получают необходимую исходную информацию об объекте (для этого на управляемый объект подаются пробные воздействия, изучается реакция объекта на эти воздействия и выбираются те из них, которые изменяют целевую функцию в нужном направлении), а затем на основе полученной информации вырабатывают рабочие воздействия, обеспечивающие достижение экстремума критерия качества (см. управления). Т. о., при Э. р. решаются две задачи: нахождение градиента целевой функции, определяющего направление движения к экстремуму в пространстве регулируемых координат при наличии помех, возмущений и инерционности объекта оптимизации; организация устойчивого движения системы в направлении точки экстремума за минимально возможное время либо при минимизации каких-либо других показателей.

  Автоматическое устройство, вырабатывающее управляющие воздействия на объект, называется экстремальным регулятором. Экстремальные регуляторы предназначены для управления такими объектами, у которых зависимость показателя качества функционирования от регулирующего воздействия имеет один экстремум (максимум или минимум). Качество работы регулятора определяют величина и частота пробных воздействий, величина н скорость вариаций регулирующих (рабочих) воздействий, чувствительность и др. В СССР и за рубежом серийно выпускаются электронные, гидравлические и пневматические регуляторы для Э. р., структура и конструктивные особенности которых определяются назначением и областью использования того или иного регулятора.

  Экстремальный регулятор в совокупности с объектом регулирования образуют систему экстремального регулирования (СЭР), или систему оптимизации, по принципу управления различают СЭР разомкнутые (основанные на принципе управления по возмущению), замкнутые (основанные на принципе обратной связи) и комбинированные (совмещающие оба принципа одновременно). Наибольшее распространение получили замкнутые СЭР, обеспечивающие высокую ,разомкнутые СЭР, несмотря на многие преимущества их по сравнению с замкнутыми СЭР (высокое быстродействие, отсутствие поисковых движений и т. д.), применяются ограниченно, главным образом в тех случаях, когда все основные возмущения, действующие на объект управления, могут быть измерены; комбинированные СЭР сочетают основные преимущества замкнутых и разомкнутых систем - точность и быстродействие.

  Важнейшими показателями, характеризующими качество функционирования СЭР, являются: для статических объектов - время поиска экстремума (быстродействие СЭР) и отклонение оптимизируемой величины от экстремального значения в установившемся режиме (т. н. потери на поиск); для динамических объектов, кроме уже указанных,- требования к характеру переходного процесса поиска (монотонность, отсутствие перерегулирования и т. п.). Выбор конкретной СЭР, как правило, тесно связан со спецификой управляемого объекта.

  Первые работы в области Э. р. принадлежат М. Леблану и Т. Штейну (Франция, 1922); систематическое изучение Э. р. как нового направления в развитии систем автоматического управления впервые было начато В. В. Казакевичем (СССР, 1944); изучение СЭР было продолжено в 50-x гг. 20 в. Ч. Драйпером и В. Ли (США). В 60-х гг. Э. р. оформилось в самостоятельное направление в теории нелинейных систем автоматического управления, а СЭР получили широкое применение (например, при настройке резонансных контуров и автоматических измерительных устройств, при отыскании оптимальных параметров настраиваемых моделей, при управлении химическими реакторами, нагревательными установками, процессами флотации, дробления).

  Лит.:Красовский А. А., Динамика непрерывных самонастраивающихся систем, М., 1963; Моросанов И. С., Релейные экстремальные системы, М., 1964; Кунцевич В. М., Импульсные самонастраивающиеся и экстремальные системы автоматического управления, К., 1966; Растригин Л. А., Системы экстремального управления, М., 1974.

  С. К. Коровин.

Экстремальный регулятор

Экстрема'льный регуля'тор, ,автоматически отыскивающий и поддерживающий такие значения регулирующих воздействий, при которых показатель качества работы регулируемого объекта достигает экстремального значения. См. .

Экстремизм

Экстреми'зм(франц. extremisme, от лат. extremus - крайний), приверженность к крайним взглядам и мерам (обычно в политике).

Экстремум

Экстре'мум(от лат. extremum - крайнее), значение непрерывной функции f(x), являющееся или максимумом, или минимумом. Точнее: непрерывная в точке х 0функция f(x) имеет в x 0максимум (минимум), если существует окрестность ( x 0+d, x 0- d) этой точки, содержащаяся в области определения f( x) ,и такая, что во всех точках этой окрестности выполняется неравенство f( x 0) ,³ f( x) [соответственно, f( x 0) Ј f( x)]. Если при этом существует такая окрестность, что в ней f( x 0) > f( x) [или f( x 0) << f( x)] при х¹ x 0,то говорят о строгом, или собственном, максимуме (минимуме), в противном случае - о нестрогом, или несобственном, максимуме (минимуме) (на рис. 1 в точке А достигается строгий максимум, в точке В - нестрогий минимум). Точки максимума и минимума называются точками экстремума. Для того чтобы функция f( x) имела Э. в некоторой точке x 0,необходимо, чтобы она была непрерывна в x 0и чтобы либо f`( x 0) =0 (точка А на рис. 1 ), либо f`( x 0) не существовала (точка С на рис. 1 ). Если при этом в некоторой окрестности точки x 0производная f'( x) слева от x 0положительна, а справа отрицательна, то f( x) имеет в x 0максимум; если f'( x) слева от x 0отрицательна, а справа положительна, то - минимум (первое достаточное условие Э.). Если же f'( x) не меняет знака при переходе через точку x 0,то функция f( x) не имеет Э. в точке x 0(точки D, Е и F на рис. 1 ). Если f( x) в точке x 0имеет ппоследовательных производных, причём f'( x 0) = f``( x 0) =...= f (n-1)( x 0) =0,a f (n)( x 00,то при пнечётном f( x) не имеет Э. в точке x 0,а при пчётном имеет минимум, если f (n)( x 0) > 0, и максимум, если f (n)( x 0) < 0.Э. функции не следует смешивать с .

  Аналогично Э. функции одного переменного определяется Э. функции нескольких переменных. Необходимым условием Э. является в этом случае обращение в нуль или же несуществование частных производных первого порядка. Например, на рис. 2 частные производные равны нулю в точке М, на рис. 3 в точке Мони не существуют. Если в некоторой окрестности точки М( х 0, y 0) существуют и непрерывны первые и вторые частные производные функции f( x, у) и в самой точке f' x= f' y=0,

  D = f'' xxf'' уу> 0,

 то f( x, у) в точке Мимеет Э. (максимум при f'' xx<0 и минимум при f'' xx>0); Э. в точке Мне существует, если D < 0 (в этом случае Мявляется т. н. седловиной, или точкой минимакса, см. рис. 4 ).

  Достаточные условия Э. функций многих переменных сводятся к положительной (или отрицательной) определённости квадратичной формы

  S n i, k=1 a ikD x iD x k

  где a ik-значение f''x ix kв исследуемой точке. См. также .

  Термин «Э.» употребляется также при изучении наибольших и наименьших значений функционалов в .

  Лит.:Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971.

Рис. 2. к ст. Экстремум.

Рис. 1. к ст. Экстремум.

Рис. 4. к ст. Экстремум.

Рис. 3. к ст. Экстремум.

Экстренный

Э'кстренный(от лат. extra - вне, сверх), срочный, неотложный.

Экструдер

Экстру'дер(от лат. extrudo - выталкиваю), машина для размягчения (пластикации) материалов и придания им формы путём продавливания через профилирующий инструмент (т. н. экструзионную головку), сечение которого соответствует конфигурации изделия. Процесс переработки материалов в Э. называется экструзией. В Э. получают главным образом изделия из термопластичных полимерных материалов (см. ) ,используют их также для переработки (в этом случае Э. часто называют шприц-машиной). С помощью Э. изготовляют плёнки, листы, трубы, шланги, изделия сложного профиля и др., наносят тонкослойные покрытия на бумагу, картон, ткань, фольгу, а также изоляцию на провода и кабели. Э. применяют, кроме того, для получения гранул, подготовки композиций для ,формования металлических изделий (об этом процессе см. в ст. , ) и других целей.

  Э. состоит из нескольких основных узлов: корпуса, оснащенного нагревательными элементами; рабочего органа ( ,диска, поршня), размещенного в корпусе; узла загрузки перерабатываемого материала; силового привода; системы задания и поддержания температурного режима, других контрольно-измерительных и регулирующих устройств. По типу основного рабочего органа (органов) Э. подразделяют на одно- или многошнековые (червячные), дисковые, поршневые (плунжерные) и др.

  Первые Э. были созданы в 19 в. в Великобритании, Германии и США для нанесения гуттаперчевой изоляции на электрические провода. В начале 20 в. было освоено серийное производство Э.Примерно с 1930 Э. стали применять для переработки пластмасс; в 1935-37 паровой обогрев корпуса заменили электрическим; в 1937-39 появились Э. с увеличенной длиной шнека (прототип современной Э.), был сконструирован первый двухшнековый Э. В начале 1960-х гг. были созданы первые дисковые Э.

  Наибольшее распространение в промышленности получили шнековые (червячные) Э. (см. рис. ). Захватывая исходный материал (гранулы, порошок, ленту и др.) из загрузочного устройства, шнек перемещает его вдоль корпуса. При этом материал сжимается [давление в Э. достигает 15-50 Мн/м 2(150-500 кгс/см 2] ,разогревается, пластицируется и гомогенизируется.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26