Современная электронная библиотека ModernLib.Net

Знакомьтесь - роботы !

ModernLib.Net / Артоболевский И. / Знакомьтесь - роботы ! - Чтение (стр. 10)
Автор: Артоболевский И.
Жанр:

 

 


      Кинематика шага, определяющая траекторию движения ноги, включает четыре интервала:
      1) опорный, занимающий половину времени движения ноги; 2) подъема ноги; 3) переноса ноги; 4) приземления ноги.
      Три последних этапа, на протяжении которых нога не касается опорной поверхности, также занимают половину времени одного шага. При такой кинематике восьминогая (или шестиногая) машина в процессе движения всегда опирается на четыре (или три) ноги и сохраняет устойчивое равновесие. Таким образом, геометрия движения машины полностью определена. Будучи пущена в определенном направлении, машина будет двигаться по гладкому участку дороги, взбираться по наклонным поверхностям, перешагивать через препятствия, "детая все возможное". Конечно, в пределах, ограниченных ее размерами и мощностью привода.
      ШАГАЮЩИЙ ПОЕЗД
      "Лунный пешеход" - машина обратимого типа.
      Это означает, что она шагает не только тогда, когда работает приводной механизм, но и в том случае, когда ее толкают или тянут, как, скажем, паровоз тянет вагоны. Значит, можно себе представить две или несколько таких машин, тянущих одна другую. Проект такого поезда, состоящего из пяти "пешеходов", и был разработан.
      Цель проекта состояла в том, чтобы создать транспортную систему, проходимость которой по не приспособленным для передвижения поверхностям была бы в какой-то мере соизмерима с проходимостью человека.
      Разрабатывалась она для армейских нужд и предназначена для транспортного обслуживания пешего взвода. Головной "пешеход" выполняет функции тягача, четыре остальных - грузовые, по одному на каждое отделение взвода. Грузоподъемность четырех "пешеходов" достигает 500 килограммов, собственный вес каждой из машин около 100 килограммов. Тягач оснащен 30-сильным двигателем внутреннего сгорания.
      Движением шагающего поезда управляют с помощью длинной рукоятки, расположенной в его передней части: в зависимости от того, тянет ее оператор или толкает, тягач переключается на передний или задний ход, ею же осуществляется .управление поворотом. Размеры машины и ее шагающего механизма позволяют ей свободно перешагивать через неровности и препятствия высотой до 25 сантиметров.
      До сих пор мы не пытались расшифровывать, что такое "поверхность, не приспособленная для передвижения по ней". Под это понятие, в общем, подходят и густой лес, и болото, и глубокий ров. Естественно, что, когда речь идет об оценке проходимости машины, надо оперировать более конкретными, не только качественными, но и количественными оценками состояния поверхности.
      Механический "пешеход" должен передвигаться вместе с пешим армейским подразделением. Это, конечно, не значит, что он должен пройти там, где проходит без посторонней помощи солдат. Такое требование тоже было бы неопределенным - солдат может обладать навыками пловца, альпиниста. Да и не имей он их, все равно попытка построить машину, по проходимости полностью сравнимую с человеком, заранее обречена на неудачу.
      Технические условия на "пешехода" были составлены в соответствии с требованиями материально-технического снабжения армейского взвода. Вот некоторые из этих условий: полностью нагруженная машина должна взбираться на тридцатиградусные склоны или проходить их по диагонали; удельное давление на почву, создаваемое стопой машины, не должно превышать 0,3 кг/см2; она должна взбираться на препятствия высотой 25 сантиметров, подходя к ним по уклону в 45 градусов, и сходить с них на уклон в 45 градусов; машина должна передвигаться по слою грязи, песка или гравия глубиной в 15 сантиметров; радиус поворота ее не должен превосходить 2 метров; она должна проходить между деревьями, растущими на расстоянии 120 сантиметров одно от другого.
      Вот еще один пример, иллюстрирующий возможности применения стопоходящих машин. Речь идет о работе, выполненной Калифорнийским университетом в Лос-Анджелесе. Для самостоятельного передвижения больных с ампутированными или парализованными конечностями в медицинской практике используется кресло на колесах с электрическим приводом. Проходимость такого электрокресла сильно ограничена, оно может легко передвигаться лишь по гладкому полу, порог высотой 1,5-2 сантиметра представляет для него уже серьезное препятствие.
      Была поставлена задача создать шагающее кресло для больного ребенка, сидя в котором он бы мог самостоятельно выйти за пределы помещения, погулять по саду и т. п. В конструкции был использован примерно такой же шагающий механизм, как в механическом "пешеходе". Восемь таких механизмов приводят в движение восемь ног. Независимые электроприводы для четырех правых и для четырех левых ног позволяют изменять движение кресла, а для управления движением достаточно иметь один рычаг. Опыт показал, что с задачей управления таким креслом больной ребенок справляется даже в случае, если он не может шевелить ни руками, ни ногами. Ему достаточно двигать головой, подбородком нажимая на рычаг управления, переводя его вперед или назад, направо или налево.
      Вот некоторые из технических условий, которые были поставлены при проектировании электрокресла. Оно должно подниматься на бортик высотой 15 сантиметров, окаймляющий тротуары на улицах, и спускаться с него, ходить по песчаному берегу; ходить по неровной дороге с высотой неровностей до 10 сантиметров; устойчиво двигаться по уклонам до 15 градусов; иметь грузоподъемность не менее 30 килограммов.
      Как видно, в некоторых случаях "бездорожными"
      оказываются дом с лестницами и порогами, улица с тротуарами и бортиками. Все, с чем так легко справляется человек, оказывается непроходимым для колеса.
      Если когда-нибудь совершится то, о чем так страстно мечтают писатели-фантасты, и люди приведут на свои предприятия и в свои дома роботов, то что надо будет делать? Строить ли предприятия и дома так, чтобы они были проходимы для колесных машин, или конструировать роботы по образу и подобию человека? Представляется, что стопоходящие машины еще не сказали своего последнего слова, что полуроботы и роботы ближайшего или отдаленного будущего окажутся антропоморфными не только потому, что будут работать механическими руками, но и передвигаться будут, шагая так, как шагает человек.
      ЧЕЛОВЕК В ФУТЛЯРЕ
      При создании космических скафандров ученым и инженерам приходится думать не только о защите человека от смертельной опасности вакуума. Чтобы, как говорил К. Циолковский, завоевать околосолнечное пространство, люди должны активно там действовать, работать, двигаться, монтировать установки, станции, жилые сооружения, управлять машинами и механизмами; космонавт, одетый в скафандр, должен чувствовать себя так же свободно, как человек, одетый в обычный .костюм.
      Решить эту проблему непросто. Раздутый воздухом скафандр препятствует движению рук" и ног, пальцы рук в перчатках становятся малоподвижными все это затрудняет выполнение многих рабочих операций.
      Обычные конструктивные мероприятия к эффективным результатам не приводят. Приходится использовать необычные пути.
      Идея, положенная в основу одной из необычных конструкций, выглядит приблизительно так. Если космонавту, одетому в скафандр, трудно двигать руками и ногами, то, чтобы ему помочь, следует использовать внешние источники мощности - двигатели, которые бы изгибали костюм в нужном космонавту направлении.
      Но непосредственно на костюме двигатели укрепить невозможно, значит, нужно построить специальный "футляр" с подвижными сочленениями, создать для космонавта как бы наружный скелет, на котором можно установить двигатели. Тогда "человек в футляре" будет легко наклоняться, двигать руками и ногами. В соответствии с этими движениями части "футляра" также будут изгибаться и поворачиваться, усиливая естественные движения человека, давая ему возможность легко обращаться с такими тяжестями, которые обычно непосильны человеку.
      Такова вкратце идея устройства, которое получило название "экзоскелетон" и разрабатывается во многих местах.
      Уже на первых этапах исследований стало ясно, что невозможно сделать экзоскелетон, сравнимый в отношении подвижности с живой "конструкцией". Следовательно, первая задача состояла в том, чтобы на основе биомеханических исследований выбрать расположение, вид и число подвижных сочленений, согласующие требование максимальной подвижности с возможностью практического осуществления, а затем экспериментально проверить и уточнить выбранную кинематическую структуру.
      Даже когда фактически решались только вопросы геометрии и кинематики, исследователи встретились с большими трудностями. Не вдаваясь в подробности, поясним на простых примерах, какие вопросы приходится решать при разработке устройств типа экзоскелетон
      Локтевой, коленный и другие суставы тела имеют сложное устройство. Головки костей, образующие их "кинематические пары", не просто шарниры с постоянной осью вращения. При относительных поворотах они перекатываются одна по другой, при этом мнимая ось вращения не остается неподвижной, а как бы перемещается по поверхностям контакта.
      Принцип построения и геометрические свойства живых сочленений изучены мало. В экзоскелетонах, как и в манипуляторах, вместо таких сложных соединений применяют обычные шарнирные сочленения. Но если сочленения экзоскелетона движутся не совсем так, как естественные, значит, космонавт и его костюм будут двигаться по-разному. Не повредит ли это космонавту?
      И наконец, пусть экзоскелетон изготовлен. Как его соединить с человеком? Как сделать так, чтобы эти соединения не мешали совместным движениям биотехнической системы? Как заставить двигаться футляр, чтобы его движения были мощными и быстрыми? Как разместить на экзоскелетоне двигатели, необходимые для приведения в движение всех подвижных сочленений?
      Подобные и многие другие вопросы, решение которых представляет не только практический, инженерный, но и научный интерес, составляют содержание лишь одного из разделов исследований и работ, которые ведутся сейчас в ряде стран. В конечном счете оказалось, что можно построить экзоскелетон, который позволит человеку легко поднять полутонный груз и нести его со скоростью около 1,5 километра в час.
      В одном из проектов, получившем название "Хардимен", оператор с надетой на него управляющей частью системы стоит внутри антропоморфной конструкции, состоящей из двух половин, соединенных в поясной части специальным разъемным устройством. Футляр воспринимает действие внешних нагрузок и свой собственный вес и повторяет все движения оператора, sa исключением движений кистей, взамен которых у акзоскелетона сделаны захваты, примерно такие же, как у обычного манипулятора. 30 степеней подвижности оказывается достаточным, чтобы машина могла выполнить множество задач, связанных с подъемом, переноской, укладкой самых различных грузов. Однако сведений о реализации этого проекта в печати не было.
      В романе "Борьба миров" Герберт Уэллс описывает фантастическую картину высадки на Землю марсиан, передвигающихся с помощью шагающих машин. Есть все основания думать, что эта картина рисует будущее, как говорят, с точностью до наоборот, то есть не марсиане сделают попытку освоить Землю и приспособить ее для своих нужд, а жители Земли начнут осваивать Марс. Почему бы землянам при этом не использовать шагающие полуроботы? А возможно, удобнее будет направлять их действия и поступки с большого или очень большого расстояния, так что люди при этом будут оставаться в безопасной зоне?
      В последние годы предполагаемую область использования устройств типа экзоскелетон не ограничивают космосом. Есть сообщения о возможности на их базе строить шагающие манипуляторы, использовать их для подводных работ и исследований. Самое удивительное, что при этом фантазия начинает разыгрываться все больше не только у писателей-фантастов - людей, склонных в силу своей профессии представлять невозможное действительным. Ученые, инженеры, которым "по штату" положено фантазировать в самых скромных пределах, все чаше кажущееся невозможным делают практически осуществимым.
      БЕСЧУВСТВЕННЫЙ РОБОТ
      У КОНВЕЙЕРА И СТАНКА
      Вы видели когда-нибудь, как работает сборочный конвейер на автомобильном заводе? Как движется вдоль линии длиной в добрый километр с лишним сначала один только кузов автомобиля, как он по дороге обрастает десятками, сотнями, тысячами узлов, деталей, как со всех сторон, с боков и сверху на тележках и противнях, по транспортерам, установленным на полу, подвешенным к потолку, укрепленным на колоннах, поступают на сборку двигатели, трансмиссии и колеса, болты, гайки и прокладки, стекла, сиденья и задние мосты, рычаги, муфты, трубки? Не имеет смысла перечислять здесь и малую долю из сотен названий всего того, что нужно, чтобы с конвейера в конце концов сошел готовый автомобиль. Минута - автомобиль, еще минута еще автомобиль, автомобиль, автомобиль...
      Вы были на таком конвейере? Ну тогда вы, конечно, видели, что автомобиль собирают люди, много людей - операторов-сборщиков. Весь процесс сборки до самой мелочи расписан и "разрублен", поделен на операции, каждая операция поручена отдельному оператору, иногда двум операторам.
      "Минута - автомобиль" означает, что каждую минуту человек должен начать порученную ему операцию, а по истечении минуты закончить ее. Конвейер это вам не мастерская средневекового часовщика, который все делал сам. На конвейере специализация: минута - операция, еще минута - еще операция. Прошло два часа - десять минут отдыха, а затем: минута - операция, еще и еще.
      За минуту много не сделаешь. Можно установить пару колес, надев их на шпильки и затянув гайки; можно присоединить рычаги педалей газа и тормоза; можно протереть стекла салона, поставить сиденье... Каждая операция рассчитана на то, чтобы человек мог ее выполнить за минуту.
      Двигатели и колеса, кузова и задние мосты пришли на главный конвейер с других конвейеров, где их собирали из отдельных узлов и деталей. И там процессы сборки поделены на сравнительно простые, короткие операции: минута или две - операция, еще минута - операция... И там эти операции тоже выполняют люди - сборщики.
      Узлы и детали, поступившие на сборку, были изготовлены в цехах автомобильного завода и на других заводах: электроаппаратуры и пластмасс, резиновых изделий и стекла. А процессы их изготовления тоже "разрублены" на простые, короткие операции.
      Так же обстоит дело на заводах, где производят мотоциклы и велосипеды, телевизоры и радиоприемники, швейные машины и книги. И там процессы изготовления деталей и сборка узлов и изделий поделены на операции, на более короткие или менее короткие.
      Но, конечно, современное производство не средневековая мастерская, где все делалось руками. В наше время основную, тяжелую, трудоемкую работу по изготовлению деталей и изделий делают машины и автоматы.
      Однако невозможно построить одну такую машину или автоматическую линию, которая бы изготовила часы целиком, с начала до конца, совершенно без участия человека. Именно поэтому технологические процессы изготовления изделий, как и процессы сборки, поделены на операции, которые выполняют то люди, то машины.
      Теперь часы, все их части и детали проходят через десятки, сотни машин и рук, так же как через сотни машин и рук проходят детали и узлы автомобиля, телевизора, пылесоса.
      Миллионы разных деталей нужно обработать, миллионы разных операций нужно выполнить; обработать и выполнить их нужно миллионными "тиражами", чтобы произвести миллионы автомобилей, велосипедов, радиоприемников, других изделий массового производства, нужных миллионам людей.
      Множество других изделий надо выпускать меньшими "тиражами". Но во всех случаях для их производства нужны машины, а для обслуживания машин нужны люди! люди!
      Наш век - век автоматизации, но в то же время он век необычайного расширения производства. Автоматизация сделала уже много, чтобы освободить людей от тяжелых обязанностей по обслуживанию машин, но этого "много" еще очень мало, если учитывать потребности общества сегодня, а тем более завтра.
      Миллионы людей сегодня работают у машин, станков, конвейеров, выполняя однообразные операции, утомительные своей монотонностью, подчас требующие значительных физических усилий: установил заготовку, снял изделие операция, еще минута или две - еще операция, и еще.
      Машины становятся все более квалифицированными и наиболее сложную часть работы по изготовлению изделий выполняют автоматически. А человеческий труд, необходимый для их обслуживания, оказывается все более простым, менее квалифицированным. Чем шире развертывается механизированное и автоматизированное производство, тем большей оказывается потребность в таком труде - однообразном, утомительном.
      Нет, конечно, славная профессия квалифицированного токаря, который сам придумает и изготовит оправки и приспособления, "выведет" биение патрона, заточит резцы я на старом станке так обработает деталь, что пальчики оближешь, - это профессия не исчезла Но масса машин и автоматов сегодня требует такого обслуживания, когда неинтересную, однообразную часть работы приходится выполнять человеку.
      Не правда ли, это, по крайней мере с первого взгляда, кажется странным? Ведь если создают множество машин и автоматов, которые самостоятельно, без участия человека, производят множество сложных и точных операций, то, казалось бы, дополнить можно их и такими устройствами, которые выполняли бы и эти однообразные, утомительные операции автоматически Которые, например, сами брали бы заготовки, сами их как надо устанавливали, сами снимали затем готовые изделия. Почему же не строят машины с таким самообслуживанием?
      Все дело в том, что операции обслуживания машин, станков, различного оборудования, множество сборочных операций оказываются простыми, только когда их выполняет человек Если же их пытаются автоматизировать обычными традиционными методами и средствами, то в конечном счете система автоматизации получается либо очень специализированной, пригодной, например, для манипулирования только одним определенным видом изделия, что ограничивает универсальность самой машины, либо эта система, будучи более универсальной, оказывается очень сложной, подчас более сложной и дорогой, чем сама машина.
      Одним словом, действия и движения оператора при обслуживании машины настолько "человеческие", что для их автоматизации нужны специальные автоматы, роботы, или, как их называют, промышленные роботы.
      Множество производственных процессов складывается из циклически повторяющихся операций. Цикличность - закон машинного, автоматизированного производства. Робот, как любой другой автомат, также предназначен для выполнения циклически повторяющихся действий. В этом смысле у него полное "родство душ"
      с любой машиной, какую ему поручат обслуживать.
      Вместе с тем промышленный робот является системой универсального назначения. Его официальное название - автоматический манипулятор с программным управлением. В силу универсальности один и тот же робот можно использовать для обслуживания разных станков и машин, разных технологических процессов.
      И наконец, робот обладает тем, что отличает его ог всех других автоматов и что сближает его с человекомоператором, то есть механической рукой, которая умеет совершать движения и действия, похожие на человеческие.
      СМУТНЫЕ ПОНЯТИЯ ТЕХНОЛОГИИ
      Простая деталь - ступенчатый валик. Вот токарный станок, за которым работает токарь. Справа от него на полу стоит деревянный ящик с заготовками, лежащими в нем навалом. В заготовительном цехе их нарезали из круглой стали, обработали торцы так, чтобы заготовку можно было легко установить на станок. Слева от токаря, на инструментальном ящике, противень для обработанных валиков.
      Токарь, не глядя, берет заготовку из ящика, устанавливает в зажимное приспособление и включает станок. Когда обработка заканчивается, он выключает ста* нок, обработанное изделие кладет на противень.
      Лет 40 тому назад операции установки заготовки и снятия изделий были только побочными, вспомогательными. Токарь - квалифицированный мастер, специально обучавшийся своему делу в течение двух-трех лет, выполнял много других главных операций по управлению станком, по контролю точности его работы. О простых, вспомогательных операциях возникала речь, лишь когда вес заготовок достигал 10-20 килограммов и операции по установке и съему заготовок и изделий приходилось механизировать в соответствии с требованиями техники безопасности и охраны труда. Но все же без главного, без высокой квалификации мастера, было не обойтись! А тяжелый труд? Ничего, казалось, не поделаешь! Ведь не зря же токарь - лицо физического труда.
      Технологическая подготовка производства была предельно проста. Кончив обработку партии одних деталей, токарь шел к мастеру, и тот выдавал ему чертеж другой детали, партию которых ему поручалось обработать, и наряд, указывавший фамилию токаря, нормы времени.
      Все! Чертеж и наряд содержали полную информацию о том, что и как ему нужно делать дальше. В них содержались совершенно ясные токарю указания о порученной ему работе. И размеры изделия, и допуски, и твердость материала, и технические условия на "биение", "эксцентричность", "перекосы", и нормы и т. д. и т. п.
      Указаний о том, что токарь должен брать заготовки из ящика, устанавливать их на станок, снимать обработанные изделия, там не было. Документация адресовалась квалифицированному человеку, который любые указания на эту тему воспринял бы как глупую шутку недостойную внимания.
      Если к станку вместо человека становится автомат, дело выглядит совершенно по-другому. Еще тогда, когда промышленные роботы существовали только в воображении их создателей, в чертежах и исследованиях, стало ясно, что нельзя будет просто взять робот за его механическую руку, подвести к станку, вручить ему чертеж и наряд, уважительно, как человеку, сказать:
      "Ну, ПР-2816! Беритесь за дело, теперь на вас вся надежда!" - и спокойно уйти. Вы спокойно уйдете, а он будет спокойно стоять, ничего не делая!
      У средневекового мастера вся технология была в уме, а также в словах и в палке, с помощью которых он ее растолковывал нерадивым подмастерьям.
      50-40 лет назад для организации производства было достаточно маршрутной технологии, чертежей и нарядов. Ведь тогда вся документация адресовалась человеку, которому все было ясно!
      Ученик, подмастерье, мастер, любой человек обладает способностями понимать, запоминать, сопоставлять, учиться, использовать в трудовом процессе механизмы своего интеллекта. Каждое новое задание, новая работа обогащают, расширяют опыт, повышают квалификацию.
      Человеком управляет разум, человек работает "по-человечески". Чем больший опыт он накопит, тем более краткими и общими могут быть указания, тем более сложными - поручения. Он поймет и сделает.
      Когда к станку вместо человека становится робот, с ним по-человечески нельзя. Ничего не получится! Роботу нужна подробная программа работы, которую ему хотят поручить. В этом смысле манипулятор с программным управлением сродни станку с программным управлением.
      Ими, как всеми автоматами, управляет логика. Каждое новое задание нужно сопроводить подробной программой. Будь это задание десятым или сотым по счету - все равно! Задание нужно разработать во всех подробностях и записать в коде, понятном системе управления автомата, всем логическим цепям этой системы.
      Указания, которых было достаточно человеку, а также все то, что подразумевалось само собой разумеющимся и скрывалось между строками задания, - все это всплывает как совершенно смутные, неконкретные и недостаточно полные понятия технологии теперь, когда к станку становится робот. Даже когда это задание кажется совершенно простым.
      Взять заготовку и установить ее на станок? Позвольте! Откуда ее взять! На какую высоту ее нужно поднять? В каких направлениях переместить и на какие углы повернуть, чтобы она стала на место? С какими скоростями она должна двигаться и поворачиваться?
      Каким образом нужно установить захват, чтобы он мог удобно и точно взять заготовку? И по какой траектории его двигать, устанавливая заготовку?
      Вы сами видите, насколько "по-человечески" звучит фраза "установить заготовку", описывающая одну из технологических операций; настолько просто, что ее не имело смысла упоминать в документах. И в какое смутное понятие эта фраза превращается, когда надо автоматизировать "простую" операцию - какое множество дополнительных вопросов сразу возникает!
      Технологический процесс, в котором участвует человек, и полностью автоматизированный технологический процесс - это всегда два разных процесса, если даже оба они одинаковы по содержанию, оба, например, имеют назначением обработку ступенчатых валиков.
      Разработка каждой новой системы автоматизации сопряжена с необходимостью отвечать на многие вопросы. Но далеко не всегда эти вопросы оказываются такими "неожиданными" и сложными, а автоматизируемые операции настолько мало "пригодными" для этой цели, как при внедрении роботов.
      Когда создавались и внедрялись станки с программным управлением станки универсальной специализации, - возникало множество вопросов о том, как строить и рассчитывать программы движений инструмента и изделия. Однако все эти вопросы не были неожиданными. Руководством, отвечающим на них, служил чертеж, тот самый, которым руководствовался токарь. В чертеже содержится значительная часть необходимой информации; ее легко перевести в набор цифр, логических действий, записать в коде, понятном станку, как они были понятны человеку.
      Станки с цифровым управлением знаменовали важный, но только первый этап комплексной цифровой автоматизации производства. Они не исключили человека из технологического процесса, оставив на его долю "простые" операции, не требующие высокой квалификации, но самые "человеческие" по содержанию.
      Промышленный робот может завершить комплексную автоматизацию, освобождая человека от непосредственного участия в процессе производства, оставляя за ним лишь обязанности поддержания и обеспечения бесперебойной работы. На этом этапе автоматизации возникает ряд смутных понятий и вопросов, неожиданных потому, что ответов на них не было ни в какой технической документации и решить их можно было различными путями.
      РАЗУМ И ЛОГИКА
      А что касается процессов сборки, то они до сих пор в большинстве своем представляют собой такую область технологии, которая при любой попытке что-то автоматизировать оказывается полным-полна неясностей и неожиданных сложностей. Неспроста так низок уровень автоматизации этих процессов!
      Давайте проследим за тем, как человек осваивает какую-либо сборочную операцию; а вы в уме все время прикидывайте, как робот должен был бы выполнять эту операцию, какую программу действий надо ему подсказать.
      На конвейер пришел новичок. Его ставят на простую операцию; период обучения этой операции короток, но он не простая формальность, а необходимый этап достижения мастерства. Хотя у обучающегося есть все, что нужно для качественного и быстрого выполнения операции: детали, инструмент, приспособления, причем все это расположено наилучшим образом, все под руками, - все равно поначалу это непросто. Каждая операция рассчитана на квалифицированного оператора - это значит, что у него гайка на болт "наживляется"
      сразу, не перекашивается, не заедает; что, устанавливая в кузове автомобиля сиденье, оператор чувствует, когда и где нужно нажать, оттянуть, повернуть, чтобы оно правильно и быстро стало на место; что, присоединяя рычаги, он сумеет быстро найти нужное им положение.
      Всему нужно научиться, получить навыки.
      Ни в одной технологии вы не найдете указания,как наворачивать гайку на болт без перекоса, когда и где нужно нажать на сиденье, чтобы оно правильно стало на место. Считается само собой разумеющимся, что человек, осваивая операцию, будет думать, соображать, как ему удобнее, проще, быстрее выполнять эту операцию. Он сам для себя найдет и построит весь набор не* обходимых действий и движений, сам для себя разработает подробную программу операции, прочно уложит ее в свойственное ему подмножество движений (ведь вы знаете, что два оператора одну и ту же операцию будут делать по-разному, даже если они - вы и ваш папа).
      В период обучения мозг человека все время связан со всеми участками рабочего места. Он следит за движением конвейера, смотрит туда, откуда берет деталь, инструмент. Каждому движению предпосылает мысль, взгляд; каждый раз система управления этим движением - система с обратной связью охватывает много подробностей, много объектов. Движения поначалу получаются торопливыми, излишне размашистыми. Каждый раз надо задумываться: подчас не сразу понятно, то ли лучше шагнуть за движущимся конвейером, то ли согнуться, или просто вытянуть руки...
      Но вот процесс обучения окончен. Привычные движения очень экономны и не кажутся торопливыми. Глаза лишь иногда, и то мельком, оглядывают рабочее место.
      Обратные связи не нарушены, но система управления движениями значительно "укоротилась", стала оперативнее, требует минимального объема информации.
      Ощущения, что все в порядке, теперь приходят не только и не столько от зрения, сколько от других "чувств", скрытых в мышцах и сухожилиях, от скрытых там рецепторов, реагирующих на уровень возбуждения мышц, на растягивающие их усилия (опять темные мышечные чувства!). Теперь оператор действует так же точно и быстро, как все другие члены его бригады, участка, как все операторы главного конвейера.
      Вы последовали нашему совету? Следя за рассказом о процедуре обучения, вы прикидывали, насколько полезны все подробности в случае, если возникнет задача заменить человека у сборочного конвейера роботом?
      Вы не прикидывали, вам трудно? Специалисты по автоматизации очень даже прикидывали и прикидывают!
      Ученье - свет! Но этот "свет" не поддается количественному измерению, его нельзя перевести в числа, закодировать и "запомнить" в программе управления роботом. Для робота операции, которые выполняют операторы-сборщики, слишком "человеческие", люди не могут его им научить, они знают, что нужно сделать человеку, но во многих случаях не знают, как это должен делать робот.
      Один из первых кибернетиков, покойный ныне профессор Норберт Винер, в своей книге "Творец и робот"

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14