Современная электронная библиотека ModernLib.Net

Выбор катастроф

ModernLib.Net / Научно-образовательная / Азимов Айзек / Выбор катастроф - Чтение (стр. 20)
Автор: Азимов Айзек
Жанр: Научно-образовательная

 

 


Так как причиной болезни считалось божественное или демоническое воздействие, инфекция оставалась незамеченной. К счастью, Библия содержит также указания по изоляции больных проказой (название это относилось не только к собственно проказе, но и к другим, менее серьезным поражениям кожи). Библейская практика изолирования была вызвана скорее религиозными причинами, чем гигиеническими, потому что заразность проказы довольно низка. По авторитетным библейским указаниям прокаженные изолировались и в средние века, хотя люди с по-настоящему заразными заболеваниями не изолировались. Практика изоляции заставила некоторых врачей рассматривать ее в связи с болезнями вообще. Необъятный ужас «черной смерти» в особенности помог распространить понятие о карантине, название которого первоначально связано с изолированием на сорок (по-французски quarante) дней.

То, что изоляция действительно замедляла распространение болезни, заставило заметить, что заразность связана с заболеванием. Первым, кто детально занялся этой проблемой, был итальянский врач Джироламо Фракас-торо (1478—1553). Он рассудил, что болезнь может распространяться путем прямого контакта здорового человека с больным, или путем косвенного контакта через зараженные предметы, или даже путем передачи на расстояние. Он предположил, что существуют крошечные тела, слишком маленькие, чтобы их можно было видеть, и они переходят от больного человека к здоровому, и что эти тела имеют способность саморазмножаться.

Это был замечательный пример проницательности, но у Фракасторо не было доказательств для поддержки своей теории. Если дойти до того, чтобы признать существование мелких невидимых тел, прыгающих с одного человека на другого, и сделать это исключительно из-за веры в это, то ведь можно признать и невидимых демонов.

Впрочем, мелкие тела не остались невидимыми. Уже во времена Фракасторо в помощь зрению применялись линзы. К 1608 году научились использовать сочетания линз для увеличения отдаленных объектов и появился телескоп. Не потребовалось значительных изменений для того, чтобы использовать линзы для увеличения мелких объектов. Итальянский физиолог Марчелло Мальпиги (1628—1694) первым использовал микроскоп и докладывал о своих наблюдениях в 50-е годы XVII века.

Голландский мастер-оптик Антон ван Левенгук (1632—1723) тщательно отшлифовал маленькие, но отличные линзы, и они дали ему такое хорошее увеличение мелких предметов, которого еще не добивался никто в мире. В 1677 году он поместил воду из канавы в фокус одной Из своих маленьких линз и обнаружил живые организмы, слишком маленькие, чтобы видеть их невооруженным глазом, но каждый столь же живой, как кит, слон или человек. Это были одноклеточные животные, которых мы теперь называем «протозоа» – простейшие.

В 1683 году Левенгук открыл структуры еще мельче, чем простейшие. Они были на пределе видимости даже при его самых лучших линзах, но по рисункам, изображающим то, что он видел, ясно, что он открыл бактерии, самые мелкие клеточные живые существа.

Чтобы сделать больше, чем Левенгук, надо было иметь намного более сильные микроскопы, а их совершенствовали медленно. Следующим был датский биолог Отто Фридрих Мюллер (1730—1784), который написал о бактериях в книге, опубликованной посмертно в 1786 году.

Оглядываясь назад, кажется, можно было бы догадаться, что бактерии – это и есть переносчики инфекции Фракасторо, но не было доказательств, да и наблюдения Мюллера были еще настолько сомнительными, что даже не привели к общему мнению, что бактерии существуют или что они живые, если существуют.

Английский оптик Джозеф Джаксон Листер (1786—1869) сконструировал в 1830 году ахроматический микроскоп. До того времени применяемые линзы преломляли свет в радугу, так что мелкие объекты обрамлялись цветом и их нельзя было видеть четко. Листер скомбинировал линзы из различных видов стекла таким образом, что убрал цвета.

При отсутствии цветов мелкие объекты были видны более четко, и в 60-е годы XIX века немецкий ботаник Фердинанд Юлиус Кон (1828—1898) увидел и впервые по-настоящему убедительно описал бактерии.

Только с работы Кона берет начало наука бактериология, и всем стало ясно, что бактерии существуют.

Тем временем некоторые врачи, даже без всяких ссылок на существование агентов Фракасторо, разрабатывали новые методы борьбы с инфекциями.

Венгерский терапевт Игнац Филипп Земмельвейс (1818—1865) уверял, что родильная горячка, которая погубила так много женщин при родах, распространяется самими врачами, поскольку они часто прямо после вскрытия трупов направлялись к женщинам, мучающимся в родах. Он боролся за то, чтобы врачи мыли руки перед посещением рожениц, и, когда ему удалось добиться соблюдения этого правила в 1847 году, число случаев родильной горячки резко снизилось. Однако оскорбленные доктора, гордые своей профессиональной грязью, взбунтовались, и им снова позволили работать грязными руками. Число случаев родильной горячки снова поднялось с той же быстротой, как и упало ранее, но это не беспокоило докторов.

Решающий перелом наступил благодаря трудам французского химика Луи Пастера (1822—1895). Он был химиком, но свою деятельность все больше и больше посвящал работе с микроскопами и микроорганизмами. В 1865 году он занялся исследованием заболевания шелковичного червя, которое губило шелковую промышленность Франции. Используя свой микроскоп, он обнаружил мелких паразитов, которые прямо кишели на шелковичных червях и на листьях тутового дерева, которыми они питались. Решение Пастера было радикальным, но рациональным: все пораженные черви и пораженные листья должны быть уничтожены. Новые плантации должны быть населены здоровыми червями, и заболевание исчезнет. Его совету последовали, и шелковая промышленность Франции была спасена.

Это заставило Пастера проявить интерес к инфекционным заболеваниям. Ему казалось, что если болезнь шелковичных червей была вызвана микроскопическими паразитами, то и другие заболевания могут вызываться ими. Так родилась «микробная теория». Невидимыми агентами Фракасторо были микроорганизмы, часто бактерии, которых ясно увидел Кон.

Теперь появилась возможность сознательно атаковать заболевания, используя достижения, введенные в медицину еще за полвека до этого. В 1798 году английский врач Эдвард Дженнер (1749—1823) доказал, что люди, привитые ослабленной болезнью коровьей оспы, или вакциной (по-латыни «вакка» – корова), приобретали иммунитет не только к самой коровьей оспе, но также и к связанной с ней оспе, такой заразной и опасной болезни. Метод «вакцинации» по существу положил конец распространению опустошительной оспы.

К сожалению, не было установлено, чтобы другие заболевания существовали в таких удобных парах с болезнью мягкой, но предоставляющей иммунитет от своей серьезной напарницы. Тем не менее с понятием о микробной теории методику можно было дополнить еще одним способом.

Пастер определил микробы, связанные с определенными болезнями, затем ослабил эти микробы путем нагревания или другими способами и использовал ослабленных микробов для прививки. Болезнь протекала в очень мягкой форме и вырабатывался иммунитет. Первые такие прививки были опробованы на сибирской язве, смертоносном заболевании, которое уничтожало стада домашних животных.

Аналогичная работа, и даже более успешно, была проделана немецким бактериологом Робертом Кохом (1843—1910). Им были также разработаны антитоксины, вещества, нейтрализующие бактериальные яды.

Тем временем английский хирург Джозеф Листер (1827—1912), сын изобретателя ахроматического микроскопа, довел до конца работу Земмельвейса. Как только он узнал об исследованиях Пастера, у него в оправдание появилось убедительное логическое обоснование, и он начал настаивать, чтобы до операции хирурги мыли руки в растворе химикатов, убивающих бактерий. С 1867 года практика «антисептической хирургии» быстро распространилась по миру.

Микробная теория также ускорила утверждение таких рациональных превентивных мер личной гигиены, как мытье рук, купание, тщательное удаление отходов, поддержание чистоты пищи и воды. Лидерами в пропаганде этих основ были немецкие ученые Макс Йозеф Петтенкофер (1818—1901) и Рудольф Вирхов (1821—1902). Сами они не принимали микробной теории болезней, но поскольку другие ее приняли, их рекомендации вскоре были широко распространены.

Вдобавок было установлено, что такие заболевания, как желтая лихорадка и малярия, переносятся комарами и москитами, сыпной тиф – вшами, лихорадку в Скалистых горах переносят клещи, бубонную чуму – блохи и так далее. Меры, принимаемые против этих переносящих микробы организмов, помогали снизить заболеваемость. Участниками подобных открытий были американцы Уолтер Рид (1851—1902), Говард Тейлор Риккетс (1871—1910) и француз Шарль-Жан Николь (1866—1936).

Немецкий бактериолог Поль Эрлих (1854—1915) был пионером в использовании специальных химикатов, которые убивают определенные бактерии, не убивая человека, в котором они существовали. Его наиболее важное открытие сделано в 1910 году, когда он нашел соединение мышьяка, которое активно действовало против бактерии, вызывающей заболевание сифилисом.

Это направление в работе достигло кульминации с открытием антибактериального эффекта сульфаниламидов и связанных с ними соединений и антибиотиков. Начало разработке сульфаниламидных препаратов (В их число входят такие широко известные, как стрептоцид, сульфидин, сульфазол, норсульфазол, сульфадимезин, дисульфан и другие) положил в 1935 году труд немецкого биохимика Герхарда Домагка (1895—1964), а разработке антибиотиков – труд американского микробиолога французского происхождения Рене Жюля Дюбо (р. 1901), опубликованный в 1939 году. В 1955 году, благодаря вакцине, созданной американским микробиологом Джонасом Эдвардом Сальком (р. 1914), была одержана победа над полиомиелитом.

И все же победа не полная. Правда, свирепствовавшая когда-то оспа, по-видимому, полностью изжита. Насколько нам известно, не зарегистрировано ни одного случая. Однако существуют такие инфекционные заболевания, как ряд обнаруженных в Африке, которые очень заразны, неизлечимы и дают практически 100 процентную смертность. Строгие гигиенические меры позволили заняться изучением этих болезней без опасности заразиться, и несомненно будут выработаны эффективные контрмеры.

Новая болезнь

Может показаться, что поскольку наша цивилизация продолжает существовать и наша медицина твердо стоит на ногах, нам уже не угрожает опасность, что инфекционное заболевание породит катастрофу или хотя бы нечто похожее на «черную смерть» или «испанку». Однако и известные заболевания таят в себе потенциальную возможность возникновения в новых формах.

Человеческое тело (и тела всех живых организмов) имеет естественные защитные силы против вторжения чужеродных организмов. В кровеносной системе вырабатываются антитела, которые нейтрализуют токсины или даже сами микроорганизмы. Белые кровяные тельца физически атакуют бактерии (Уже после публикации этой книги было обнаружено новое страшное заболевание, радикальных средств борьбы с ним пока еще не найдено – это СПИД или синдром приобретенного иммунодефицита. Как следует из названия, оно состоит в том, что организм человека лишается защиты от вторжения чужеродных тел. Исход смертелен, и смерть может наступить от любой другой болезни, которая обычно не ведет к такому исходу).

Эволюционные процессы в общем ведут борьбу на равных. Организмы, которые более эффективны в самозащите от микробов, имеют тенденцию выживать и передавать свою эффективность по наследству. Однако микроорганизмы намного меньше насекомых и намного более плодовиты. И хотя отдельные микроорганизмы по сути совершенно не имеют значения, они эволюционируют гораздо быстрее.

Возьмем несчетное количество микроорганизмов какого-либо определенного вида, которые непрерывно множатся путем деления клеток, при этом, постоянно происходит огромное количество мутаций. Такие мутации способны сделать определенную болезнь намного более заразной и смертельной. К тому же мутация может существенно изменить химическую природу микроорганизмов, так что антитела вырабатываемые организмом, принявшим инфекцию, уже больше не действуют. Результатом является неожиданная стремительная атака – эпидемия. «Черная смерть» была без сомнения принесена мутантным видом микроорганизма, вызвавшего ее.

Все же в конечном счете люди, которые наиболее восприимчивы, умирают, а относительно устойчивые – выживают, так что сила заболевания снижается. Является ли в таком случае победа человека над болезнетворными микробами перманентной? Не могут ли возникнуть новые мутантные виды бактерий? Могут, и возникают. Каждые несколько лет возникает, чтобы докучать нам, новый вирус гриппа. Однако можно произвести вакцину против подобного нового вируса, как только он появился. Так, например, когда в 1976 году зарегистрировали единственный случай «свиного гриппа», была произведена массовая вакцинация. Оказалось, что она была не нужна, но она показала, что можно делать.

Конечно, эволюция работает также и в другом направлении. Бесконтрольное применение антибиотиков ведет к истреблению наиболее успешно действующих микроорганизмов, в то время как относительно устойчивые могут ускользнуть. Они размножаются, и возникает устойчивая разновидность, с которой антибиотики уже не могут справиться. Таким образом мы, возможно, создаем новые заболевания, так сказать, своими действиями в борьбе со старыми. Тут, однако, можно попытаться применять большие дозы старых антибиотиков или использовать новые.

Может показаться, что мы в состоянии по крайней мере сдерживать свои собственные заболевания, а это означает, что мы намного ушли вперед, если посмотреть на ситуацию, какой она была двести лет назад. И все же не способно ли какое-нибудь заболевание неожиданно поразить людей таким неизвестным способом и настолько смертоносно, что у нас не будет никакой защиты и мы будем стерты с лица Земли? И в особенности, не может ли нас поразить «чума из космоса», как это описывает Майкл Крайтон в романе-бестселлере «Бацилла с Андромеды» (The Andromeda Strain)?

Предусмотрительные работники НАСА учитывают это. Они осторожны и стерилизуют предметы, которые посылают на другие планеты, чтобы свести до минимума шанс распространения земных микроорганизмов на чужой почве и таким образом не затруднить возможное изучение местных микроорганизмов на той или иной планете. Они также помещали астронавтов после возвращения с Луны в карантин до тех пор пока не удостоверялись, что их не поразила никакая лунная инфекция (Подобные меры с самого начала предусмотрены всей мировой космонавтикой).

Но это представляется излишней предосторожностью. На самом деле шансов для жизни подобных микроорганизмов где-нибудь еще в Солнечной системе чрезвычайно мало, и с каждым новым исследованием планетарных тел, по-видимому, становится еще меньше (Однако американский космический корабль «Галилей», завершивший свою миссию б декабря 1997 года, принес обнадеживающие сведения. Обследуя спутник Юпитера Европу, он передал на Землю фотографии ее поверхности. Изучив снимки планеты, поверхность которой покрыта слоем льда, американские ученые пришли к выводу, что под толстым слоем льда плещется гигантский океан. Планета подвергается чудовищному гравитационному влиянию Юпитера, и возникающие приливные деформации сильно разогревают внутренние слои Европы. Выделяемого тепла достаточно, чтобы под слоем льда могла поместиться вода. «Сочетание внутреннего тепла, жидкой воды и органических веществ, заносимых кометами или метеоритами, означает, что на Европе есть ключевые ингредиенты для жизни», – к такому выводу пришел в 1998 году американский профессор геологии Джеймс Хэд. В 2003 году к Европе намечено отправить межпланетную космическую станцию.). А как насчет жизни вне Солнечной системы? Тут таится еще одно вторжение из межзвездного пространства, которое пока не обсуждалось – прибытие чужеродных видов микроскопической жизни.

Первым, кто занялся изучением этой проблемы с научным беспристрастием, был шведский химик Сванте Август Аррениус (1859—1927). Он интересовался проблемой происхождения жизни. Ему казалось, что она вполне могла быть распространенной во Вселенной и что она могла распространяться благодаря, так сказать, инфекции.

В 1908 году он заявил, что споры бактерий могли быть занесены в верхние слои атмосферы случайными ветрами, а некоторые вполне могли быть так же унесены с Земли, так что Земля (и любая другая планета, предположительно обладающая жизнью) могла бы рассеивать обладающие жизнью споры. Такое предположение получило название «панспермия».

Споры, как указывал Аррениус, могут выдержать холод и безвоздушное пространство космоса в течение очень продолжительного времени. Их могло бы относить от Солнца и из Солнечной системы с помощью давления радиации (сегодня мы бы сказали – солнечным ветром). В конце концов они могли бы прибыть на другую планету. По предположению Аррениуса, подобные споры могли именно так прибыть на Землю, когда жизнь на ней еще не сформировалась, и что жизнь на Земле была результатом прибытия таких спор, и что все мы от этих спор происходим (Недавно Фрэнсис Крик высказал предположение о возможности намеренного засева Земли экстратеррестриальными, т. е. внеземными умами. Это уже своего рода «направленная панспермия»).

Если это так, то не может ли быть, что панспермия происходит и сегодня? Не может ли быть, что споры продолжают поступать и сегодня, прямо сейчас? Не были ли чужеродные споры причиной, породившей «черную смерть»? Может быть, завтра они породят еще худшую «черную смерть»?

В этой аргументации есть один убийственный изъян, который не был очевиден в 1908 году, и состоит он в том, что хотя на споры и не воздействуют холод и вакуум, они очень чувствительны к такой энергетичной радиации, как ультрафиолетовые лучи. Вероятно, они были бы уничтожены радиацией своей собственной звезды, если бы они были отпущены некой отдаленной звездой, а если бы они как-то выдержали это, их бы уничтожил ультрафиолет нашего Солнца, причем еще до того как они приблизились бы достаточно близко, чтобы войти в атмосферу Земли.

Все же не могло ли быть так, что какие-то споры относительно устойчивы к ультрафиолету или им как-то повезло и они спаслись? Если так, то, вероятно, не нужно принимать за очевидность существование далеких планет с жизнью на них (поскольку об их существовании нет прямых свидетельств, хотя допущений в пользу их существования более чем достаточно). А как насчет облаков пыли и газа, которые существуют в межзвездном пространстве и которые теперь можно изучить детально?

В 30-е годы признавали, что межзвездное пространство содержит очень тонкое распыление отдельных атомов, в основном водорода, и что межзвездные облака пыли и газа должны иметь несколько более плотное распыление. Астрономы восприняли это как само собой разумеющееся, однако даже при своей наибольшей плотности такие распыления состоят из атомов. Для того, чтобы получилось соединение атомов, двум атомам необходимо столкнуться друг с другом, а это не считалось особенно вероятным явлением.

Кроме того, если образовались соединения атомов, то для того, чтобы быть обнаруженными, они должны оказаться между нами и яркой звездой и поглощать часть света этой звезды на свойственной им длине волны, потерю которой мы могли бы обнаружить, и они должны оказаться тут в таком количестве, чтобы поглощение было настолько сильным, что давало бы возможность его обнаружить. Это также казалось маловероятным.

Однако в 1937 году эти требования были удовлетворены и были обнаружены соединение углерод-водород (СН, или метилен радикальный) и соединение углерод-азот (CN, или цианоген радикальный).

После Второй мировой войны была разработана радиоастрономия, и она стала новым мощным инструментом. В диапазоне видимого света определенные соединения атомов могли быть обнаружены только в силу их характерного поглощения звездного света. Однако отдельные атомы в таких соединениях крутятся, поворачиваются и вибрируют, и эти движения испускают радиоволны, которые теперь могут быть обнаружены с большой точностью. Из лабораторных опытов было известно, что различные соединения атомов испускают радиоволны различной, характерной только для них длины, и определенное соединение атомов могло быть безошибочно идентифицировано. В 1963 году было обнаружено не менее четырех радиоволн, и все характерные для соединения кислород-водород (ОН, или гидроксил радикальный).

До 1968 года были известны только такие двухатомные соединения, как СН, CN и ОН, и это уже было достаточно удивительно. Но никто не ожидал, что существуют там и трехатомные соединения, поскольку не так уж много шансов, чтобы столкнулись два атома и держались друг с другом, а тут еще нужен третий атом.

Тем не менее в 1968 году в межзвездных облаках, благодаря характерной радиоволновой радиации, была обнаружена трехатомная молекула воды Н2О и даже четырехатомная молекула аммиака NH3. С того времени список обнаруживаемых химических веществ стал быстро расти, найдены соединения до семи атомов. Все более сложные соединения включают атом углерода, так что можно заподозрить, что в межзвездном пространстве могут существовать даже такие сложные молекулы, как аминокислотные строительные блоки из протеинов, но, наверное, в таких незначительных количествах, что их пока нельзя обнаружить.

Если пойти еще дальше, то не могут ли в этих межзвездных облаках развиться простейшие формы жизни? Здесь даже не надо ссылаться на ультрафиолетовый свет, потому что звезды могут быть от них очень далеко, а пыль облаков сама может служить защитным зонтиком.

В таком случае нет ли в будущем такой возможности, что Земля, проходя сквозь такие облака, может подобрать какие-нибудь из этих микроорганизмов (окружающие частицы пыли защитят их также и от ультрафиолетовой радиации нашего Солнца), и эти микроорганизмы вызовут какое-нибудь заболевание, совершенно чуждое нам, против которого у нас не найдется никакого средства, и все мы умрем?

Астроном Фред Хойль пошел еще дальше в этом отношении. Он обратился к изучению комет, которые, как известно, содержат соединения атомов, во многом похожие на имеющиеся в межзвездных облаках, только вещество в кометах гораздо более плотно спрессовано, чем в межзвездных облаках. Кометы при подходе к Солнцу испускают обширное облако пыли и газа, которое солнечным ветром формируется в длинный хвост.

Кометы гораздо ближе к Земле, чем межзвездные облака, и более вероятно, что Земля пройдет через хвост кометы, чем через межзвездное облако. Как я упоминал выше, в 1910 году Земля проходила через хвост кометы Галлея раньше, и не встретимся ли мы с катастрофой подобного рода непредсказуемо? На самом деле все это представляется в высшей степени невероятным. Даже если в межзвездных облаках или в кометах образуются вещества, достаточно сложные для того, чтобы быть живыми, много ли шансов на то, что они просто случайно будут обладать качествами, необходимыми для атаки на людей (или на любые другие живые организмы.

Хвост кометы настолько разрежен и вакуумообразен, что он никак не может нанести нам существенного ущерба ни нарушением движения Земли, ни загрязнением атмосферы. Однако не могли ли мы подхватить из него несколько неизвестных нам микроорганизмов, которые, размножившись, а может быть, и претерпев мутации в своем новом окружении, ударят по нам со смертельным эффектом?

Например, не была ли «испанка» 1918 года порождена прохождением Земли через хвост кометы Галлея? Не были ли другие страшные эпидемии вызваны таким же образом? Если так, то не может ли новое прохождение через хвост кометы когда-нибудь в будущем породить новую болезнь, более смертоносную, чем были.

Не забывайте, что лишь очень малая часть микробов является патогенной и вызывает болезни. Большинство патогенных микробов будет вызывать болезнь только в отдельном организме или небольшой группе организмов, а в остальных случаях они будут безвредны. (Например, ни одному человеку не надо опасаться подхватить заболевание голландского вяза, так же как и дубу не надо этого опасаться. Ни тот, ни другой, ни вяз и ни дуб не могут простудиться от холода.) Микроорганизм, чтобы быть эффективным в возбуждении болезни у определенного хозяина, должен быть сложным образом приспособлен к задаче. Чтобы чужеродный организм, случайно образовавшийся в глубинах межзвездного пространства или в комете, мог просто случайно приспособиться химически и физиологически для успешного паразитирования на человеке, об этом не может быть и речи.

И все же опасность инфекционных заболеваний в новой и неожиданной форме полностью при этом не устраняется (Возможные последствия эпидемии новой формы инфекционной болезни описаны американским писателем Джеком Лондоном в произведении «Алая чума». Истребив почти все человечество, эпидемия отбросила немногих уцелевших людей на стадию первобытного существования). Позднее будет случай вернуться к этому вопросу и рассмотреть его с совершенно другой точки зрения.

13. Конфликт интеллектов

Нечеловеческий интеллект

В предыдущей главе мы рассмотрели опасности, грозящие человечеству от других видов жизни, и установили, что противостояние человечества другим конкурирующим видам ведет от победы в самом лучшем случае до сохранения неизменным положения в самом худшем случае. И даже когда существует устойчивое положение, передовая технология вполне может привести к победе!

Несомненно, поражение человечества в борьбе с каким-либо нечеловеческим видом, если сохраняется в целости техника и если цивилизация не ослаблена другими факторами, не представляется особенно вероятным.

Однако эти формы жизни, которые, на наш взгляд, не имеют никакого реального шанса стереть человечество с лица Земли, обладают одной общей чертой – они не стоят на одном уровне интеллекта с Homo sapiens.

Даже когда нечеловеческая жизнь одерживает частичную победу, например, если колонна муравьев вдруг одолеет отдельную личность, с которой столкнулась, или если размножающиеся чумные бациллы сметают с лица Земли миллионы людей, – это результат более или менее автоматического и неизменяемого поведения со стороны временно побеждающего противника. Люди как вид, набравшись сил, способны создать контратакующую стратегию и в результате контратаки либо уничтожить противника, либо, по меньшей мере, сдержать его – так во всяком случае было до сих пор. И, насколько мы можем судить, ситуация вряд ли будет ухудшаться в будущем.

Что же, однако, будет если нам придется столкнуться с организмами, такими же разумными, как и мы? Не встанем ли мы перед угрозой полного уничтожения? Впрочем, найдем ли мы на Земле равных себе по интеллекту?

Наиболее разумные животные помимо людей – слоны, медведи, собаки, даже шимпанзе и гориллы – просто не из нашего класса. Никто из них ни на мгновение не в состоянии противостоять нам, если человечество безжалостно использует свою технологию.

Если рассматривать мозг как материальный носитель интеллекта, то человеческий мозг с его наибольшей средней массой для обоих полов 1,45 килограмма очень близок к самому крупному существующему сейчас, либо существовавшему в прошлом. Только гигантские млекопитающие, слоны и киты, обладают более массивным мозгом.

Самый крупный мозг слона может достигать 6 килограммов, то есть почти в четыре раза больше мозга человека, а самый крупный мозг кита имеет рекордную массу для всех времен и составляет 9 килограммов, то есть более чем в шесть раз больше мозга человека.

Такой крупный мозг управляет намного большей массой тела, чем мозг человека. Самый крупный мозг слона по массе может быть в четыре раза больше человеческого мозга, но тело слона по массе может быть в 100 раз больше тела человека. И если каждый килограмм человеческого мозга управляет 50 килограммами тела человека, то каждый килограмм мозга слона управляет 1200 килограммами тела слона. У крупного кита каждому килограмму его мозга приходится управлять по крайней мере 10 000 килограммами тела кита.

Если вычесть то, что необходимо для координации тела, то и у слона, и у кита остается в мозгу меньше массы для абстрактного мышления, и представляется, что, несмотря на величину мозга, человек, несомненно, намного более разумен, чем азиатский слон или кашалот.

Конечно, в пределах определенных групп родственных организмов отношение мозг-тело имеет тенденцию увеличиваться с уменьшением размера тела. У некоторых малых обезьян (и у некоторых колибри) это отношение таково, что на каждый грамм мозга приходится лишь 17,5 граммов тела. Тут, однако, абсолютные массы настолько малы, что мозг такой обезьяны (или колибри) просто недостаточно велик, чтобы обладать сложностью, необходимой для абстрактного мышления.

Таким образом, человек оказывается в «золотой середине». Любое существо с мозгом, гораздо большим, чем наш, имеет тело настолько огромное, что интеллект, сопоставимый с нашим, просто невозможен. И наоборот, любое существо, у которого отношение мозг-тело больше, чем у человека, обладает мозгом настолько маленьким по его абсолютной величине, что интеллект, сопоставимый с нашим, также невозможен.

Это оставляет нас на вершине в одиночестве – или почти в одиночестве. Среди китов и их сородичей отношение мозг-тело также имеет тенденцию увеличиваться с уменьшением размеров тела. Как же обстоит дело с самыми мелкими представителями группы? Некоторые дельфины и морские свиньи по весу не больше человека, однако имеют мозг, который больше человеческого. Мозг дельфина может иметь вес до 1,7 килограмма, и это на 1/6 больше мозга человека. Мозг дельфина также имеет больше извилин.

Может ли тогда дельфин быть разумнее человека? Конечно, представляется, что дельфин чрезвычайно разумен для животного. У него, вероятно, имеется своеобразная система речи, его можно научить устраивать хорошее представление, и, очевидно, он получает от этого удовольствие.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29