Атом, который прежде изображался как предел делимости, теперь — только отношение...»(Маркс К. и Энгельс Ф., Соч., 2 изд., т. 31, с. 258). Сопоставление атомов с электронами Ленин рассматривал как конкретизацию положения о единстве конечного и бесконечного, где конечное есть лишь звено в бесконечной цепи отношений: «Применить к атомам versus электроны. Вообще бесконечность материи вглубь...» (Полн. собр. соч., 5 изд., т. 29, с. 100).
Для понимания философской стороны А. чрезвычайно важно проведённое Энгельсом разграничение между старым и новым А. Старый А. признаёт абсолютную неделимость и простоту «последних» частиц материи, всё равно, будут ли этими частицами считаться атомы химических элементов (Дальтон и другие химики) или частицы первоматерии (Бойль и др.). Новый А. фактически исходит из отрицания каких-либо «последних», абсолютно простых, неизменных и неделимых частиц или элементов материи. Отвергая абсолютную неделимость или непревращаемость любой сколь угодно малой частицы материи, новый А. признаёт относительную устойчивость каждого дискретного вида материи, его качественную определённость, его относительную сохраняемость в известных границах. Например, делимый некоторыми физическими способами, атом неделим химически и в химических процессах ведёт себя как некое целое, неделимое. Точно так же и молекула: делимая (разложимая) химически на атомы, она в тепловом движении (до известных пределов, когда не наступает термическая диссоциация вещества) ведёт себя тоже как некое целое, неделимое.
Новый А. показывает, что процесс деления материи имеет свои многочисленные границы, при достижении которых совершается переход от одной ступени дискретности материи к другой, качественно от неё отличной; количеств, операция деления приводит, т. о., к выходу за пределы данного вида частиц и переходу в область другого их вида. В этом отношении новый А. противостоит, с одной стороны, идее абсолютной делимости материи до бесконечности (Аристотель, Р. Декарт, динамисты), представляющей пример «дурной бесконечности» (Гегель), а с другой стороны — идее старого А. с его признанием лишь одного вида частиц материи, которыми одноактно завершается (точнее: обрывается) процесс деления материи.
На философские основы современного А. указал ещё Энгельс: «Новая атомистика отличается от всех прежних тем, что она... не утверждает, будто материя только дискретна, а признаёт, что дискретные части различных ступеней... являются различными узловыми точками, которые обусловливают различные качественные формы существования всеобщей материи...» («Диалектика природы», 1969, с. 257).
Особенно важно в новом А. признание взаимопревращаемости любых дискретных видов материи, неисчерпаемости любой сколь угодно малой её частицы. «... Диалектический материализм, — писал Ленин, — настаивает на приблизительном, относительном характере всякого научного положения о строении материи и свойствах ее, на отсутствии абсолютных граней в природе, на превращении движущейся материи из одного состояния в другое, по-видимому, с нашей точки зрения, непримиримое с ним и т.д.» (Полн. собр. соч., 5 изд., т. 18, с. 276). Примером служит взаимопревращение частиц света (фотонов) и частиц вещества (пары — электрона и позитрона — в процессе её рождения из фотонов и обратного её перехода в фотоны при аннигиляции пары).
Отрицание каких-либо «последних», «абсолютно неизменных» и т. Д. частиц материи оправдывается всем ходом углубления человеческого познания в строении материи (см. там же, с. 277).
Если старый А. исходил из того, что «последние», «неделимые» атомы находятся во внешнем отношении друг к другу, пространственно сополагаясь одни с другими, то новый А. признаёт такие взаимодействия частиц материи, в результате которых они испытывают коренные изменения, теряют свою самостоятельность, свою индивидуальность и как бы растворяются полностью друг в друге, претерпевая глубочайшие качеств, изменения. Так, примером подобных взаимодействий является взаимопревращение элементарных частиц материи.
Неисчерпаемость электрона наглядно обнаружилась после неудачи попыток построить модель атома, исходя из представления об электронах-шариках (или даже точках), наделённых определенной массой и зарядом и двигающихся вокруг ядра по законам классической механики. Ядерная же физика показала, что электрон может рождаться из нейтрона, гиперонов и мезонов (с выделением нейтрино), может поглощаться и исчезать как частица в атомном ядре (при захвате), может сливаться с позитроном, словом, испытывать такие многообразные и сложные коренные превращения, которые неоспоримо свидетельствуют о его реальной неисчерпаемости. В истории познания каждый крупный успех А. составлял не только революцию в физическом учении о материи и её строении, но вместе с тем очередное поражение идеалистического взгляда на природу (хотя сам по себе А., конечно, отнюдь не всегда и не во всех своих конкретных формах непосредственно выражал научную истину). Так, открытие Дальтоном закона простых кратных отношений в химии привело в начале 19 в. к крушению идеалистической теории динамизма (Кант, Шеллинг, Гегель и др.), согласно которой основу природы составляет не материя, а прерывные силы. В конце 19 в. в физике и химии получило распространение феноменологическое, агностическое течение, связанное с термодинамикой и наиболее отчётливо обнаружившееся в энергетическом мировоззрении (В. Оствальд, 1895). Энергетизм, как и махизм, отрицал реальность атомов и молекул; он пытался построить всю физику и химию на представлении о чистой энергии, комплексом различных видов которой объявлялась сама материя и все её свойства. Успехи физики и химии на рубеже 19 и 20 вв., особенно подсчёт числа ионов — газовых частиц, несущих электрические заряды, а также изучение «броуновского движения» и др. показали совпадение значений
,определённого самыми различными физическими методами. В 1908 Оствальд признал своё поражение в борьбе против А. «Я убедился, что в недавнее время нами получены экспериментальные подтверждения прерывного, или зернистого, характера вещества, которое тщетно отыскивала атомистическая гипотеза в течение столетий и тысячелетий. Изолирование и подсчет числа ионов в газах..., а также совпадение законов броуновского движения с требованиями кинетической теории... дают теперь самому осторожному ученому право говорить об экспериментальном подтверждении атомистической теории вещества... Тем самым атомистическая гипотеза поднята на уровень научно обоснованной теории» (Grundriss der allgemeinen Chemie, Lpz., 1909, S. Ill—IV).
В конце 1-й четверти 20 в. оказалось, что выбрасываемые при b-распаде электроны уносят только часть энергии, теряемой ядром. Отсюда был сделан вывод, что другая её часть попросту уничтожается. Материалистическое решение возникшей трудности (В. Паули, 1931) состояло в предположении, что при b-распаде наряду с электроном из ядра вылетает другая, неизвестная ещё частица материи, с очень малой массой и электрически нейтральная, которую назвали «нейтрино». Без представления о нейтрино невозможно понять многие ядерные превращения, а также и превращения элементарных частиц (мезонов, нуклонов, гиперонов). Т. о., и здесь успех А. принёс поражение идеализму в физике.
После открытия позитрона И. и Ф. Жолио-Кюри наблюдали (1933) превращение позитронов и электронов в фотоны; наблюдалось также рождение пары — электрона и позитрона — при прохождении фотона -g-лучей вблизи атомного ядра. Эти явления были истолкованы как аннигиляция (уничтожение) материи и как её рождение из энергии. Развивая А., физики-материалисты (С. И. Вавилов, Ф. Жолио-Кюри и др.) показали, что в данном случае происходит взаимопревращение одного физического вида материи (вещества) в другой её вид (свет). Следовательно, и в этом отношении А. нанёс своими открытиями удар идеализму.
Лит.:Маркс К., Различие между натурфилософией Демокрита и натурфилософией Эпикура, в кн.: Маркс К. и Энгельс Ф., Из ранних произведений, М., 1956; Энгельс Ф., Анти-Дюринг, Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20; Резерфорд Э., Строение атома и искусственное разложение элементов, [пер. с англ.], М.—Л., 1923; Бор Н., Три статьи о спектрах и строении атомов, пер. с нем., М., 1923; Маковельский А. О., Древнегреческие атомисты, Баку, 1946; Кедров Б. М., Атомистика Дальтона, М.—Л., 1949; его же. Эволюция понятия элемента в химии, М., 1956; Гейзенберг В., Философские проблемы атомной физики, пер. с нем., М., 1953; Зубов В. П., Развитие атомистических представлений до начала XIX в., М., 1965.
См. также лит. при ст.
.
Б. М. Кедров.
Атомная артиллерия
А'томная артилле'рия,артиллерийские системы, предназначенные для стрельбы по наземным и морским целям снарядами как в обычном и химическом снаряжении, так и с ядерным зарядом. Одним из первых образцов таких систем была 280
-ммпушка, изготовленная в США. В 1953 на полигоне в штате Невада при испытании этой пушки стреляли атомным снарядом массой около 360 кг. Атомный снаряд разорвался в районе цели на высоте 150
мот земной поверхности и на расстоянии около 11
кмот огневой позиции. Мощность взрыва была эквивалентна взрыву 15 тыс.
т тротила. В армии США для стрельбы снарядами с ядерным зарядом могут использоваться 203,2
-ммгаубицы, 175-
ммпушки и 155-
ммгаубицы. Ведётся также разработка снарядов с ядерным зарядом к ряду орудий других калибров. Считают, что сочетание ядерных зарядов большой разрушительной силы и артиллерийских орудий, являющихся наиболее экономичным средством доставки заряда к цели, приведёт к коренному изменению боевых возможностей полевой артиллерии и позволит наиболее эффективно поражать цели.
Атомная бомба
А'томная бо'мба,авиационная бомба с ядерным зарядом. Первые А. б. были изготовлены в США в конце 2-й мировой войны. При взрыве А. б. освобождается огромное количество
.В июле 1945 американцы провели испытание А. б., а затем сбросили 2 бомбы с
20 тыс.
тна японские города Хиросима (6 августа) и Нагасаки (9 августа 1945). Взрыв А. б. вызвал большие разрушения в этих городах и огромные жертвы среди мирного гражданского населения. В Хиросиме было убито и ранено более 140 тыс. чел., а в Нагасаки около 75 тыс. чел. В дальнейшем несколько сот тыс. чел. умерло в результате последствий атомной бомбардировки. Применение А. б. не было вызвано военной необходимостью. Американские правящие круги, спекулируя на временной монополии США в области ядерного оружия, пытались использовать его для устрашения свободолюбивых народов. Однако атомные «секреты» уже в 1947 были раскрыты советскими учёными во главе с академиком И. В. Курчатовым, а в августе 1949 в СССР произведён экспериментальный взрыв атомного устройства, что привело к полному краху атомного шантажа. Термин «А. б.» в настоящее время употребляется редко (см.
.
и лит. к этим статьям).
«Атомная дипломатия»
«А'томная диплома'тия»,термин, обозначающий внешнеполитический курс США после окончания 2-й мировой войны, в основе которого лежало стремление америкаснких правящих кругов использовать созданный США арсенал ядерного оружия в качестве средства политического шантажа и давления на другие страны. «А. д.» строилась в расчёте сначала на монопольное обладание США атомным оружием, затем на сохранение американского превосходства в области производства атомного оружия и на неуязвимость территории США. Проводя «А. д.», США отклоняли все предложения Советского Союза и других социалистических стран о запрещении использования, прекращении производства и уничтожении запасов ядерного оружия. Создание в СССР атомного (1949) и водородного (1953) оружия, а в последующем и межконтинентальных ракет обрекло на провал «А. д.».
Атомная масса
А'томная ма'сса,атомный вес, значение массы атома, выраженное в
.Применение особой единицы для измерения А. м. связано с тем, что массы атомов чрезвычайно малы (10
-22—10
-24
г) и выражать их в граммах неудобно. За единицу А. м. принята
1/
12часть массы изотопа атома углерода
12C. Масса углеродной единицы (сокращённо у. е.) равна (1,660 43 ± 0,00031)·10
-24
г.Обычно при указании А. м. обозначение «у. е.» опускают.
Понятие «А. м.» ввёл Дж.
(1803). Он же впервые определил А. м. Обширные работы по установлению А. м. были выполнены в 1-й половине 19 в. Я.
,позднее Ж. С.
и Т. У.
.В 1869 Д. И.
открыл закон периодической зависимости свойств элементов от А. м. и на его основе исправил А. м. многих известных в то время элементов (Be, U, La и др.) и, кроме того, предсказал А. м. ещё не открытых тогда Ga, Ge, Sc. После открытия Ф. Содди (1914) явления изотопии (см.
) понятие «А. м.» стали относить и к элементам, состоящим из смеси изотопов, и к отдельным изотопам. Для элементов, которые представлены в природе одним изотопом (например, F, Al), А. м. элемента совпадает с А. м. этого изотопа. Если элемент — смесь изотопов, то его А. м. вычисляют как среднее значение из А. м. отдельных его изотопов, с учётом относительного содержания каждого из них. Так, природный хлор состоит из изотопов
35Cl (75,53%) и
37Cl (24,47%), массы атомов которых соответственно равны 34,964 и 36,961. А. м. элемента Cl равна: (34,964·75,53+36,961·24,47)/100 = 35,453
Колебания природного изотопного состава у большинства элементов пренебрежимо малы (менее 0,003%); поэтому каждый элемент имеет практически постоянную А. м., являющуюся одной из важнейших характеристик элемента. Близость к целым числам А. м. элементов, представленных в природе одним изотопом, объясняется тем, что почти вся масса атома заключена в его ядре, а массы составляющих ядро протонов и нейтронов близки к 1. В то же время значения А. м. изотопов (кроме
12C, масса которого принята равной 12,00000) никогда точно не равны целым числам. Это объясняется, во-первых, тем, что относительные массы нейтрона и протона немного больше 1 (соответственно 1,008 665 4 и 1,007 276 63), во-вторых,
и, в-третьих, небольшим вкладом в общую массу атома массы электронов.
По предложению Дж. Дальтона (1803) единицей А. м. сначала служила масса атома водорода (водородная шкала). В 1818 Берцелиус опубликовал таблицу А. м., отнесённых к А. м. кислорода, принятой равной 103. Система А. м. Берцелиуса господствовала до 1860-х гг., когда химики опять приняли водородную шкалу. Но в 1906 они перешли на кислородную шкалу, по которой за единицу А. м. принимали
1/
16часть А. м. кислорода. После открытия изотопов кислорода (
16O,
17O,
18O) А. м. стали указывать по двум шкалам: химической, в основе которой лежала
1/
16часть средней массы атома природного кислорода, и физической с единицей массы, равной
1/
16массы атома
16O. Использование двух шкал имело ряд недостатков, вследствие чего в 1961 перешли к единой, углеродной шкале.
Для нахождения А. м. пользуются различными методами. Часть их основана на экспериментальном определении
какого-либо соединения данного элемента. В этом случае А. м. равна доле молекулярной массы, приходящейся на этот элемент, деленной на число его атомов в молекуле. Точные значения А. м. можно найти, определяя химическим анализом
элемента (А. м. равна произведению эквивалента на валентность). С наибольшей точностью (до 0,001% и выше) А. м. можно определить методом
;масс-спектр элемента даёт сведения о количественном изотопном составе и о массах атомов отдельных изотопов, на основании чего легко рассчитать А. м. (см. выше пример с
35Cl и
37Cl)
.А. м. вновь синтезируемых элементов оценивают на основе рассмотрения ядерной реакции их образования.
Современные значения А. м. приведены в статьях о химических элементах и в статье
Д. И. Менделеева.
Лит.:Менделеев Д. И., Основы химии, 13 изд., т. 1—2, М.— Л., 1947; Некрасов Б. В., Основы общей химии, т. 1, М., 1965; Полинг Л., Общая химия, пер. с англ., М., 1964; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Джуа М., История химии, пер. с итал., М., 1966.
С. С. Бердоносов.
Атомная подводная лодка
А'томная подво'дная ло'дка,см. в ст.
и
.
Атомная секунда
А'томная секу'нда,единичный интервал времени, равный 9192 631 770 периодам колебаний цезиевого эталона частоты (см.
)
.
Атомная физика
А'томная фи'зика,раздел физики, в котором изучают строение и состояние атомов. А. ф. возникла в конце 19 — начале 20 вв. В 10-х гг. 20 в. было установлено, что атом состоит из ядра и электронов, связанных электрическими силами. На первом этапе своего развития А. ф. охватывала также вопросы, связанные со строением атомного ядра. В 30-х гг. выяснилось, что природа взаимодействий, имеющих место в атомном ядре, иная, чем во внешней оболочке атома, и в 40-х гг. ядерная физика выделилась в самостоятельную область науки. В 50-х гг. от неё отпочковалась физика элементарных частиц, или физика высоких энергий.
Предыстория атомной физики: учение об атомах в 17—19 вв.Мысль о существовании атомов как неделимых частиц материи возникла ещё в древности; идеи
впервые были высказаны древнегреческими мыслителями Демокритом и Эпикуром. В 17 в. они были возрождены французским философом П. Гассенди и английским химиком Р. Бойлем.
Представления об атомах, господствовавшие в 17—18 вв., были малоопределёнными. Атомы считались абсолютно неделимыми и неизменными твёрдыми частицами, различные виды которых отличаются друг от друга по размеру и форме. Сочетания атомов в том или ином порядке образуют различные тела, движения атомов обусловливают все явления, происходящие в веществе. И. Ньютон, М. В. Ломоносов и некоторые другие учёные полагали, что атомы могут сцепляться в более сложные частицы — «корпускулы». Однако атомам не приписывали определённых химических и физических свойств. Атомистика ещё носила абстрактный, натурфилософский характер.
В конце 18 — начале 19 вв. в результате быстрого развития химии была создана основа для количественной разработки атомного учения. Английский учёный Дж. Дальтон впервые (1803) стал рассматривать атом как мельчайшую частицу химического элемента, отличающуюся от атомов других элементов своей массой. По Дальтону, основной характеристикой атома является атомная масса. Химические соединения представляют собой совокупность «составных атомов», содержащих определённые (характерные для данного сложного вещества) числа атомов каждого элемента. Все химические реакции являются лишь перегруппировками атомов в новые сложные частицы. Исходя из этих положений, Дальтон сформулировал свой закон кратных отношений (см.
)
.Исследования итальянских учёных А. Авогадро (1811) и, в особенности, С. Канниццаро (1858) провели чёткую грань между атомом и молекулой. В 19 в. наряду с химическими свойствами атомов были изучены их оптические свойства. Было установлено, что каждый элемент обладает характерным оптическим спектром; был открыт спектральный анализ (немецкие физики Г. Кирхгоф и Р. Бунзен, 1860).
Т. о., атом предстал как качественно своеобразная частица вещества, характеризуемая строго определёнными физическими и химическими свойствами. Но свойства атома считались извечными и необъяснимыми. Полагали, что число видов атомов (химических элементов) случайно и что между ними не существует никакой связи. Однако постепенно выяснилось, что существуют группы элементов, обладающих одинаковыми химическими свойствами — одинаковой максимальной валентностью, и сходными законами изменения (при переходе от одной группы к другой) физических свойств — температуры плавления, сжимаемости и др. В 1869 Д. И. Менделеев открыл
.Он показал, что с увеличением атомной массы элементов их химические и физические свойства периодически повторяются (
рис. 1
и
2
).
Периодическая система доказала существование связи между различными видами атомов. Напрашивался вывод, что атом имеет сложное строение, изменяющееся с атомной массой. Проблема раскрытия структуры атома стала важнейшей в химии и в физике (подробнее см.
)
.
Возникновение атомной физики.Важнейшими событиями в науке, от которых берёт начало А. ф., были открытия электрона и радиоактивности. При исследовании прохождения электрического тока через сильно разреженные газы были открыты лучи, испускаемые катодом разрядной трубки (катодные лучи) и обладающие свойством отклоняться в поперечном электрическом и магнитном полях. Выяснилось, что эти лучи состоят из быстро летящих отрицательно заряженных частиц, названных электронами. В 1897 английский физик Дж. Дж.
измерил отношение заряда
еэтих частиц к их массе
m.Было также обнаружено, что металлы при сильном нагревании или освещении светом короткой длины волны испускают электроны (см.
,
)
.Из этого было сделано заключение, что электроны входят в состав любых атомов. Отсюда далее следовало, что нейтральные атомы должны также содержать и положительно заряженные частицы. Положительно заряженные атомы — ионы — были действительно обнаружены при исследовании электрических разрядов в разреженных газах. Представление об атоме как о системе заряженных частиц объясняло, согласно теории голландского физика Х.
,саму возможность излучения атомом света (электромагнитных волн): электромагнитное излучение возникает при колебаниях внутриатомных зарядов; это получило подтверждение при исследовании действия магнитного поля на атомные спектры (см.
)
.Выяснилось, что отношение заряда внутриатомных электронов к их массе
е/m,найденное Лоренцом в его теории явления Зеемана, в точности равно значению
е/mдля свободных электронов, полученному в опытах Томсона. Теория электронов и её экспериментальное подтверждение дали бесспорное доказательство сложности атома.
Представление о неделимости и непревращаемости атома было окончательно опровергнуто работами французских учёных М.
и П.
.В результате изучения радиоактивности было установлено (Ф.
)
,что атомы испытывают превращения двух типов. Испустив a-частицу (ион гелия с положительным зарядом 2
e), атом радиоактивного химического элемента превращается в атом другого элемента, расположенного в периодической системе на 2 клетки левее, например атом полония — в атом свинца. Испустив b-частицу (электрон) с отрицательным зарядом -
е,атом радиоактивного химического элемента превращается в атом элемента, расположенного на 1 клетку правее, например атом висмута — в атом полония. Масса атома, образовавшегося в результате таких превращений, оказывалась иногда отличной от атомного веса того элемента, в клетку которого он попадал. Отсюда следовало существование разновидностей атомов одного и того же химического элемента с различными массами; эти разновидности в дальнейшем получили название изотопов (т. е. занимающих одно и то же место в таблице Менделеева). Итак, представления об абсолютной тождественности всех атомов данного химического элемента оказались неверными.
Результаты исследования свойств электрона и радиоактивности позволили строить конкретные модели атома. В модели, предложенной Томсоном в 1903, атом представлялся в виде положительно заряженной сферы, в которую вкраплены незначительные по размеру (по сравнению с атомом) отрицательные электроны (
рис. 3
).
Они удерживаются в атоме благодаря тому, что силы притяжения их распределённым положительным зарядом уравновешиваются силами их взаимного отталкивания. Томсоновская модель давала известное объяснение возможности испускания, рассеяния и поглощения света атомом. При смещении электронов из положения равновесия возникает «упругая» сила, стремящаяся восстановить равновесие; эта сила пропорциональна смещению электрона из равновесного положения и, следовательно,
атома. Под действием электрических сил падающей электромагнитной волны электроны в атоме колеблются с той же частотой, что и электрическая напряжённость в световой волне; колеблющиеся электроны, в свою очередь, испускают свет той же частоты. Так происходит рассеяние электромагнитных волн атомами вещества. По степени ослабления светового пучка в толще вещества можно узнать общее число рассеивающих электронов, а зная число атомов в единице объёма, можно определить число электронов в каждом атоме.
Создание Резерфордом планетарной модели атома.Модель атома Томсона оказалась неудовлетворительной. На её основе не удалось объяснить совершенно неожиданный результат опытов английского физика Э. Резерфорда и его сотрудников Х. Гейгера и Э. Марсдена по рассеянию a-частиц атомами. В этих опытах быстрые a-частицы были применены для прямого зондирования атомов. Проходя через вещество, a-частицы сталкиваются с атомами. При каждом столкновении a-частица, пролетая через электрическое поле атома, изменяет направление движения — испытывает рассеяние. В подавляющем большинстве актов рассеяния отклонения a-частиц (углы рассеяния) были очень малы. Поэтому при прохождении пучка a-частиц через тонкий слой вещества происходило лишь небольшое размытие пучка. Однако очень малая доля a-частиц отклонялась на углы более 90°. Этот результат нельзя было объяснить на основе модели Томсона, т.к. электрическое поле в «сплошном» атоме недостаточно сильно, чтобы отклонить быструю и массивную a-частицу на большой угол. Чтобы объяснить результаты опытов по рассеянию a-частиц, Резерфорд предложил принципиально новую модель атома, напоминающую по строению Солнечную систему и получившую название планетарной. Она имеет следующий вид. В центре атома находится положительно заряженное ядро, размеры которого (~10
-12
см) очень малы по сравнению с размерами атома (~10
-8
см)
,а масса почти равна массе атома. Вокруг ядра движутся электроны, подобно планетам вокруг Солнца; число электронов в незаряженном (нейтральном) атоме таково, что их суммарный отрицательный заряд компенсирует (нейтрализует) положительный заряд ядра. Электроны должны двигаться вокруг ядра, в противном случае они упали бы на него под действием сил притяжения. Различие между атомом и планетной системой состоит в том, что в последней действуют силы тяготения, а в атоме — электрические (кулоновские) силы. Вблизи ядра, которое можно рассматривать как точечный положительный заряд, существует очень сильное электрическое поле. Поэтому, пролетая вблизи ядра, положительно заряженные a-частицы (ядра гелия) испытывают сильное отклонение (см.
рис. 4
). В дальнейшем было выяснено (Г. Мозли), что заряд ядра возрастает от одного химического элемента к другому на элементарную единицу заряда, равную заряду электрона (но с положительным знаком). Численно заряд ядра атома, выраженный в единицах элементарного заряда е, равен порядковому номеру соответствующего элемента в периодической системе.
Для проверки планетарной модели Резерфорд и его сотрудник Ч. Дарвин подсчитали угловое распределение a-частиц, рассеянных точечным ядром — центром кулоновских сил. Полученный результат был проверен опытным путём — измерением числа a-частиц, рассеянных под разными углами. Результаты опыта в точности совпали с теоретическими расчётами, блестяще подтвердив тем самым планетарную модель атома Резерфорда.
Однако планетарная модель атома натолкнулась на принципиальные трудности. Согласно классической электродинамике, заряженная частица, движущаяся с ускорением, непрерывно излучает электромагнитную энергию. Поэтому электроны, двигаясь вокруг ядра, т. е. ускоренно, должны были бы непрерывно терять энергию на излучение. Но при этом они за ничтожную долю секунды потеряли бы всю свою кинетическую энергию и упали бы на ядро. Другая трудность, связанная также с излучением, состояла в следующем: если принять (в соответствии с классической электродинамикой), что частота излучаемого электроном света равна частоте колебаний электрона в атоме (т. е. числу оборотов, совершаемых им по своей орбите в одну секунду) или имеет кратное ей значение, то излучаемый свет по мере приближения электрона к ядру должен был бы непрерывно изменять свою частоту, и спектр излучаемого им света должен быть сплошным. Но это противоречит опыту. Атом излучает световые волны вполне определённых частот, типичных для данного химического элемента, и характеризуется спектром, состоящим из отдельных спектральных линий — линейчатым спектром. В линейчатых спектрах элементов был экспериментально установлен ряд закономерностей, первая из которых была открыта швейцарским учёным И. Бальмером (1885) в спектре водорода. Наиболее общая закономерность — комбинационный принцип — была найдена австрийским учёным В. Ритцем (1908). Этот принцип можно сформулировать следующим образом: для атомов каждого элемента можно найти последовательность чисел
T
1,
T
2,
T
3,... — т. н. спектральных термов, таких, что частота
vкаждой спектральной линии данного элемента выражается в виде разности двух термов:
v=
T
k
- T
i
.Для атома водорода терм
T
n=
R/n
2,где
n —целое число, принимающее значение
n= 1, 2, 3,..., a
R —т
.н. постоянная Ридберга (см.
)
.
Т. о., в рамках модели атома Резерфорда не могли быть объяснены устойчивость атома по отношению к излучению и линейчатые спектры его излучения. На её основе не могли быть объяснены и законы теплового излучения, и законы фотоэлектрических явлений, которые возникают при взаимодействии излучения с веществом. Эти законы оказалось возможным объяснить, исходя из совершенно новых — квантовых— представлений, впервые введённых немецким физиком М.
(1900). Для вывода закона распределения энергии в спектре теплового излучения — излучения нагретых тел — Планк предположил, что атомы вещества испускают электромагнитную энергию (свет) в виде отдельных порций — квантов света, энергия которых пропорциональна
v(частоте излучения):
E = hv,где
h —постоянная, характерная для квантовой теории и получившая название
.В 1905 А. Эйнштейн дал квантовое объяснение фотоэлектрических явлений, согласно которому энергия кванта
hvидёт на вырывание электрона из металла —
Р —и на сообщение ему кинетическую энергии
Т
кин;
hv=
Р+ T
кин. При этом Эйнштейн ввёл понятие о квантах света как особого рода частицах; эти частицы впоследствии получили название
.