Современная электронная библиотека ModernLib.Net

Краткая история химии

ModernLib.Net / Химия / Азимов Айзек / Краткая история химии - Чтение (стр. 2)
Автор: Азимов Айзек
Жанр: Химия

 

 


      В 1604 г. немецкий издатель Иоганн Тёльде выпустил книгу некоего средневекового монаха Василия Валентина (скорее всего это был псевдоним самого Тёльде), озаглавленную "Триумфальная колесница антимония", которая получила широкую известность.
      Наиболее видным представителем нового направления в химии был немецкий химик Иоганн Рудольф Глаубер (1604-1668). Врач по образованию, он занимался разработкой и совершенствованием методов получения различных химических веществ. Глаубер разработал метод получения соляной кислоты воздействием серной кислоты на поваренную соль. Тщательно изучив остаток, получаемый после отгонки кислот (сульфат натрия), Глаубер установил, что это вещество обладает сильным слабительным действием. Он назвал это вещество "удивительной солью" (sal mirabile) и считал его панацеей, почти эликсиром жизни. Современники Глаубера назвали эту соль глауберовой, и это название сохранилось до наших дней. Глаубер занялся изготовлением этой соли и ряда других, по его мнению, ценных лекарственных средств и достиг на этом поприще успеха. Жизнь Глаубера была менее богата бурными событиями, чем жизнь его современников, занимавшихся поисками путей получения золота, но она была более благополучной.
      Даже те, кто был глух к научным доводам, не могли не поддаться влиянию реальной жизни. Развивающиеся наука о минералах и медицина оказались настолько заманчивыми и доходными, что не было никакого смысла терять время на нескончаемые безуспешные попытки получить золото.
      И действительно, в XVII в. значение алхимии неуклонно уменьшалось, а в XVIII в. она постепенно стала тем, что мы сегодня называем химией.
      Глава 3 ПЕРЕХОДНЫЙ ПЕРИОД
      ИЗМЕРЕНИЕ
      Несмотря на бурное развитие, химическая наука в определенном отношении все-таки отставала от других областей знания.
      Так, например, в астрономии значение количественных измерений и необходимость математической обработки данных были уяснены еще в древние времена. Объясняется это скорее всего тем, что астрономические проблемы, рассматриваемые древними, были относительно просты и некоторые из этих проблем можно было решать, пользуясь только планиметрией.
      Итальянский ученый Галилео Галилей (1564-1642), изучавший в 90-х годах XVI в. падение тел, первым показал необходимость тщательных измерений и математической обработки данных физического эксперимента. Результаты его работ почти столетие спустя привели к важным выводам английского ученого Исаака Ньютона (1642-1727). В своей книге "Начала математики" ("Principia Mathematica"), опубликованной в 1687 г., Ньютон сформулировал три закона движения, которыми завершилась разработка основ механики. На базе этих законов в последующие два столетия развивалась классическая механика. В той же книге Ньютон сформулировал и закон тяготения, который более двух веков также служил вполне приемлемым объяснением движения планет и звездных систем и до сих пор справедлив в пределах представлений классической механики.
      При выведении закона тяготения Ньютон применил теорию чисел - новую и мощную область математики, которую он сам и разрабатывал.
      При Ньютоне научная революция достигла своей высшей точки. Авторитет древнегреческих теорий был заметно поколеблен, ученые Западной Европы намного превзошли их, и можно было больше не оглядываться назад.
      В химии переход от простого качественного описания к тщательному количественному измерению был осуществлен лишь столетие спустя после открытий Ньютона. Как это ни парадоксально, но, возводя здание классической астрономии и физики, грандиозность и красота которого восхитили научный мир, Ньютон оставался приверженцем алхимии и страстно искал рецепт превращения металла в золото.
      Но химики лишь отчасти виноваты в том, что путь к неосуществимой цели оказался столь долгим. Все дело в том, что количественные методы Галилея и Ньютона очень трудно приложить к химии. Ведь для этого необходимо результаты химических опытов представить таким образом, чтобы их можно было подвергнуть математической обработке.
      И все же химики делали успехи, и уже во времена Галилея наблюдались слабые приметы грядущей революции в химии. Эти приметы имелись, например, в работе фламандского врача Яна Баптиста Ван Гельмонта (1579- 1644). Ван Гельмонт выращивал дерево в заранее отмеренном количестве почвы, куда систематически добавлял воду, и систематически тщательно взвешивал дерево. Поскольку Ван Гельмонт надеялся обнаружить источник живой ткани, образуемой деревом, то можно сказать, что он применял измерение и в химии, и в биологии.
      До Ван Гельмонта единственным известным и изученным воздухоподобным веществом был сам воздух, который казался достаточно характерным и непохожим на другие вещества, чтобы древние греки посчитали его одним из элементов (гл. 1). Несомненно, алхимики в своих опытах часто получали что-то подобное "воздуху" и "пару", но эти вещества были почти неуловимы, их трудно было изучать и наблюдать и легко было не заметить. О том, что к этим веществам относились как к таинственным, говорят хотя бы их названия. Так, спирт в переводе с латинского означает "дух", "душа", "дыхание".
      Ван Гельмонт первым из химиков обратил внимание на пары, образующиеся в процессе некоторых реакций, и начал их изучать. Он обнаружил, что пары в чем-то напоминают воздух, но во многом от него и отличаются. В частности, он нашел, что на воздух похожи и пары, образующиеся при горении дерева, хотя ведут себя они несколько иначе.
      Эти воздухоподобные вещества, не имеющие постоянного объема или формы, напомнили Ван Гельмонту греческий "хаос" - вещество первоздания, бесформенное и беспорядочное, из которого (согласно древнегреческой мифологии) был создан космос. Ван Гельмонт назвал эти пары "хаосом", но, согласно фламандскому фонетическому строю, это слово произносится как газ4. Так называют воздухоподобные вещества и в наше время.
      Газ, полученный при горении дерева и изученный им с особой тщательностью, он назвал "лесной газ" (gas sylvestre). Сегодня мы называем этот газ диоксидом углерода. При изучении газов как простейшей формы материи впервые была использована техника точных измерений, т. е. количественного исследования явлений, которая и послужила столбовой дорогой в мир современной химии.
      ЗАКОН БОЙЛЯ
      К концу жизни Ван Гельмонта интерес к газам и особенно к воздуху наиболее распространенному газу неожиданно возрос. В 1643 г. итальянский физик Эванджелиста Торричелли (1608-1647) сумел доказать, что воздух оказывает давление. Торричелли показал, что воздух может поддерживать столбик ртути высотой в 28 дюймов. Так был изобретен барометр. После этого открытия газы стали казаться менее загадочными. Как выяснилось, подобно жидкостям и твердым веществам, они имеют вес и от жидкостей и твердых веществ отличаются главным образом гораздо меньшей плотностью.
      Немецкий физик Отто фон Герике (1602-1686) убедительно показал, что атмосферный воздух имеет вес. Герике изобрел воздушный насос, при помощи которого воздух выкачивали из сосуда, так что давление воздуха снаружи сосуда становилось больше, чем внутри. В 1654 г. по заказу Герике был изготовлен прибор, состоящий из двух медных полушарий (чтобы соединение было плотным, между полушариями помещали кожаное кольцо, пропитанное раствором воска в скипидаре). Соединив эти полушария, Герике откачал из полученного шара воздух. Наружный воздух давил на полушария и удерживал их вместе, так что их не могли разъединить упряжки лошадей, изо всех сил тянувшие полушария в разные стороны. Когда же Герике впускал в шар воздух, полушария распадались сами. Этот опыт пошел в историю науки как опыт с "магдебургскими полушариями".
      Такого рода демонстрации повышали интерес к свойствам воздуха. В частности, они привлекли внимание ирландского химика Роберта Бойля (1627-1691). Сконструированный Бойлем воздушный насос был совершеннее насоса Герике. Освоив методику откачивания воздуха из сосуда, Бойль решил попытаться сделать обратное - сжать воздух.
      В ходе опытов Бойль обнаружил, что объем данной массы воздуха обратно пропорционален давлению (рис. 4). Заливая ртуть в очень длинную трубку особой U-образной формы, Бойль запирал пробу воздуха в коротком запаянном конце трубки. Добавляя ртуть в длинный открытый конец трубки, можно было увеличить давление. Когда Бойль добавил такое количество ртути, при котором давление на воздух увеличивалось вдвое (удвоенная масса ртути), объем воздуха уменьшился также вдвое. Если давление увеличивалось втрое, объем уменьшался втрое. В то же время, если давление снижалось, объем увеличивался. Открытая Бойлем обратная зависимость объема от давления получила название закона Бойля, Первое сообщение об этом законе было опубликовано в 1662 г.
      Бойль не оговорил особо, что его закон действителен только при постоянной температуре. Возможно, он понимал это и считал само собой разумеющимся. Французский физик Эдм Мариотт (1630- 1684), независимо от Бойля открывший этот закон в 1676 г., особо подчеркивал, что такая зависимость объема от давления наблюдается только при постоянной температуре. По этой причине закон Бойля в континентальной Европе часто называют законом Мариотта.
      Рис. 4. Схема опыта (а), показывающего, что объем газа обратно пропорционален давлению при постоянной температуре (закон Бойля), и полученная кривая зависимости объем - давление (б). Ртуть, налитая в длинное плечо U-образной трубки, запирает воздух в коротком плече. С увеличением массы ртути высота столбика воздуха уменьшается.
      Закон Бойля явился первой попыткой применить точное измерение при выяснении причин изменения веществ5. Опыты Бойля привлекли внимание атомистов, к числу которых принадлежал и сам Бойль. Как уже отмечалось выше, атомистические взгляды античных ученых, изложенные в поэме Тита Лукреция Кара (см. гл. 1), разделяли многие европейские ученые того времени. Убежденным атомистом был и французский философ Пьер Гассенди (1592-1655), под влиянием которого сторонником атомистической теории стал и Бойль6.
      Однако, пока химики занимались изучением только жидкостей и твердых веществ, доказать справедливость этой теории было чрезвычайно трудно, и во времена Бойля таких доказательств было ничуть не больше, чем во времена Демокрита (см. гл. 1). Жидкости и твердые вещества подвергаются сжатию лишь в незначительной степени. Если эти вещества и состоят из атомов (материя дискретна) и атомы в них соприкасаются между собой, то больше сблизить их нельзя. Если же жидкости и твердые вещества представляют собой "сплошное" вещество (материя непрерывна), то их также очень трудно подвергнуть сжатию. Поэтому доказать, что жидкости и твердые вещества состоят из атомов, было очень трудно. Как же доказать, что атомы существуют?
      В отличие от твердых веществ и жидкостей воздух, как наблюдали еще в древности, а Бойль в свое время наглядно доказал, легко сжимается. Объяснить это можно, только приняв, что воздух состоит из мельчайших атомов, разделенных пустым пространством. Сжатие воздуха в этом случае обусловлено сближением атомов в результате сжатия пустого пространства между ними.
      Если газы состоят из атомов, то вполне можно допустить, что жидкости и твердые вещества также состоят из атомов. Например, как испаряется вода? В процессе испарения "исчезают" одна за другой мельчайшие частички воды. Совсем нетрудно представить себе, что вода превращается в пар атом за атомом. Если воду нагревают, она кипит, и при этом образуется пар. Водяной пар имеет физические свойства воздухоподобного вещества, и, следовательно, вполне естественно предположить, что он состоит из атомов. Но если вода состоит из атомов, будучи в газообразной форме, то почему она не может состоять из атомов, находясь в жидком или твердом (в виде льда) состоянии? А если это справедливо для воды, то почему не может быть справедливо для всех видов материи?
      Доводы такого рода производили впечатление, и впервые за свою двухтысячелетнюю историю атомизм начал завоевывать приверженцев, число которых быстро росло (например, к атомизму пришел Ньютон). И тем не менее понятие "атом" оставалось неясным. Об атомах ничего нельзя было сказать, кроме того, что если они существуют, то с их помощью проще объяснять поведение газов. Лишь спустя полтора столетия атомизм вновь привлек внимание химиков.
      НОВЫЙ ВЗГЛЯД НА ЭЛЕМЕНТЫ
      Ко времени начала научной деятельности Бойля термины "алхимия" и "алхимик" почти исчезли из научной литературы. Не удивительно, что Бойль опустил первый слог слова "алхимик" в названии своей книги "Химик-скептик" ("The Sceptical Chymist"), опубликованной в 1661 г. С тех пор наука стала называться химией, а работающие в этой области - химиками.
      Бойль называл себя "скептиком", потому что не хотел более слепо следовать представлениям античных авторитетов. В частности, Бойль не принимал утверждения древних философов, считавших, что элементы мироздания можно установить умозрительно. Вместо этого он определял элементы как таковые практическим путем. Элемент, как считалось еще со времен Фалеса (см. гл. 1), - это одно из основных простых веществ, составляющих Вселенную. Но установить, что предполагаемый элемент действительно является элементом, можно только с помощью эксперимента. Если вещество можно разложить на более простые компоненты, следовательно, оно не является элементом, а полученные более простые вещества могут представлять собой элементы или по крайней мере могут считаться таковыми до тех пор, пока химики не научатся разлагать и их на еще более простые вещества. Если два вещества являются элементами, то они могут соединиться и образовать третье однородное вещество, называемое соединением. Такое соединение можно разложить на два исходных элемента. Но с этой точки зрения термин "элемент" имеет только условное значение. Вещество типа, например, кварца может считаться элементом до тех пор, пока химику-экспериментатору не удается получить из него два или более простых вещества. В соответствии с этой точкой зрения считать какое-либо вещество элементом можно было лишь условно, поскольку с развитием науки этот предполагаемый элемент удастся расщепить на еще более простые вещества. Только в XX столетии стало возможным установить природу элементов не в условном плане (см. гл. 13).
      Тот простой факт, что Бойль добивался экспериментального подхода к определению элементов (подхода, который в конечном счете и был принят), не означал, что он знал о существовании различных элементов. Вполне могло оказаться, что экспериментальный подход подтвердил бы существование "греческих элементов": огня, воздуха, воды и земли.
      Бойль, например, был убежден в обоснованности воззрений алхимиков, считавших, что металлы не являются элементами и что одни металлы можно превратить в другие. В 1689 г. Бойль настоял, чтобы Британское правительство отменило закон, запрещающий алхимикам производить золото (правительство, кроме всего прочего, опасалось экономических последствий), так как верил в возможность получения золота из "основного металла"7 и считал, что, получив таким образом золото, удастся подтвердить атомную структуру материи.
      Однако в этом Бойль ошибался: металлы оказались элементами. В самом деле, девять веществ, которые мы сегодня считаем элементами, были известны еще древним: семь металлов (золото, серебро, медь, железо, олово, свинец, ртуть) и два неметалла (углерод и сера). Кроме того, элементами являются и четыре вещества, также известные еще средневековым алхимикам. Это мышьяк, сурьма, висмут и цинк,
      Один из элементов едва не открыл сам Бойль, В 1680 г. он выделил фосфор из мочи. Однако лет за десять до него то же самое сделал немецкий химик Хенниг Бранд (? - после 1710 г.), которого иногда называют "последним алхимиком". Он открыл фосфор совершенно случайно во время поисков философского камня, который собирался найти в моче. Правда, ряд литературных источников свидетельствует, что способ получения фосфора, вероятно, знали еще арабские алхимики XII в.
      ФЛОГИСТОН
      К числу открытий XVII в., имевших особое значение для развития химии, следует отнести открытие существования давления столба атмосферного воздуха, возможности использования этого давления и возможности создания вакуума. Некоторые исследователи стали приходить к мысли, что вакуум можно получить и без использования воздушного насоса. Предположим, вы вскипятили воду и заполнили камеру паром, затем снаружи остудили камеру холодной водой. При этом пар внутри камеры конденсируется в водяные капли, и в камере создается вакуум. Если одну из стенок такой камеры сделать подвижной, то под действием давления воздуха эта подвижная стенка будет втягиваться в камеру. Когда же в камеру попадет новая порция пара, стенка будет вновь выталкиваться, а затем при конденсации пара вновь втягиваться в камеру. Можно представить себе, что подвижная стенка - это своего рода поршень, совершающий возвратно-поступательные движения; такси поршень можно использовать, например, в насосе, работающем на паре.
      Рис. 5. Насосное устройство конструкции Ньюкомена, работавшее при атмосферном давлении. Впрыснутая в цилиндр вода вызывает конденсацию пара, в цилиндре создается вакуум, и поршень опускается вниз. Новая порция пара, поступающая в цилиндр из парового котла, возвращает поршень в исходное положение.
      В 1696 г. такая паровая машина и в самом деле была создана английским горным инженером Томасом Севери (ок. 1650-1715). В этом устройстве использовался пар под большим давлением, что по тем временам было небезопасно. Примерно в то же время (1705 г.) Томас Ньюкомен (1663-1729), работавший совместно с Севери, изобрел паровую машину, которая могла работать на паре под более низким давлением (рис. 5). Однако машина Ньюкомена не была универсальной, и ее можно было использовать практически только для поднятия воды. Конструкция машины была значительно усовершенствована шотландским механиком Джеймсом Уаттом (1736-1819), который и считается создателем универсальной паровой машины.
      Появление паровой машины ознаменовало собой начало промышленной революции: человек получил машину, которая, казалось, могла переделать всю тяжелую работу на свете. Человек перестал зависеть от капризов силы ветра или месторасположений падающей воды, энергию которой можно было использовать для механической работы.
      Не совсем обычное использование огня в паровой машине возродило у химиков интерес к процессу горения. Почему одни предметы горят, а другие не горят? Что представляет собой процесс горения? По представлениям древних греков все, что способно гореть, содержит в себе элемент огня, который в соответствующих условиях может высвобождаться. Алхимики придерживались примерно той же точки зрения, но считали, что способные к горению вещества содержат элемент "сульфур" (хотя необязательно саму серу).
      В 1669 г. немецкий химик Иоганн Иоахим Бехер (1635-1682) попытался дать рационалистическое объяснение явлению горючести. Он предположил, что твердые вещества состоят из трех видов "земли", и один из этих видов, названный им "жирная земля" (terra pinguis), принял за "принцип горючести". Последователем весьма туманных представлений Бехера был немецкий врач и химик Георг Эрнст Шталь (1660-1734). Он еще раз обновил название "принцип горючести", назвав его флогистоном - от греческого ц Резерфорд был близок к открытию четвертого газа - азота. Пристли сопутствовала удача: он выделил и изучил еще ряд газов.
      Опыты Пристли с углекислым газом показали, что газы могут растворяться в воде и, следовательно "теряться", поэтому он попытался собирать газы не над водой, а над ртутью. Таким образом Пристли сумел собрать и изучить такие газы, как оксид азота (I), аммиак, хлорид водорода и диоксид серы (мы даем современные названия газов). Все эти газы настолько хорошо растворяются в воде, что, проходя через нее, полностью поглощаются.
      В 1774 г. Пристли сделал, возможно, самое важное свое открытие. Как уже говорилось выше, он собирал газы над ртутью. При нагревании на воздухе ртуть образует кирпично-красную "окалину" (оксид ртути). Пристли клал немного окалины в пробирку и нагревал ее, фокусируя на ней с помощью линзы солнечные лучи. Окалина при этом вновь превращалась в ртуть, и в верхней части пробирки появлялись блестящие шарики металла. При разложении окалины выделялся газ с весьма необычными свойствами. Горючие вещества горели в этом газе быстрее и ярче, чем на воздухе. Тлеющая лучина, брошенная в сосуд с этим газом, вспыхивала ярким пламенем.
      Пристли пытался объяснить это явление, используя теорию флогистона. Поскольку горючие вещества горели в этом газе весьма ярко, то они должны были очень легко выделять флогистон. Чем объяснить это? Как следует из теории флогистона, воздух легко поглощает флогистон, но до определенного предела, после чего горение прекращается. В открытом Пристли газе горение шло лучше, чем в воздухе, и он решил, что этот газ совсем не содержит флогистона. Пристли назвал открытый им газ "дефлогистированным воздухом". (Однако через несколько лет его переименовали в кислород, этим названием мы пользуемся и сегодня.)
      "Дефлогистированный воздух" Пристли казался своего рода антиподом "флогистированного воздуха" Резерфорда. В последнем газе мыши умирали, тогда как в первом были весьма деятельными.
      Пристли сам попробовал подышать "дефлогистированным воздухом" и почувствовал при этом себя "легко и свободно".
      Однако в открытии кислорода и Резерфорда и Пристли опередил шведский химик Карл Вильгельм Шееле (1742-1786) - представитель той плеяды химиков, которые вывели Швецию в XVIII в. на передовые позиции науки.
      Приблизительно в 1735 г. шведский химик Георг Брандт (1694-1768) начал изучать голубоватый минерал, напоминавший медную руду. Несмотря на такое сходство, получить из этого минерала медь при обычной обработке не удавалось. Рудокопы полагали, что эта руда заколдована земными духами "кобольдами". В 1742-1744 гг. Брандт сумел показать, что голубоватый минерал содержит не медь, а совершенно иной металл, напоминающий по своим химическим свойствам железо. Этот металл получил название кобальт.
      В 1751 г. Аксель Фредрик Кронстедт (1722-1765) открыл новый металл никель, очень похожий на кобальт; Иоганн Готлиб Ган (1745-1818) выделил в 1774 г. марганец, а Петер Якоб Гьельм (1746-1813) получил в 1782 г. молибден.
      Рис. 6. Паяльная трубка, введенная в лабораторную практику шведским химиком Кронстедтом (1722-1765), более века была ключевым инструментом химического анализа; этот метод используется до сих пор. Струя воздуха повышает температуру пламени и может менять его направление.
      Кронстедт при изучении минералов впервые применил паяльную трубку (рис. 6). Это была длинная, постепенно сужающаяся трубка, из узкого конца которой выходила струя сжатого воздуха.
      Когда такую струю направляли в пламя, температура его повышалась. Минералы, нагреваемые в пламени паяльной трубки, окрашивали его в различные цвета, поэтому по цвету пламени можно было судить о природе и составе минерала, о природе образовавшихся паров и твердого остатка. На протяжении столетия паяльная трубка оставалась основным инструментом химического анализа.
      Благодаря использованию новых технических приемов, подобных анализу в пламени паяльной трубки, химикам удалось накопить достаточно много данных о минералах. Исходя из этих данных Кронстедт вполне справедливо полагал, что минералы следует классифицировать не только в соответствии с их внешним видом, но и в соответствии с их химической структурой. В 1758 г. он выпустил книгу "Система минералогии", в которой детально описал новую систему классификации.
      Эта работа была продолжена другим шведским минералогом Торберном Улафом Бергманом (1735-1784). Бергман развил теорию, объясняющую, почему одно вещество реагирует с другим веществом, но не реагирует с третьим. Он же предположил, что между веществами существует "сродство" (affinities), и составил тщательно выверенные таблицы различных величин сродства. Эти таблицы пользовались широкой известностью при жизни их создателя и пережили его на несколько десятилетий.
      Шееле, еще будучи помощником аптекаря, обратил на себя внимание Бергмана, который помогал ему и поддерживал его. Шееле открыл ряд кислот растительного и животного происхождения, в том числе винную, лимонную, бензойную, яблочную, щавелевую, галловую, молочную, мочевую, а также такие минеральные кислоты, как молибденовая и мышьяковая.
      Шееле получил и изучил три сильно ядовитых газа: фторид водорода, сульфид водорода и цианид водорода. (Предполагают, что его ранняя смерть явилась результатом медленного отравления химикалиями, так как он имел обыкновение пробовать на вкус те вещества, с которыми работал.)
      Шееле был в числе тех химиков, исследования которых привели к открытию многих элементов, и пользовался большим уважением шведских коллег. Наиболее важные его открытия - получение кислорода и азота (соответственно в 1771 и 1772 гг.). Шееле получал кислород, нагревая вещества, непрочно его удерживающие. В частности, он нагревал тот самый красный оксид ртути, которым несколько лет спустя воспользовался Пристли. Шееле подробно описал свои опыты по получению и столь же подробно описал свойства "огненного воздуха" (так он называл кислород), но из-за небрежности его издателя эти описания не появлялись в печати до 1777 г. К этому времени вышли труды Резерфорда и Пристли, которые и завоевали честь первооткрывателей.
      ТРИУМФ ИЗМЕРЕНИЯ
      К концу XVIII в. был накоплен большой экспериментальный материал, который необходимо было систематизировать в рамках единой теории. Создателем такой теории стал французский химик Антуан-Лоран Лавуазье (1743-1794). С самого начала своей деятельности на поприще химии Лавуазье понял важность точного измерения. Его первая значительная работа (1764 г.) была посвящена изучению состава минерального гипса. Нагревая этот минерал, Лавуазье удалял из него воду и определял количество полученной таким образом воды. Лавуазье принял сторону тех химиков, которые, подобно Блэку и Кавендишу, применяли измерение при изучении химических реакций. Однако Лавуазье использовал более систематический подход, что позволило ему доказать несостоятельность старых теорий, уже не только бесполезных, но и мешавших развитию химии. Даже в 1770 г. ряд ученых придерживались старого определения элементов и утверждали, что трансмутация возможна, поскольку воду, например, при длительном нагревании можно превратить в землю. Предположение о возможности превращения воды в землю считалось справедливым (вначале даже самим Лавуазье), так как при длительном нагревании воды (в течение нескольких дней) в стеклянном сосуде образовывался твердый осадок. Лавуазье решил проверить возможность превращения воды экспериментальным путем. С этой целью он в течение 101 дня кипятил воду в сосуде, в котором водяной пар конденсировался и возвращался обратно в колбу, так что возможность какой-либо потери вещества в процессе опыта была исключена. И разумеется, Лавуазье не забывал о точности эксперимента. Он взвешивал и сосуд и воду до и после нагревания.
      Осадок при этом действительно появился, но вес воды не изменился. Следовательно, вода не могла образовать осадок. Однако вес самого сосуда, как выяснилось, уменьшился как раз на столько, сколько весил осадок. Другими словами, осадок появился не в результате превращения воды в землю, а в результате медленного разъедания стеклянных стенок сосуда горячей водой. Осадок образовывало выщелоченное стекло, осаждавшееся в виде твердых пластинок. Этот пример наглядно показывает, что простое наблюдение может привести к ошибочным выводам, тогда как количественное измерение позволяет установить истинные причины явления.
      Вопрос о том, что такое процесс горения, интересовал всех химиков XVIII в., и Лавуазье также не мог не заинтересоваться им. В 60-х годах XVIII в. он получил золотую медаль за исследование, посвященное улучшению способов уличного освещения. В 1772 г. Лавуазье в складчину с другими химиками приобрел алмаз. Он поместил этот алмаз в закрытый сосуд и нагревал до тех пор, пока алмаз не исчез. При этом образовался углекислый газ. Таким образом было убедительно доказано, что алмаз состоит из углерода и, следовательно, алмаз ближе всех других веществ к углю.
      Продолжая свои опыты, Лавуазье нагревал в закрытых сосудах с ограниченным объемом воздуха такие металлы, как олово и свинец. Сначала на поверхности обоих металлов образовывался слой окалины, но в определенный момент ржавление прекращалось. Сторонники теории флогистона сказали бы, что воздух поглотил из металла весь содержащийся в нем флогистон. В то время уже доподлинно было известно, что окалина весит больше, чем сам металл, однако, когда после нагревания Лавуазье взвесил сосуд вместе со всем содержимым (металлом, окалиной, воздухом и пр.), оказалось, что он весит ровно столько же, сколько и до нагревания.
      Из этих данных следовало, что если, частично превратившись в окалину, металл увеличил свой вес, то что-то еще из содержащегося в сосуде потеряло эквивалентное количество веса. Это "что-то еще" могло быть и воздухом. Однако в этом случае в сосуде должен был образоваться вакуум. Действительно, когда Лавуазье открыл сосуд, туда устремился воздух, и вес сосуда и его содержимого увеличился.
      Таким образом Лавуазье показал, что металл превращается в окалину не в результате потери мистического флогистона, а вследствие присоединения порции самого обычного воздуха.
      Это открытие позволило выдвинуть новую теорию образования металлов и руд. Согласно этой теории, в руде металл соединен с газом. Когда руду нагревают на древесном угле, уголь адсорбирует газ из руды; при этом образуются углекислый газ и свободный металл.
      Таким образом, в отличие от Шталя, который считал, что плавка металла включает переход флогистона из древесного угля в руду, Лавуазье представлял себе этот процесс как переход газа из руды в уголь. Однако имело ли смысл толкование Лавуазье предпочесть толкованию Шталя? Да, имело, поскольку предположение Лавуазье о переходе газа позволяло объяснить причины изменения веса веществ в результате горения.
      Окалина тяжелее металла, из которого она образовалась, ровно на столько, сколько весит соединившееся с металлом количество воздуха. Горение дерева также сопровождается присоединением воздуха, но увеличения веса в этом случае не наблюдается, так как образовавшееся новое вещество углекислый газ улетучивается в атмосферу. Оставшаяся зола легче сгоревшего дерева. Если бы горение дерева проходило в закрытом сосуде и образующиеся при этом газы оставались бы в сосуде, тогда можно было бы показать, что вес золы плюс вес образовавшихся газов плюс вес того, что осталось от воздуха, равняется начальному весу дерева и воздуха.

  • Страницы:
    1, 2, 3, 4