Современная электронная библиотека ModernLib.Net

Голоc через океан

ModernLib.Net / Кларк Артур Чарльз / Голоc через океан - Чтение (стр. 11)
Автор: Кларк Артур Чарльз
Жанр:

 

 


Но усиление - лишь одно из преобразований человеческой речи при передаче её на большие расстояния. Обычно мало кому известно, что дальняя телефонная (и телеграфная) связь осуществляется с помощью радиотехнической аппаратуры, но только проводящей ток средой служат жилы кабеля или провода.
      С момента зарождения электросвязи умы учёных были направлены на то, чтобы передать как можно больше сообщений по одному проводу, т.е. "уплотнить" цепь. Ведь и Белл изобрёл телефон, пытаясь воплотить в жизнь идею своего "гармонического телеграфа", в надежде осуществить передачу полудюжины телеграмм по одному проводу с помощью пластинок, имеющих различную частоту колебаний. Тот же принцип сейчас с успехом используется нами при настройке радиоприёмника на определённую станцию. Более того, этот же принцип положен в основу одновременной передачи десятков, сотен и даже тысяч телефонных разговоров по одному проводнику  .
      Когда вы говорите по телефону, по проводам передаётся электрический ток не той частоты, которая соответствует звуковым колебаниям вашего голоса, а более высокой частоты. Она получается в результате преобразования тока звуковой частоты с помощью установленного на телефонной станции миниатюрного радиопередатчика. Сигналы таких передатчиков, каждый из которых настроен на определённую частоту, и передаются по проводам. При этом два одновременных разговора не мешают друг другу, ибо каждый из них передаётся по линии своим передатчиком и на своих частотах. Точно так же не мешают друг другу различные программы, принимаемые одной коллективной радио- или телевизионной антенной.  
      Приёмное устройство отделяет одну передачу от другой (или "фильтрует" их, как говорят в технике) и преобразует сигналы в звуки членораздельной речи.
      Таким образом, принцип высокочастотного телефонирования по проводам аналогичен принципу радиопередачи. Но так как к качеству передачи музыкальных и концертных программ по радио предъявляются более высокие требования, чем к качеству передачи разговорной речи, полоса частот канала радиовещания вдвое-втрое шире полосы частот телефонного канала.
      Один телефонный канал может быть использован для одновременной передачи двадцати четырёх телеграфных сообщений  . В наши дни существовавшее раньше различие между телеграфными и телефонными цепями практически исчезло. Оба вида сообщений передаются по одним и тем же линиям. Сотни жил телефонного кабеля прежнего типа заменены в настоящее время одной парой проводников.
      Эти проводники, конечно, далеки от тех, которыми в своё время пользовались Грэхем Белл, Эдисон и "другие пионеры связи. Множество изолированных проводников, скрученных попарно наподобие миниатюрного осветительного электрошнура, в настоящее время заменены коаксиальным кабелем, в котором внутренний проводник помещён в пустотелую медную трубку - внешний проводник. Между внешним и внутренним проводниками расположена обычно полиэтиленовая изоляция. С появлением телевидения каждый может видеть коаксиальный кабель у себя дома (он соединяет антенну с телевизором)  , но впервые он был разработан для нужд многоканальной телеграфной и телефонной связи.
      По коаксиальному кабелю можно передавать очень широкую полосу частот. Для примера достаточно сказать, что применённый для соединения с телевизионной антенной такой кабель позволяет вести приём или передачу на частотах порядка 50 миллионов герц и выше. Если бы возникла необходимость, по этому кабелю можно было бы вести передачу с частотой в несколько миллиардов герц. Иными словами, по коаксиальному кабелю можно передавать одновременно, во всяком случае на небольшие расстояния, около миллиона телефонных разговоров, и при этом они не будут мешать друг другу.
      Тремя основными элементами современной дальней связи являются: во-первых, кабель, во-вторых, усилительные станции, установленные на линии через каждые 60 - 70 километров с тем, чтобы компенсировать ослабление сигналов по мере их продвижения вследствие потерь в линии, и, наконец, приёмная и передающая аппаратура, которая позволяет осуществить одновременную передачу десятков и сотен разговоров по одной цепи и затем разделить их по частоте. Если три эти элемента подобраны и изготовлены надлежащим образом, телефонная связь практически не ограничена расстоянием. Имеются в виду технические возможности, так как иногда эта связь ограничивается определённым расстоянием из чисто экономических соображений.
      Со времени второй мировой войны, а точнее с момента появления радиолокации основным соперником коаксиального кабеля стала связь на ультракоротких волнах с помощью радиорелейных линий *. Большинство людей, вероятно, видели высокие башни, обрамлённые загадочными кронами с параболическими рефлекторами или раструбами. Башни эти воздвигаются либо на крышах телефонных станций, либо стоят на возвышенностях вдали от жилья. Это те же усилительные станции, только соединены они между собой не медными проводами, а узкими пучками радиоволн. Пучок этот остро сфокусирован; будь он видимым, он напоминал бы пучок лучей прожектора. Устанавливаются башни одна от другой на расстоянии прямой видимости, по возможности на возвышенных местах. Дистанция между ретрансляционными радиорелейными станциями примерно та же, что и между усилительными станциями на линии коаксиального кабеля, т.е. около 65 километров. В горной местности этот интервал может быть увеличен.
      Связь с помощью ультракоротких волн имеет то преимущество перед проводной связью, что её можно устанавливать в труднодоступной местности, там, где проложить кабель сложно и дорого. Проложить кабель вообще не всегда просто. Горы, реки, болотистые места и, наконец, сопротивление владельцев отдельных участков - серьёзные препятствия для сооружения кабельных линий.
      Но используем ли мы коаксиальную кабельную или ультракоротковолновую радиорелейную линию - в том и в другом случаях для обеспечения качественной связи станции усиления устанавливают на расстоянии не более 60-70 километров друг от друга. На поверхности земли это не составляет особого труда, но как быть в случае, если на пути линии связи возникает водная преграда протяжённостью значительно больше, чем несколько десятков километров?
      Некоторые улучшения, внесённые в конструкцию подводного кабеля, позволили увеличить этот предел. Так, в 1947 году между Англией и Голландией был проложен 150-километровый подводный кабель, который позволял одновременно вести 84 телефонных разговора. Сегодня несложно изготовить кабель, допускающий передачу несколько меньшего количества разговоров, но на расстояние уже, скажем, в 350-400 километров без какого-либо промежуточного усиления  .
      Но четыреста километров - это только одна десятая часть расстояния через Атлантику. Ну и что же, - могут спросить, - разве нельзя в десять раз усилить сигнал, подаваемый в линию, или сигнал, поступающий в приёмное устройство? И проблема подводной телефонной связи через Атлантику будет решена!
      К сожалению, простая арифметика здесь неприменима. Ток в подводном кабеле ослабевает не пропорционально расстоянию, а гораздо быстрее (более подробно это изложено в главе XX). Уменьшение тока по мере его прохождения по подводному кабелю происходит в масштабах, которые измеряются астрономическими цифрами. Нет, простым увеличением в 10 раз здесь ничего не добьёшься.
      Примерный расчёт показывает, что если бы для передачи по первому трансатлантическому телефонному кабелю использовали энергию всех существующих на земле электростанций, то всё равно уже через 370 километров по длине кабеля, т.е. на расстоянии всего лишь одной десятой пути через Атлантику, переданную энергию трудно было бы обнаружить даже с помощью самых чувствительных приборов. На первый взгляд, это кажется парадоксальным, ибо в то же время батарея размером с напёрсток посылает по подводному кабелю телеграфный сигнал, легко преодолевающий Атлантический океан. Объяснение следует искать в используемой частоте передачи. При работе на частотах в сотни тысяч герц потери несоизмеримо больше, чем в случае, когда передача ведётся на постоянном токе.
      Но при всех условиях существует предел количества энергии, которое можно передать по кабелю без повреждения его изоляции и расплавления проводников. Повреждение кабеля прокладки 1858 года, происшедшее из-за избытка энергии, обусловленного наличием в схеме огромных катушек доктора Уайтхауза, может служить подтверждением этого положения.
      С другой стороны, усиливать сигналы до бесконечности тоже нельзя. После какой-то определённой степени усиления результатом дальнейших попыток становится шум. Если, скажем, указатель диапазона при настройке радиоприёмника установить в положение между станциями, то будет слышен устойчивый свист, производимый бесчисленными передатчиками. Но отличить одну станцию от другой нельзя, пока не настроишься на определённую волну - сигналы как бы тонут в общем шуме.
      В радиоприёмнике или в другом виде усилителя большинство шумов и помех является следствием того, что ток обычно не течёт плавно. Образно говоря, распространение тока по проводнику подобно песчаной лавине. Каждый электрон, непрерывно колеблясь, производит свой шум, шумы накапливаются и в результате усиления перекрывают слабый полезный сигнал.
      Теперь нам более или менее ясно, насколько трудно было разрешить проблему трансатлантической телефонной передачи по подводному кабелю. Единственный способ, так же как и при наземной дальней связи, - это установка усилителей на таком расстоянии один от другого, при котором посланный сигнал может быть усилен до того, как он будет поглощён шумами, возникающими в проводнике. Это легко сказать, но куда труднее сделать. На практике возникали трудности, долгое время казавшиеся непреодолимыми.
      Обычная усилительная станция на междугородной телефонной магистрали занимает помещение в несколько комнат; для её питания требуется энергия абсолютно надёжной и достаточно мощной силовой установки. Усилительная станция длительно работает при минимальном уходе, но всё же нуждается время от времени в некоторой регулировке и замене изношенных деталей. Особенно это касается усилительных ламп. Владельцы радиоприёмников и телевизоров хорошо знают, что лампы медленно, а иногда и не очень медленно, теряют свои качества и постепенно выходят из строя. Было бы ещё полбеды, если бы мы точно знали срок их службы. Но ведь радиолампа может выйти из строя завтра или простоять ещё пятьдесят лет. Никто не может сказать заранее, насколько её хватит.
      Проектирование подводных телефонных усилительных станций, которые бы исправно в течение десятилетий функционировали на морском дне под давлением в несколько сот килограмм на квадратный сантиметр, естественно, стало основной проблемой трансатлантической телефонной связи. Её пытались решить тремя различными путями, и на них стоит остановиться хотя бы для того, чтобы понять, почему они были отвергнуты.
      Справедливости ради следует сказать, что один путь вообще всерьёз не рассматривался. Телефонная связь Америки с Европой могла быть осуществлена по линии, почти полностью проходящей по суше через территорию Советского Союза. Единственную подводную секцию длиной около 150 километров, не требующую установки подводных усилительных станций, пришлось бы проложить в Беринговом проливе (как мы уже видели в главе XI, подобную безуспешную попытку предприняли после неудачной прокладки первого трансатлантического телеграфного кабеля). Однако вряд ли такое решение было бы целесообразным как по политическим, так и по экономическим соображениям. Потребовалось бы пересечь линией связи огромную территорию, установить сотни усилительных станций, обеспечить постоянное наблюдение за ними и за всей линией в целом.
      Итак, задача установления телефонной связи между Европой и Америкой всё же сводилась к сооружению линии в Атлантике.
      А что, если использовать ультракоротковолновую связь, оборудовав ретрансляционные вышки на судах, поставленных на якоря через каждые шестьдесят-семьдесят километров по всей трассе? Но тогда потребовалось бы минимум пятьдесят судов с экипажами и соответствующим оборудованием. Капиталовложения оказались бы огромными, а расходы на содержание флотилии - ещё больше. При решении этой проблемы возник бы, кроме того, ряд чисто практических трудностей, а именно: как быть в случае шторма, аварии, каким образом судам поддерживать нужную дистанцию и определённое положение друг относительно друга, как при постоянной качке посылать строго направленные пучки волн от одной вышки к другой.
      На первый взгляд, вполне приемлемым был третий путь. Самолёт, поднятый на высоту около 12 километров, может поддерживать прямую радиосвязь в пределах "видимости", с учётом кривизны поверхности Земли, с другим летательным аппаоатом, поднятым на такую же высоту, на расстоянии 800-900 километров от первого. (Кстати, Соединённые Штаты сравнительно недавно изготовили радиолокационные установки, которые для увеличения радиуса действия подняты в воздух). Таким образом, на всю Атлантику потребуется только четыре самолёта, снарядить и обслуживать которые, казалось бы, значительно проще, чем пятьдесят судов. Но это опять приведёт к большим затратам на эксплуатацию установок и содержание экипажа. Хотя, возможно, проблема межконтинентальной связи решится в будущем именно таким путём; в этом случае роль летательного аппарата будет играть искусственный спутник Земли.
      Сегодня же единственным практическим решением проблемы трансатлантической и вообще трансокеанской телефонии являются подводные усилители, вмонтированные в уложенный на океанское дно кабель. В первой трансатлантической телефонной линии 102 таких усилителя исправно работают с 1956 года. Половина их участвует в передаче сообщений с востока на запад, половина - в обратном направлении.
      Гигантское ожерелье лежит на дне океана. Едва ли у ювелиров есть изделия, которые изготовлялись бы с такой тщательностью и с такими затратами человеческого труда. И это не удивительно, так как подводным усилителям предстоит работать глубоко на морском дне, где нет человеческих глаз и рук, которые могли бы вовремя прийти им на помощь.
 

XIX. ФАБРИКА ИДЕЙ

      Интересно, что бы подумал молодой Грэхем Белл, работавший в своих двух комнатах с единственным помощником, о комплексе лабораторий, оборудованных по последнему слову техники, носящих его имя и играющих такую большую роль в трансатлантической телефонии. На первый взгляд, лаборатории выглядят как большая современная фабрика; да они ею и являются. Но это фабрика идей, на которой производственные процессы остаются невидимыми. Множественное число - "лаборатории" вполне уместно, так как физическое отделение занимает четыре отдельных помещения - одно из них в Нью-Йорке, а три в штате Нью-Джерси. Однако сокращение "Белл Лэбс" принято употреблять в единственном числе.
      В наше время во многих странах есть научные центры, ведущие исследовательскую работу в различных областях промышленности. "Белл Лэбс" - полное название "Bell Laboratories" - "Лаборатории Белла" - крупнейшее учреждение такого рода. В настоящее время в его штате насчитывается до десяти тысяч человек, из них три тысячи - ученые и инженеры. Содержание "Белл Лэбс" обходится Американской телефонно-телеграфнои компании в 160 миллионов долларов ежегодно. Компания может позволить себе это. Если бы попросили назвать компанию с самым большим капиталом, мы, вероятно, скорее всего вспомнили бы Форда или "Дженерал Моторс". На самом же деле Американская телефонно-телеграфная компания начинает список крупнейших фирм Америки: её баланс достигает шестнадцати миллиардов долларов  .
      В лабораториях разрабатываются вопросы, связанные с развитием радио, телевидения, радиолокации, техники управления ракет и особенно электроники. Большое значение придаётся исследованиям, которые могут привести к новым открытиям и изобретениям. Эта работа, разумеется, трудно поддаётся планированию. Трудно представить себе, например, вице-президента компании, заявляющего: "В следующем финансовом году мы совершим двадцать крупных открытий". Единственное, что здесь можно сделать, - это подобрать молодых, подающих надежды, учёных и инженеров, создать им все условия для работы с тем, чтобы они занимались интересующими их проблемами. Всё это требует больших затрат, и никто не может сказать заранее, даст ли то или иное изобретение выгоду в ближайшем будущем или через сто лет. Однако 16 миллиардов баланса красноречиво говорят о том, что все затраты окупаются с лихвой. За три десятилетия, прошедших с момента организации "Белл Лэбс", её сотрудникам были присуждены две Нобелевские премии - в 1937 году Д. Дэвиссону - за работы по электронной дифракции и В. Браттейну, Д. Бардину и В. Шокли - в 1948 году за изобретение транзистора. Принцип действия этого небольшого, но замечательного устройства основан на особенностях прохождения тока через некоторые вещества, известные под названием полупроводников. Эти вещества, в большинстве своём кристаллические, проводят ток хуже, чем металлы, но тем не менее их нельзя отнести и к изоляционным материалам. При определённых условиях их проводимость в одном направлении лучше, чем в другом. Классическим примером может служить старый кристаллический детектор с пружинкой, который широко использовался в приёмниках двадцатых годов.
 
 
       Кристаллический детектор - ключевой элемент радиоприемников доламповой эры.
       Острие проволочки с помощью пружинной части прижимается к кристаллу сернистого свинца (галенита).
       Удачную точку контакта приходилось искать методом проб и ошибок
      Со временем кристаллический детектор, который мог лишь отбирать сигналы, но не мог усиливать их, был полностью вытеснен из области радио электронной лампой, обладающей обоими этими качествами. Однако потом было установлено, что при определённых обстоятельствах некоторые типы кристаллов могут усиливать ток. Кроме того, они имеют ряд преимуществ перед обычными радиолампами. Это исключительно малые габариты и потребность в электропитании, отсутствие нагрева, механическая прочность. Итак появился транзистор. В электронике, радиотехнике началась революция, которая через несколько лет изменит нашу жизнь во многих её сферах.
      Прежде всего стало возможным сделать удобные и надёжные аппараты для людей, имеющих дефекты слуха. Затем появились маленькие переносные радиоприёмники. На транзисторах стали изготовлять приборы для контроля и управления промышленными процессами. И всё началось с того, что трое учёных решили посмотреть, что произойдёт, если электрический ток пропустить через крошечные кусочки невзрачного на вид и малоприменимого для промышленных целей элемента - германия.
      И сейчас, наверно, какие-нибудь учёные работают над отвлечённой, на первый взгляд, проблемой, решение которой в будущем совершит революцию в науке или промышленности.
      Увы, в наш век существует и секретная наука; в лабораториях Белла ей уделяется большое внимание. Когда проходишь по коридорам "Белл Лэбс", мимо цехов, складов, кабинетов и лабораторий, видишь много закрытых и опечатанных помещений, в которые нет доступа; некоторые из них находятся под вооружённой охраной. Можно с уверенностью сказать, что работающие в этих кабинетах преследуют не чисто научные цели. Усовершенствование управляемых ракет, систем связи, радарных установок - всё это имеет военное назначение. Но настоящую ценность для человечества представляют исследования, направленные на мирные цели, и даже те исследования, которые сегодня кажутся не имеющими практического применения.
      Один восточный писатель как-то заметил, что вся человеческая деятельность - своего рода игра. Он бы ещё больше утвердился в своём мнении, по крайней мере в отношении учёных, если бы мог посетить лаборатории Белла и наблюдать, как учёные мужи развлекаются механическими игрушками, изготовленными ими самими.
      В этой связи нельзя не упомянуть механическую мышь Шеннона. Сначала я удивился, увидав, как один из крупнейших математиков Соединённых Штатов и основателей теории информации играет с маленькой механической мышкой, которая, кажется, только что выскочила из домашней кладовой.
 
 
       Клод Шеннон (1916-2001) - один из основателей теории информации.
       В 1940-1956 гг. сотрудник математической лаборатории "Белл Лабс".
       В руках у него та самая "мышь", которая обучается проходить лабиринт
      Мышь Шеннона - весьма сложная игрушка. Она живёт в металлическом лабиринте со множеством запутанных ходов и тупиков. Лабиринт сделан так, что при неправильном ходе электрический ток как бы "отпугивает" мышь, и она возвращается в поисках правильного хода, пока, наконец, не достигнет противоположного конца лабиринта. Но самое удивительное не в этом. Если Вы сразу же, после первого прохода мышью лабиринта, вновь вернете её в исходное положение, она уверенно пойдёт по единственно правильному пути: мышь как бы "запомнила" дорогу. До некоторой степени мышь Шеннона аналогична телефонным искателям АТС, которые сразу же после набора номера осуществляют нужное соединение. Таким образом, это машина, которая изучила свой опыт и использует его в дальнейшей деятельности. Она более "высоко организована", чем робот, исполняющий лишь то, что ему приказано. Это шаг на пути к созданию элемента разумного мышления. Ибо не является ли человеческий мозг своего рода машиной, которая учится на своём опыте, блуждая в лабиринте жизни?
      А теперь я хотел бы упомянуть о двух относительно простых проектах, которые имеют практическое применение: существо их будет понятно каждому.
      Первый представляет собой программную машину, которая даёт оптимальные решения при проектировании уже  известных нам сооружений или приспособлений. В конечном счёте ничто человеческое не является совершенным в полном смысле слова - всегда можно найти возможность для улучшения и совершенствования конструкции. Назначение машины - давать наилучшие решения по каждому элементу создаваемой конструкции или изделия. С помощью программной машины были изготовлены модели миниатюрного микрофона и наушников для глухих, которые впоследствии были запущены в производство; они оказались настолько изящными, что музей современных искусств не отказался бы от таких экспонатов.
      Другой проект также весьма широко используется. Он представляет собой электронносчётную машину, которая решает проблемы из области цифоовых сочетаний.
      В больших городах, подобно Лондону и Нью-Йорку, так много телефонных абонентов, что приходится вводить семизначную нумерацию. Одну-две цифры заменяют буквами; это облегчает запоминание номера. Но механизм номеронабирателя может отбирать цифры только от нуля до девяти. Со временем семи цифр будет недостаточно. Как же обыкновенному человеку, запомнить, скажем, номер 3 952 841? Или, что ещё хуже, 96 821 473?
      Конечно, за каждым номером стоит известный вам человек, но это не помогает удерживать в голове множество семи- или девятизначных чисел.
      Выходом из положения, видимо, является деленир номера на части. Проблема в том, как его разделить. Семизначное число можно представить в тридцати вариантах, пои одном и том же порядке цифр. Для примера возьмём число 1 234 567; оно может быть записано, произнесено и, что самое важное, удержано в памяти в сочетаниях:
      123-4567
      12-34-567
      1234-567
      и ещё в двадцати семи других вариантах  . Вы можете попробовать изобразить их сами. Тире символизирует паузу, которую делают при произнесении номера в устной речи или в уме, и очень важно, где его поставить. А это можно решить, основываясь на результатах широкого опроса населения (в США этим занимается институт Гэллапа). В противном случае номер трудно будет запомнить и это приведёт к ряду ошибок.
      Я сейчас ещё помню свой личный номер лётчика Королевских Воздушных сил. Он представляет собой сложное семизначное число - 1 097 727 и отложился в моей памяти как 109-77-27.
      ... Таковы примеры проектов, над которыми работают инженеры и учёные в лабораториях Белла.
      Но прежде чем перейти к проекту, который является темой нашей книги, я хотел бы упомянуть ещё об одной работе, которая поразила меня, как, вероятно, и других, кому удалось её видеть. Это оригинальное устройство, которое, видимо, не имеет практического применения. Оно было установлено на столе Клода Шеннона и выглядело очень просто - небольшой деревянный ящик, размерами и формой напоминающий коробку для сигар, с единственным выключателем на лицевой стороне.
      Когда вы поворачиваете выключатель, раздаётся сердитое, вполне осмысленное ворчание. Крышка поднимается, и на глазах у вас из коробки высовывается рука. Она поворачивает выключатель в обратную сторону и снова убирается внутрь коробки, после чего крышка медленно закрывается и ворчание затихает.
      Психологический эффект этого мистического зрелища, если вы к нему не подготовлены, потрясающе силен. Мрачное впечатление остаётся от машины, которая выключает сама себя. Поневоле задаёшься вопросом, не выносит ли наука сама себе приговор...

XX. ПОДВОДНЫЕ УСИЛИТЕЛИ

      Когда в ноябре 1953 года Британское ведомство связи, Канадская корпорация трансокеанской связи и Американская телефонно-телеграфная компания подписали соглашение о прокладке первого трансатлантического телефонного кабеля, они уже имели достаточный опыт в изготовлении подводных усилителей различных типов.
      Ведомство связи встроило один подводный усилитель в кабель, проложенный в Ирландском море между островами Англси и Мэн, в начале 1943 года после пяти лет экспериментальных работ. Затем усилители вмонтировали в телефонный кабель, идущий в Европу. Однако эти усилители укладывались в сравнительно мелких водах и могли не выдержать колоссального давления океанских глубин.
      В Соединённых Штатах, наоборот, с самого начала заинтересовались усилителями, которые могли работать на больших глубинах. Как мы уже упоминали в главе XVI, достижения в области электроники в тридцатых годах заставили серьёзно задуматься о возможностях подводной трансатлантической телефонной связи с помощью усилителей, и в этом направлении были проделаны большие экспериментальные работы, в основном в период до и во время второй мировой войны.
      Эти работы достигли кульминации в 1950 году, когда был проложен телефонный кабель между Ки-Уэст (Флорида) и Гаваной (Куба) на расстояние около двухсот двадцати километров. Всего на этой линии было установлено шесть усилителей, причём некоторые на глубине до 2000 метров  .
 
 
       Прокладка подводной линии.
       В воду погружается торпедообразный усилитель
       двустороннего действия в жёстком корпусе
      С самого начала предполагалось, что этот кабель будет прототипом будущего трансатлантического кабеля, поэтому за его работой велось тщательное наблюдение. По истечении двух лет безаварийной работы кабеля между Британским ведомством связи и Американской телефонно-телеграфной компанией начались технические совещания. Но сразу же при рассмотрении основных технических положений, определяющих прокладку трансатлантического телефонного кабеля, возникли серьёзные разногласия. В конечном счёте они были преодолены, но, чтобы понять, почему они возникли, необходимо более подробно остановиться на подводных усилителях.
      Усилительное устройство состоит из нескольких электронных ламп, соединённых друг с другом в определённой последовательности. Оно предназначено для усиления (в миллион раз) слабого входящего сигнала и для посылки этого сигнала в следующую секцию коаксиального кабеля. Усилитель должен быть заключён в абсолютно водонепроницаемую оболочку, способную к тому же выдерживать давление водяного столба высотой в несколько километров. Такая оболочка достаточно массивна и тяжела. В то же время усилители, вытравливаясь вместе с кабелем по мере движения судна, должны надёжно укладываться на морском дне.
 
 
       Направляющий шкив кормовой кабелеукладочной машины
      Британские мелководные усилители заключены в толстые, жёсткие трубы, по форме и размерам напоминающие торпеды, и судно должно остановиться для того, чтобы переправить такую трубу за борт и уложить её на морское дно. Это несложно на небольших глубинах, но в океане остановка судна может вызвать закручивание кабеля.
      Дело в том, что спирально наложенная проволока, которая образует броню кабеля, имеет тенденцию к раскручиванию, если кабель длиной, скажем, в четыре-пять тысяч метров и весом в несколько тонн свободно повисает под кораблем. При остановках судна это явление вызывает выпирание отдельных проволок из повива брони, образование узлов и в результате повреждение кабеля. Другое дело, если судно имеет равномерный ход, в этом случае опасность закручивания кабеля минимальна. Но, как мы уже упоминали, жёсткие усилители невозможно укладывать на ходу судна, а значит, повреждения кабеля неизбежны.
      Чтобы всё-таки избежать этой опасности, инженеры "Белл Лэбс" сконструировали гибкий усилитель, который ненамного отличается по своей форме от кабеля и как бы составляет его неотъемлемую часть. Участок, где встроен усилитель, напоминает огромного удава, проглотившего свою жертву. Очень трудно расположить электронную усилительную аппаратуру в трубке диаметром около 25 миллиметров так, чтобы она надёжно в течение десятилетий работала на большой глубине. К тому же эта трубка должна обладать способностью изгибаться вокруг барабана диаметром немногим более двух метров (210 сантиметров - диаметр шкива кабелеукладочной машины на судне). Ниже мы увидим, как это сделано. Столь малый диаметр глубоководных гибких усилителей получился в результате того, что их спроектировали для передачи сигналов только в одном направлении. Аппаратура, предназначенная для усиления сигналов, передаваемых в обоих направлениях, просто не умещалась в таком усилителе.
      В отличие от американских, английские усилители проводят сигналы в обоих направлениях. Бодее того, в них для передачи как в одну, так и в другую стороны установлено по два параллельных усилительных комплекта, один из которых является резервным. Если один из них выйдет из строя, линия будет продолжать работать так же эффективно.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14