Вполне возможно, что вторжение в Солнечную систему свободных планет размером с астероид гораздо более вероятно, чем вторжение проблематично существующих черных дыр или антиматерии. Но, вместе с тем, свободные планеты намного менее опасны, чем любой из двух упомянутых объектов. Мини-черные дыры неопределенно долго поглощали бы материю, поражая Солнце, тогда как антиматерия аннигилировала бы материю. Свободные планеты, состоящие из обычной материи, просто бы испарились.
Если бы нам стало известно об астероиде, находящемся на пути к столкновению с Солнцем, мы, возможно, не сумели бы определить, вторгся ли он из межзвездного пространства или это один из наших местных объектов, которого мы до той поры случайно не замечали, или, может быть, объект, орбита которого возмущена в ходе столкновения.
Возможно, такие вторгающиеся объекты проходили через Солнечную систему бесконечно много раз и не нанесли никакого ущерба. Также и те мелкие объекты внешней Солнечной системы с подозрительно неправильными орбитами предположительно могут быть свободными планетами, захваченными в пути. К ним можно отнести внешний спутник Нептуна – Нереиду, внешний спутник Сатурна – Феб и любопытный, открытый в 1977 году объект – Хирон, который вращается вокруг Солнца по эллиптической орбите, лежащей между орбитами Сатурна и Урана.
Насколько нам известно, в сущности, Плутон и его спутник (последний открыт в 1978 году) могут быть крошечной, независимой «солнечной системой», которая была захвачена Солнцем. Подтверждение этого сделало бы необычный наклон и эксцентриситет орбиты Плутона менее удивительными.
Остается еще один возможный вид столкновений – столкновений с объектами в межзвездном пространстве: встречи с объектами настолько мелкими, как частички пыли или отдельные атомы. Межзвездные облака такой пыли и газа обычны в космосе, и Солнце не только может «сталкиваться» с подобными объектами, но, несомненно, не раз так и делало. Воздействие на Солнце этих столкновений незначительно, но для нас это не вполне так. Впрочем, это предмет, к которому я обращусь в книге позднее, при более подходящем случае.
6. Смерть Солнца
Источник энергии
Возможные катастрофы второго класса из-за вторжения в Солнечную систему объектов извне не являются следствием чего-то определенного. Вероятность их в некоторых случаях столь мала, что для нас гораздо более вероятно попасть в катастрофу первого класса, такую, например, как образование нового космического яйца. В других случаях, когда вторжения представляются более вероятными, они обладают ничтожным для Солнца потенциалом.
Значит ли это, что нам совершенно не угрожает катастрофа второго класса? Можем ли мы заключить, что наше Солнце навечно в безопасности или по крайней мере в безопасности, пока существует Вселенная?
Отнюдь не так. Даже если исключить вторжения извне, есть основания полагать, что Солнце не в безопасности и что катастрофа второго класса, включая целостность самого Солнца, не только возможна, но и неизбежна.
В донаучные времена Солнце широко почиталось милосердным богом, от дружеского света и тепла которого зависело человечество и вообще вся жизнь. Его движение на небесах внимательно прослеживалось. Было установлено, что его путь по небу неуклонно поднимался вверх, пока не достигал пика 21 июня (летнее солнцестояние в Северном полушарии). Потом он опускался вниз неба вплоть до 21 декабря (зимнее солнцестояние), и затем цикл повторялся.
Даже доисторическая культура, по-видимому, знала способы проверки положения Солнца со значительной точностью; представляется, например, что камни Стоунхенджа расставлены так, чтобы, помимо прочего, отмечать время летнего солнцестояния.
Естественно, до того как была понята истинная природа движения и местоположения Земли, не могло не возникать опасений, что Солнце, достигнув зимнего солнцестояния, может не повторить своего цикла и, продолжая опускаться, исчезнет совсем, и приведет все живое к гибели. Именно так, как «Фимбулвинтер» (суровая зима – исландок.), предвещают конец света скандинавские мифы: Солнце исчезнет, и начнется ужасный период темноты и холода, который продлится три года, а после него наступит Рагнарек и конец. Даже в более солнечных краях, где вера в вечную милость Солнца была, естественно, значительно сильнее, время зимнего солнцестояния, когда Солнце переставало опускаться, поворачивалось и начинало поднимать свой путь по небу, опять же было поводом к выражению чувства облегчения.
Лучше всего нам с древних времен известно празднование солнцестояния у римлян. Римляне верили, что их бог сельского хозяйства – Сатурн правил миром во времена древнего золотого века богатых урожаев и обилия пищи. Тогда неделя зимнего солнцестояния с ее обещанием возвращения лета и золотого времени сатурновского сельского хозяйства праздновалась как «Сатурналии» с 17 по 24 декабря. Это был период бесконечного веселья и радости. Всякие работы прекращались, и ничто не нарушало торжества, направо и налево раздавались подарки. Это была пора братства, слуги и рабы получали на время свободу, и в дни празднества им разрешалось присоединяться к хозяевам.
Сатурналии не исчезли. По мере усиления христианства в Римской империи оно отказалось от надежды отменить веселье при возрождении Солнца. Поэтому некоторое время спустя после 300 года нашей эры христианство поглотило это празднество с помощью произвольного объявления 25 декабря днем рождения Иисуса (на что нет абсолютно никаких библейских доказательств). Празднование рождения Солнца было таким образом превращено в празднование рождения Сына (В оригинале игра слов: sun – Солнце и son – сын, которые произносятся одинаково.).
Естественно, христианское мышление не могло позволить отождествить Бога с каким-либо определенным объектом в обозримой Вселенной, так что Солнце было смещено со своего божественного положения. Смещение, тем не менее, было минимальным. Солнце оставалось прекрасным средоточием небесного света, неизменным и вечным, до тех пор пока Бог, вызвавший его к жизни на четвертый день творения, не соблаговолит положить ему конец. Пока оно существовало, оно, в своем сиянии и в своем неизменном совершенстве, было наиболее очевидным, зримым символом Бога.
Первым вторжением науки в этот мифический образ Солнца было открытие Галилеем в 1609 году солнечных пятен. Его наблюдения определенно свидетельствовали о том, что пятна эти были частью солнечной поверхности, а не облаками, затемняющими его поверхность. Солнце, уже больше не совершенное, вызывало и нарастающие сомнения в его вечности. Чем больше ученые узнавали об энергии на Земле, тем больше они задумывались об источнике энергии Солнца.
В 1854 году Гельмгольц, немало сделавший для утверждения закона сохранения энергии, представлял себе, насколько важно установить источник энергии Солнца, иначе закон сохранения мог не иметь силы. Одним из источников, который казался ему приемлемым, было гравитационное поле. Солнце, как он предполагал, постоянно сжимается под влиянием своей гравитации, и энергия этого направленного внутрь движения-падения всех его частей преобразуется в радиацию. Если это так и если энергетический источник Солнца конечен (а было ясно, что так оно и есть), тогда и у Солнца должны быть начало и конец (Конечно, если закон сохранения энергии имеет место, любой источник снабжения Солнца энергией должен когда-нибудь истощиться. Следовательно, закон сохранения энергии означает, что Солнце должно было родиться и оно должно умереть; иными словами, было время, когда Солнце не было знакомым нам объектом настоящего, и настанет время, когда Солнце больше не будет знакомым нам объектом настоящего. Все, что подлежит обсуждению, – это детали процесса.).
Вначале, по мнению Гельмгольца, Солнце было очень тонким облаком газа, и его медленное сжатие в еще не очень интенсивном гравитационном поле давало лишь немного лучистой энергии. Только с продолжением сжатия, когда гравитационное поле, оставаясь неизменным по общей силе, концентрировалось в меньшем объеме и, следовательно, становилось более интенсивным, а сжатие было быстрым, Солнце стало производить энергию такого вида, с которым мы знакомы.
Около 25 миллионов лет назад Солнце сжалось до диаметра 300 миллионов километров, и лишь после этого оно сжалось до размера меньше, чем орбита Земли. Тогда в какой-то момент, менее чем 25 миллионов лет назад, могла образоваться Земля.
В будущем Солнцу предстоит умереть, потому что в конце концов оно не сможет больше сжиматься, а значит, источник его энергии будет исчерпан, и оно больше не станет излучать энергию, но остынет и превратится в холодное, мертвое тело, что определенно будет и финальной катастрофой для нас. Учитывая, что Солнцу потребовалось 25 миллионов лет на то, чтобы сжаться от размера орбиты Земли до его настоящего размера, можно предположить, что оно сойдет на нет примерно через 250 000 лет, и это будет все время, оставшееся для существования жизни на Земле.
Геологи, изучая изменения земной коры, убеждались в том, что Земля должна быть старше 25 миллионов лет. Биологи, изучая изменения в процессе биологической эволюции, тоже убеждались в этом. Однако отказаться от аргументации Гельмгольца значило отвергнуть закон сохранения энергии или надо было найти новый, более мощный источник энергии для Солнца. Именно вторая альтернатива спасла положение. Новый источник энергии был найден.
В 1896 году французский физик Антуан Анри Беккерель (1852—1908) открыл радиоактивность, и вскоре обнаружилось, что существует неожиданный и огромный резерв энергии в ядре атома. Если бы Солнце могло как-то использовать этот резерв, то не было бы необходимости предполагать, что оно все время сжимается. Оно могло бы излучать энергию за счет распада атомов в течение продолжительного времени без значительного изменения своего размера.
Просто говорить, что Солнце (и, таким образом, вообще все звезды) обладает атомной энергией, само по себе не убедительно. Но ядерная ли энергия делает Солнце Солнцем?
Еще в 1862 году шведский физик Андерс Йонас Ангстрем (1814—1874) спектроскопически обнаружил в Солнце водород. Постепенно стало известно, что этот самый простой из всех элементов очень распространен в Солнце. В 1929 году американский астроном Генри Норрис Рассел (1877—1957) доказал, что Солнце в основном и состоит из водорода. Теперь мы знаем, что оно на 75% состоит из водорода и на 25% из гелия (второй простейший элемент), причем более сложные атомы присутствуют только в небольших долях процента. Из этого ясно лишь то, что если на Солнце происходят ядерные реакции, являющиеся источником его лучистой энергии, то эти реакции должны быть связаны с водородом и гелием. Ничего больше в достаточном количестве там нет.
Между тем в начале 20-х годов английский астроном Артур Стэнли Эддингтон (1882—1944) установил, что температура в центре Солнца составляет миллионы градусов. При такой температуре атомы расщепляются, электронная оболочка разлетается и обнаженные ядра могут ударяться друг о друга с такой силой, что начинается ядерная реакция.
Солнце действительно началось с разреженного облака пыли и газа, как и предполагал Гельмгольц. Оно действительно медленно сжималось, выделяя в процессе сжатия лучистую энергию. Тем не менее, когда оно сжалось до размера, близкого к настоящему, когда стало достаточно горячим, чтобы положить начало ядерным реакциям, оно засверкало в настоящем смысле этого слова. И как только это произошло, оно длительное время сохраняет свой размер и свою лучистую интенсивность.
Наконец, в 1938 году американский физик немецкого происхождения Ганс Альберхт Бете (р. 1906), используя лабораторные данные относительно ядерных реакций, сделал вывод о природе реакций, которые имеют место внутри Солнца и производят энергию. Это – сложное преобразование ядер водорода в ядра гелия («водородный синтез») через ряд вполне определенных этапов.
Водородный синтез производит достаточное количество энергии, чтобы сохранить сияние Солнца в его настоящем виде в течение длительного времени. Астрономы теперь убеждены в том, что Солнце в настоящем своем виде сияет в течение примерно 5 миллиардов лет. И действительно теперь считают, что Земля, Солнце и Солнечная система в настоящем их виде существуют примерно 4 миллиарда лет. Это по времени соответствует тем имеющим место изменениям, которые наблюдают геологи и биологи.
Это также означает, что Солнце, Земля и Солнечная система в целом могут продолжать существовать (при отсутствии вмешательства извне) еще в течение миллиардов лет.
Красные гиганты
Хотя ядерная энергия поддерживает излучение Солнца, это не может продолжаться вечно. Энергетического запаса хватит еще на миллиарды лет, но в конце концов он должен иссякнуть.
До 40-х годов предполагалось, что каким бы ни был источник энергии Солнца, постепенное истощение этого источника приведет к тому, что Солнце охладится, под конец станет тусклым и совсем потемнеет, а Земля замерзнет в бесконечной Фимбулвинтер.
Однако возникли новые методы изучения эволюции звезд, и эта катастрофа холода оказалась неадекватной картиной конца.
Звезда находится в равновесии. Ее собственное гравитационное поле порождает тенденцию к сжатию, в то же время тепло ядерных реакций внутри нее порождает тенденцию к расширению. Одно уравновешивает другое, и поскольку ядерные реакции продолжаются, равновесие поддерживается, и звезда визуально остается неизменной.
Чем массивней звезда, тем сильнее ее гравитационное поле и сильнее тенденция к сжатию. Чтобы такая звезда сохраняла свой объем, она должна подвергаться ядерным реакциям в большем темпе, развивая более высокую температуру, необходимую для уравновешивания сильной гравитации.
Следовательно, чем массивней звезда, тем более горячей должна она быть и тем скорее она должна израсходовать свое ядерное топливо – водород. Начнем с того, что более массивная звезда содержит водорода больше, чем звезда менее массивная. Рассматривая все более и более массивные звезды, мы заметим, что топливо, которое необходимо тратить для уравновешивания гравитации, должно сгорать значительно быстрее, чем возрастает наличие водорода. Это означает, что более массивная звезда использует свой больший водородный запас быстрее, чем менее массивная звезда использует свой меньший запас водорода. Короче, чем массивней звезда, тем быстрее она расходует свое топливо и тем быстрее она проходит различные стадии своей эволюции.
Предположим тогда, что мы изучаем скопления звезд – не шаровидные скопления, которые содержат так много звезд, что отдельные звезды неудобно изучать, а «открытые скопления», в которых только от нескольких сотен до нескольких тысяч звезд, разбросанных достаточно далеко друг от друга, чтобы позволить их индивидуальное изучение. Существует около тысячи таких скоплений, видимых в телескоп, а некоторые, такие, как Плеяды, достаточно близки, так что более яркие из звезд видны невооруженным глазом.
Все звезды в открытом скоплении, предположительно, сформировались приблизительно в одно время, из единого обширного облака пыли и газа. Из этой общей отправной точки, тем не менее, более массивные продвинулись бы дальше по пути эволюции, чем менее массивные, и на этом пути мог бы быть получен весь спектр позиций. Путь этот будет обозначен, если температуры и полные яркости расположить по отношению масс. Для того чтобы понять, что происходит внутри звезды, астрономы в качестве гида могут использовать свои возрастающие знания относительно ядерных реакций.
Оказывается, хотя звезда в конечном счете остывает, она проходит через длительный период, в течение которого она на самом деле становится горячее. Когда в недрах звезды водород преобразуется в гелий, ее внутренность становится все богаче гелием и поэтому более плотной. Возрастающая плотность усиливает гравитационное поле внутренности, она сжимается и вследствие этого становится горячее. По этой причине постепенно полностью нагревается и вся звезда, так что, в то время как центр сжимается, вся звезда в целом слегка расширяется. Со временем центр становится настолько горячим, что могут иметь место новые ядерные реакции. Ядра гелия внутри него начинают комбинироваться и образовывать новые более сложные ядра более тяжелых элементов, таких как углерод, кислород, магний, кремний и тому подобные.
И вот в центре внутренности становится настолько горячо, что равновесие полностью нарушается в сторону расширения. Вся звезда в целом начинает увеличиваться в ускоренном темпе. Когда она расширяется, общая энергия, излучаемая звездой, увеличивается, но эта энергия распространяется по более обширной поверхности, которая увеличивается в размере даже еще быстрее. Следовательно, температура любой части быстро увеличивающейся поверхности снижается. Поверхность охлаждается до такого уровня, что она накаляется лишь докрасна, вместо того чтобы накаляться добела, как в молодости звезды.
Результатом является «красный гигант». В небе сейчас существуют такие звезды. Звезда Бетельгейзе в Орионе – один пример, Антарес в Скорпионе – другой.
Рано или поздно все звезды доходят до стадии «красного гиганта», причем более массивные звезды совершают это раньше, менее массивные – позже.
Есть звезды настолько огромные, массивные и сверкающие, что они останутся в стадии стабильного синтеза водорода (обычно называемой «главной последовательностью») менее миллиона лет, а затем раздуются в красный гигант. Другие же звезды настолько маленькие, с небольшой массой и тусклые, что будут оставаться в главной последовательности до двухсот миллиардов лет, прежде чем станут красными гигантами.
Размер красных гигантов также зависит от массы. Чем массивнее звезда, тем до большего объема она раздувается. По-настоящему массивная звезда раздувалась бы до диаметра во много сотен раз больше нынешнего диаметра нашего Солнца, в то время как маленькие звезды раздувались бы до диаметра только в несколько раз больше его диаметра.
Где же на этой шкале место нашему Солнцу? Солнце – это звезда средней массы и, значит, имеет период жизни в главной последовательности средней продолжительности. Оно в конечном счете станет красным гигантом среднего размера. Для звезды с массой Солнца общая длительность времени, которое она проведет в главной последовательности, спокойно и непрерывно синтезируя водород, составляет примерно 13 миллиардов лет. Солнце уже находится в главной последовательности почти 5 миллиардов лет, и это означает, что в его распоряжении осталось немного более 8 миллиардов лет. В течение всего этого времени Солнце (как и любая звезда) медленно разогревается. В последний миллиард лет его главной последовательности разогрев Достигнет такого значения, что Земля окажется слишком горячей для жизни. Следовательно, мы можем заглядывать вперед самое большее на 7 миллиардов лет, в течение которых будет существовать достойное Сатурналий, дающее жизнь Солнце.
Несмотря на то, что 7 миллиардов лет совсем не короткий период, это гораздо более короткий период, чем тот, который может пройти до наступления катастрофы первого класса.
Время, когда Солнце начнет переходить в стадию красного гиганта и жизнь на Земле станет невозможной, может спокойно продлиться почти триллион лет до следующего космического яйца. Так что пребывание Солнца в главной последовательности составляет менее одного процента жизни Вселенной – от космического яйца до космического яйца.
К тому времени, когда Земля больше не будет подходящим местом для жизни (после того как она прослужила в этом качестве в продолжение примерно 10 миллиардов лет), Вселенная в целом не будет намного старее, чем сейчас, и много будущих поколений звезд и планет, еще не родившихся, сыграют свою роль в космической драме.
Если предположить, что человечество все еще будет существовать спустя 7 миллиардов лет от нашего времени (отнюдь не плохое предположение, конечно), то оно вполне может постараться избежать этой чисто локальной катастрофы и продолжить оккупацию невозмутимо процветающей Вселенной. Избежать этого будет не так-то просто, ведь, безусловно, на Земле нигде не будет убежища. Когда Солнце достигнет пика своего красного гигантизма, его диаметр станет более чем в 100 раз больше его теперешнего диаметра, так что и Меркурий, и Венера будут поглощены его расширившейся материей. Земля может остаться не поглощенной массой Солнца, но даже если она избежит этого, то вполне вероятно, что огромное тепло, которое она получит от гигантского Солнца, испарит ее.
Однако не все потеряно. Во всяком случае налицо заблаговременное предупреждение. Если человечество переживет эти миллиарды лет, в течение этих миллиардов лет оно будет знать, что ему надо как-то планировать спасение. Поскольку технологическая компетенция человечества возрастает (учитывая, насколько далеко оно продвинулось за последние двести лет, можно представить себе, как далеко оно может продвинуться за 7 миллиардов лет), спасение может стать возможным.
Когда Солнце расширится, внутренняя солнечная система будет опустошена, но гигантские планеты внешней солнечной системы вместе с их спутниками пострадают меньше. На самом деле, с человеческой точки зрения, они даже могут испытать изменения к лучшему. Человечество может оказаться в состоянии затратить время, приложить свои силы и умение, чтобы переустроить некоторые из крупных спутников Юпитера, Сатурна, Урана и Нептуна и сделать их подходящими для жизни. (Этот процесс иногда называют «терраобразованием».) Будет масса времени для расселения. За время, когда расширение Солнца начнет ускоряться, и Земля начнет проходить финальную выпечку в необратимую пустыню, человечество может прижиться на дюжине внешних миров Солнечной системы, на таких спутниках Юпитера, как Ганимед и Каллисто, и, возможно, на спутниках самого Плутона. Там люди могут быть согреты большим красным Солнцем, но не перегреты, конечно. Действительно, с Плутона солнечный красный гигант не будет выглядеть намного большим, чем сейчас Солнце на небе Земли.
Кроме того, люди, вероятно, смогут разместить в космосе искусственные структуры, создать на них экологически завершенные самостоятельные поселения, способные вместить от десяти тысяч до десяти миллионов человек. И это не обязательно будет результатом деятельности миллиардов лет, поскольку налицо все признаки того, что мы располагаем технологическими воз можностями строить такие поселения уже сейчас и через какие-нибудь несколько веков могли бы заполнить ими небо. На пути стоят только политические, экономические и психологические факторы (но это достаточно большое «только»).
Таким образом, катастрофы можно будет избежать, и человечество сможет продолжать жить в новых мирах как естественных, так и искусственных (К 1998 году у некоторых звезд обнаружено существование планетарных систем. В определенных кругах это вызвало новые толки о возможности существования жизни на этих планетах, внеземных цивилизаций. Все это, конечно, очень проблематично, но если уж говорить о расселении человечества в космосе, то почему бы наряду с иными космическими поселениями не принимать в расчет подобные планеты?).
Во всяком случае до поры до времени.
Белые карлики
– Когда водородный синтез больше не является источником звездной энергии, звезда может существовать как большой объект в продолжение только сравнительно короткого дополнительного времени. Энергия, получаемая посредством синтеза гелия в более тяжелые ядра, а от них к еще более тяжелым, достигает в общей сложности не более 5 процентов полученной от водородного синтеза. Способность красного гиганта сохраняться расширенным, противодействуя силе гравитации, поэтому подрывается. Звезда начинает гибнуть.
Время жизни красного гиганта и природа его гибели зависят от массы звезды. Чем больше масса, тем быстрее красный гигант использует путем синтеза последние остатки имеющегося у него запаса энергии, тем короче будет жизнь этой звезды. Кроме того, чем больше масса, тем больше и интенсивнее гравитационное поле и, следовательно, быстрее происходит сжатие.
Когда звезда сжимается, в ее внешних слоях, где ядерные реакции не происходили и где водород, следовательно, остался нетронутым, сохранилось еще значительное его количество. Сжатие нагревает всю звезду (теперь не ядерная, а гравитационная энергия преобразуется в тепло по Гельмгольцу), и во внешних слоях начинается водородный синтез. Процесс сжатия таким образом совпадает с ярким блеском внешних слоев.
Чем массивнее звезда, тем быстрее сжатие, тем более интенсивно нагревание внешних слоев, тем больше имеется водорода для синтеза и тем быстрее он синтезируется – и тем более разительны результаты. Другими словами, маленькая звезда сжималась бы спокойно, а большая, подвергаясь достаточно сильному синтезу в своих наиболее внешних частях, отправит немалую долю своего внешнего слоя в космос, делая это более или менее взрывообразно, оставляя только внутренние сферы для сжатия.
Чем массивнее звезда, тем более резок этот «выпуск пара». Если звезда достаточно массивна, стадия красного гиганта завершается колоссальным взрывом, в течение которого звезда может ненадолго сверкнуть светом, во много миллиардов раз более ярким, чем свет обычной звезды, короткой вспышкой, равной свету целой галактики невзрывающихся звезд. Это так называемая «сверхновая». В ходе такого взрыва до 95 процентов вещества звезды может вырваться в открытый космос. Остальное будет сжиматься.
Что же произойдет со сжимающейся звездой, которая не взрывается, или с той частью взорвавшейся звезды, которая осталась и сжимается? Если это маленькая звезда, которая так и не нагреется в ходе сжатия достаточно для того, чтобы взорваться, она будет сжиматься До тех пор, пока не достигнет планетарного размера, причем сохранив всю или почти всю первоначальную массу. Ее накаленная добела, ярко сверкающая поверхность окажется значительно горячее, чем нынешняя поверхность нашего Солнца. Тем не менее на большом расстоянии очертания такой звезды будут неотчетливы, потому что свет излучается очень маленькой поверхностью и в целом не достигает достаточного количества. Такая звезда называется «белым карликом».
Почему же белый карлик не продолжает сжиматься? В белом карлике атомы расщеплены, и электроны, уже не образуя оболочек вокруг центральных атомных ядер, являются своего рода «электронным газом», который способен сжаться только до определенного уровня. Он сохраняет вещество звезды расширенным по крайней мере до планетарного объема и может сохранять такой объем неопределенное время.
Белый карлик очень медленно охлаждается и заканчивает свою жизнь слишком холодным для того, чтобы излучать свет, он становится «черным карликом».
Когда звезда сжимается до белого карлика, она может, если она не очень маленькая, расстаться с внешними слоями своего красного гиганта умеренным взрывом при незначительном сжатии, теряя таким образом пятую часть своей общей массы. Наблюдаемый с расстояния, такой белый карлик представляется окруженным светящимся туманом, словно кольцом дыма. Такой объект называется «планетарной туманностью», в небе их наблюдается несколько. Постепенно облако газа растекается во всех направлениях, становится расплывчатым и растворяется в разреженной материи космического пространства.
Когда звезда достаточно массивна, чтобы сильно взорваться в процессе сжатия, ее остаток, продолжающий сжиматься, может быть все еще слишком массивен (даже после потери значительной массы), чтобы сразу превратиться в белого карлика. Чем массивнее сжимающийся остаток, тем плотнее сжимается самим собой электронный газ и тем меньше белый карлик.
Наконец, если имеется достаточная масса, электронный газ может не выдержать своего собственного давления. Электроны тогда вжимаются в протоны, присутствующие в ядрах, которые блуждают в электронном газе, и образуются нейтроны. Они добавляются к нейтронам, которые уже существуют в ядрах, и тогда звезда состоит в основном из нейтронов. Звезда сжимается, пока нейтроны не придут в контакт. Результатом является «нейтронная звезда», которая величиной всего с астероид примерно десять-двадцать километров в поперечнике, но сохраняет массу полноразмерной звезды.
Если сжимающийся остаток звезды еще более массивен, даже нейтроны не способны выдержать силу гравитации. Они будут разрушены, а остаток сожмется в черную дыру.
Как же сложится судьба Солнца, после того как оно достигнет стадии красного гиганта?
Оно может остаться красным гигантом на несколько сотен миллионов лет – очень небольшой период в масштабе звездной жизни, но дающий возможность для развития цивилизации в космических поселениях на терра-образованиях во внешних мирах, – но затем Солнце станет сжиматься. Оно не будет достаточно большим для сильного взрыва, так что не будет опасности, что через день или через неделю неистовства Солнечная система очистится от жизни вплоть до орбиты Плутона и даже за ее пределами. Вовсе нет. Солнце будет просто сжиматься, оставляя около себя, самое большее, тонкую пелену своего внешнего слоя, превращающегося в планетарную туманность.
Облако вещества будет дрейфовать мимо далеких планет, на которых, как мы представили себе, в те далекие будущие времена разместятся потомки человечества. Облако не будет представлять для них особой опасности. Начнем с того, что это будет очень разреженный газ, и если, – а возможно, так оно и будет, – поселения будут расположены, так сказать, под землей или в пределах городов под куполами, то, может быть, и вообще не будет никакого вредного воздействия.
Проблемой будет сжимающееся Солнце. Как только Солнце сожмется до белого карлика (оно недостаточно массивно, чтобы образовать нейтронную звезду и, тем более, черную дыру), оно станет на небе не больше крошечной светящейся точки. Со спутников Юпитера, если люди сумеют обосноваться настолько близко к Солнцу на его стадии красного гиганта, его яркость составит лишь 1/4000 яркости Солнца, как мы его видим сейчас с Земли, и оно будет поставлять такую же часть энергии.
Если поселения людей во внешней Солнечной системе окажутся зависимыми от энергии Солнца, то, как только Солнце станет белым карликом, они не смогут получить ее в достаточном количестве.