Современная электронная библиотека ModernLib.Net

Алгоритм изобретения

ModernLib.Net / Альтшуллер Г. / Алгоритм изобретения - Чтение (стр. 14)
Автор: Альтшуллер Г.
Жанр:

 

 


      Иногда спрашивают: что лучше - совершенствовать имеющуюся машину (способ) или искать нечто совершенно новое? С таким же успехом можно допытываться: что лучше - стрелять на пять метров или на пятьсот километров?…
      Все зависит от конкретных условий, и прежде всего от целей, которые ставит перед собой изобретатель или коллектив, решающий изобретательскую задачу. Если нужно, чтобы задача была решена как можно быстрее, то целесообразнее совершенствовать прототип. ИКР в этом случае формулируется так: «То, что есть, минус недостатки» или «То, что есть, плюс некоторое улучшение». При такой тактике задача решается сравнительно быстро (чаще всего на третьем уровне), а внедрение изобретения не вызывает особых трудностей. Если же нужно получить качественно новый эффект, целесообразнее сразу отказаться от прототипа, навязываемого условием задачи. Прототипом должна бытьидеальная машина(идеальный способ). Втаких случаях объектом в ИКР часто бывает «внешняя среда»: «Внешняя среда сама обеспечивает то-то и то-то». Слова «внешняя среда» помогают оторваться от старого, негодного прототипа и понять - что должна делать новая машина (новый способ), как она должна работать.
      Действуя подобным образом, можно прийти к идее четвертого-пятого уровней. Но и внедрение изобретения потребует в этом случае значительно большего времени. Приходится «с нуля» разрабатывать конструкцию, многократно испытывать и переделывать ее, преодолевать недоверие и сомнения тех, кто привык оставаться в рамках совершенствования старого прототипа.
      Оба пути хороши - в зависимости от конкретных обстоятельств. Но если вслед за Апдолжно идти не Ап+1,а Б\,то никакие попытки совершенствовать прототип (то есть изобретать, оставаясь в рамках Аи не переходя к ряду Б)не дадут положительного результата.
      Историки техники и патентоведы подметили, что, когда прототип молод, он быстро и легко изменяется: за короткое время появляется много изобретений, направленных на его улучшение. Наблюдается своего рода «патентный пик». На этой основе некоторые исследователи предлагали прогнозировать перспективы развития технических объектов: чем круче поднимается кривая выдачи патентов и авторских свидетельств, тем перспективнее рассматриваемый технический объект. К сожалению, когда ряд Ль Лг… подходит к Б,тоже возникает «патентный пик». Изобретатели напряженно работают, число изобретений быстро растет, но результаты почти неощутимы.
      Сейчас такой «патентный пик» наблюдается, например, в цементной промышленности. Современная цементная печь - гигантская вращающаяся труба (длина до 250 м, диаметр до7 м). Вдоль трубы медленно передвигается поток сырья, а над ним несутся раскаленные газы. Даже неспециалист может представить, насколько трудно передать тепло от газа к сырью: ведь газ соприкасается только с поверхностью сырьевого потока. Чтобы улучшить условия теплопередачи (от этого зависит производительность печи), давно было предложено навешивать внутри печи цепные завесы. Металлические цепи помогают переносу тепла от газа к сырью. После этого изобретения наступила пауза, тянувшаяся десятки лет. Если хотели улучшить теплопередачу, просто увеличивали количество цепей. В современной печи общий вес цепей свыше 100 тонн. И вот возник «патентный пик»: появился поток изобретений на тему «повесим цепи не так, а так»… «Цепная завеса выполнена с дополнительными цепями, закрепленными на основных цепях и свободно висящими между ними» (авторское свидетельство № 226453). «Концы цепей прикреплены к гибкому элементу, выполненному, например, из цепи» (260484). «Цепи другим концом прикреплены к корпусу печи» (310095). Цепи громоздятся на цепи, как когда-то, до изобретения парохода, паруса громоздились на паруса…
      Чем больше цепей будет в печи - тем большую долю тепла газов можно использовать. Но чем больше цепей - тем выше сопротивление движению газов. Чтобы газу было удобнее двигаться, цепей не должно быть вообще. А чтобы теплу удобнее было переходить от газа к сырью, все пространство печи должно быть заполнено цепями. Четко выраженное техническое противоречие! И если поток однотипных изобретений не справляется с противоречием, это верный признак, что возможности развития объекта (цепных завес) исчерпаны.
      Для изобретателя (а тем более для коллектива, решающего технические задачи на уровне изобретений) чрезвычайно важно иметь представление о логике развития технических объектов. Это необходимо для прогнозирования новых технических задач, для выбора между прямым и обходным путями решения, для правильного анализа задачи и успешной разработки найденной идеи.
      Технических объектов много, и они очень разнородны.
      Но есть нечто общее, присущее всем техническим объектам: все они являются системами. При системном подходе технические объекты рассматриваются как целостные организмы, подчиняющиеся общим законам развития. Карманный фонарик, двигатель, тепловоз, химический завод, речной транспорт - все это примеры технических систем. Внешне они нисколько не похожи друг на друга. Их объединяет то, что они системы, т. е. нечто большее, чем арифметическая сумма составных частей. Поясню аналогией. Молекула воды - система, а не арифметическая сумма двух атомов водорода и одного атома кислорода. Человек - система, а не простая сумма скелета, мышц, сердца и т. д. Точно так же любая машина - система, целостный организм, а не сумма частей.
      Всякая техническая система - будь то швейная машина, шахта или сеть железных дорог - развивается в определенной последовательности. В приложении 2 дана общая схема развития технических систем. Давайте разберемся в ней.
      История любой технической системы начинается с того, что… системы еще нет. Это первый - досистемный - уровень. Изобретатели понемногу совершенствуют отдельные элементы А, Б, В,хотя путем объединения элементов в систему можно получить новый эффект. Вот типичный пример. Чтобы сохранить корм, заготовленный на зиму для скота, нужно поддерживать определенную температуру. В корме выделяется тепло, приходится вентилировать и охлаждать кормохранилища; в этом направлении много лет работали изобретатели в разных странах. Есть патенты на сложные (и не очень надежные) системы поддержания заданного режима. А тем временем другие изобретатели создавали системы утепления и обогрева коровников, свинарников и т. д. Наконец, в авторском свидетельстве № 251801 появилась идея создания системы: «Сельскохозяйственная ферма, включающая помещение для содержания животных и башенные хранилища кормов, отличающаяся тем, что, с целью использования биотермического тепла кормохра-нилищ для улучшения микроклимата помещения при содержании животных, хранилища выполнены в виде линейного блока башен, встроенного в стену помещения для содержания животных». Система «кормохранилище и помещение для животных» обладает новым качеством: нет необходимости охлаждать корм и нагревать помещение.
      Когда система создана, она кажется естественной, очевидной. Но разглядеть будущую систему в разрозненных еще элементах - дело не такое простое. Здесь особенно нужно умение видеть проблему под углом зрения основных идей АРИЗ - я называю это аризным мышлением. Ободном таком случае рассказал изобретатель М. Шарапов в газете «Магнитогорский металл» за 26 апреля 1969 г.
      Для удаления золы и шлака, рассказывает М. Шарапов, на комбинате применялся гидротранспорт. При проектировании предполагалось, что трубы будут изнашиваться из-за трения. Для увеличения срока службы линии было решено через определенное время поворачивать трубы, а транспортируемый шлак предварительно измельчать на дробилках. Трубы, однако, не изнашивались, а, наоборот, зарастали. Возникла задача* как удалять твердую корку, образующуюся на стенках внутри труб? Ее отбивали -это была весьма трудоемкая работа. Корку пытались сдирать, пропуская по трубам воду с коксом. Ручного труда при этом не было, но на время прочистки трубы процесс приходилось останавливать.
      Зная методику решения изобретательских задач, Михаил Иванович Шарапов подошел к задаче иначе. ИКР очевиден труб.а должна очищаться сама Очевидно и другое: если борьба с вредным фактором оказывается безуспешной, целесообразно выбить клин клином, т е. устранить вредный фактор за счет сложения с другим вредным фактором. В самой трубе нет «другого вредного фактора». Следовательно, надо объединить трубу с чем-то, создать такую систему, в которой «минус на минус даст плюс». Самое простое - найти трубы, которые не зарастают, а изнашиваются Износ плюс зарастание дадут то, что требуется,- самоочистку. Найти изнашиваемые трубы оказалось легко: это были трубы для гидроудаления угольных отходов. Они изнашивались настолько сильно, что решено было вовсе отказаться от гидротранспорта и возить угольные отходы на автомашинах…
      Две линии труб шли рядом. Но одни специалисты боролись с зарастанием труб, используемых для удаления золы и шлака, и интересовались только этим. А другие специалисты боролись с износом труб, предназначенных для удаления угольных отходов, и тоже видели только свои трубы.
      Шарапов предложил (авторские свидетельства № 212672 и № 239752) пропускать гидросмеси поочередно. Сначала щелочная вода, несущая золу и шлак, создает на стенках трубы корку - защитный слой гарниссажа. Потом этот слой (а не металл трубы!) сдирается кислой водой, несущей угольные отходы. И в трубе снова создают слой гарниссажа… Можно транспортировать один вид материала, достаточно периодически менять щелочную воду на подкисленную, чередовать'нарастание корки и ее сдирание. Это изобретение сейчас успешно применяется на ряде предприятий.
      Итак, запомним: есличисло попыток усовершенствовать объект быстро растет, но вместо улучшения одно противоречиезаменяется другим, надо объединить объект с другими объектамив новуютехническую систему.
      Такой переход не всегда удается сразу, нередко из отдельных элементов сначала получается неустойчивая переходная система. На схеме (приложение 2) формулы таких систем условно взяты в круглые скобки, а формулы устойчивых систем - в квадратные скобки.
      Примером систем, переходных от первого уровня ко второму, могут служить неоднократно строившиеся в XIX веке подводные лодки с паровыми двигателями. Изобретателям казалось само собой разумеющимся, что надо применять самый совершенный двигатель. А таким двигателем тогда была паровая машина… Подбор элемента для включения в систему надо основывать не на совершенстве вообще (т. е. не на совокупности показателей), а на совершенстве главного для данной системы показателя. В подводной лодке таким показателем был запас энергии для подводного хода. В паровом котле не удавалось запасти сколько-нибудь* значительное количество пара и, следовательно, энергии. Несовершенный еще электродвигатель с тяжелыми батареями оказывался - по этому единственному показателю - более сильным. Система «подводная лодка и паровой двигатель» была неустойчивой; долгая жизнь ждала другую систему-«подводная лодка и электромотор с батареями».
      Иногда недостающий элемент системы может быть заменен человеком. Первые самоходные экипажи имели паровые двигатели, и это делало их тяжелыми, громоздкими, неработоспособными. Устойчивой системой второго уровня оказался велосипед, в котором вес двигателя был равен нулю…
      История техники знает множество неустойчивых систем, возникавших при переходе от второго уровня к третьему: весельный пароход, шагающий паровоз, оптический телеграф с машущими рычагами… Пытаясь заменить человека машиной (то есть перевести систему на третий уровень), изобретатели и по сей день нередко задерживаются на переходе 2-3: машина копирует действия человека, и это обусловлено не возможностями развития системы, а просто-напросто психологической инерцией. Порой такие изобретения по-своему изящны. Их общая беда - отсутствие существенных резервов для развития. Если прототипом оказывается такая система, почти всегда целесообразно не совершенствовать ее, а искать новый принцип действия.
      Третий и четвертый уровни - наиболее типичные для современной техники. Молодые системы третьего уровня универсальны, зрелые - специализированы (уровень З1), старые - излишне специализированы. Узкая специализация- верный признак необходимости перехода на новый^ уровень, коренной перестройки всей системы.
      Можно привести любопытный пример из стекольного производства. При изготовлении листового стекла раскаленная стеклянная лента поступает на валковый конвейер. Продвигаясь по этому конвейеру, она принимает требуемую форму и постепенно охлаждается. Понятно, что качество поверхности стекла зависит при этом от расстояния между валками. Если это расстояние велико, стеклянная лента будет прогибаться, станет волнистой. Чтобы получить гладкую поверхность, нужны валки возможно меньшего диаметра, тесно придвинутые друг к другу. Но такой конвейер будет сложным по устройству и капризным в эксплуатации. Мы снова встречаемся с четко выраженным техническим противоречием. Долгое время пытались обойти это противоречие, создавая специализированные линии для разных сортов стекла (есть сорта, которые не обязательно должны быть идеально плоскими) и оснащая заводы машинами, полирующими стекло после застывания. А потом было найдено поистине революционное решение.
      Начнем мысленно уменьшать диаметр валка: санти-
      метр, миллиметр, сотая доля миллиметра… Насколько же сложным должен быть конвейер с валками в сотую долю миллиметра! Вот вам психологический барьер: сотая доля миллиметра - страшно даже подумать, микрон или десятая доля микрона - совсем невообразимо… А если диаметр валка еще меньше? С молекулу или атом? Изготовить конвейер с валками диаметром в микрон практически невозможно. Но если диаметр валков соизмерим с диаметром атомов - все просто, потому что атомы не надо изготовлять. Пусть стекло катится по атомам, как по шарикам. Вместо конвейера - ванна расплавленного олова. Стеклянная лента движется по ровному слою атомов. И не надо строить конвейер, не надо регулировать и ремонтировать валки. Жидкий металл не только идеальный конвейер, но и послушный инструмент: с помощью электромагнитов поверхности металла (следовательно, и поверхности стекла) можно придать любую форму. Прекрасное изобретение! Оно сразу же породило «патентный пик». Уже выданы сотни патентов и авторских свидетельств на всевозможные стеклообра-батывающие ванны.
      Поднявшись на четвертый уровень, технические системы бурно растут, и в какой-*го момент их рост впервые приводит к конфликту с внешней средой.
      С древнейших времен техника формировалась, основываясь на том, что ей предоставляла природа. На нашей планете много воды и воздуха, поэтому техника наша насквозь «водная» и «воздушная»: вода и воздух были и остаются главнейшими технологическими инструментами. На нашей планете много кислорода -и техника наша «окислительная»: окислительные процессы были и остаются основой энергетики. На нашей планете много простора - и техника использовала и все еще использует открытые схемы:внешняя среда дает технической системе вещество и энергию, а техническая система выбрасывает во внешнюю среду отходы вещества и энергии, которые перерабатываются, уничтожаются внешней средой.
      Природа была Универсальным Очистным Блоком, автоматически подсоединяемым к любой новой технической системе. Универсальный Очистный Блок обладал огромной, казалось, безграничной избыточной мощностью… И вот сейчас, когда все большее число технических систем приближается к потолку четвертого уровня, Универсальный Очистный Блок начинает работать на пределе, в износном режиме.
      Конфликт между техникой и природой затрагивает глубочайшие, изначальные основы технической цивилизации. Чтобы преодолеть этот конфликт, нужно перейти от «водной» и «воздушной» техники к «безводной» «безвоздушной», «от «кислородной» - к «бескислородной», от открытых технических систем - к закрытым. Этот переход неизбежен еще и потому,, что человек вышел в космос, я если бы даже техника на Земле прекрасно уживалась с природой, космические условия все равно потребовали бы технических систем, рассчитанных на внеземные условия. Основу будущей техники составят закрытые системы. Их «закрытость» будет достигнута не за счет присоединения фильтров к уже имеющимся системам, а коренным изменением основ технологии. Здесь лежат не тронутые еще пласты изобретательских тем. Здесь скрыты проблемы, решение которых потребует великих изобретений.

ЧЕЛОВЕК К АЛГОРИТМ

      Мы расшатали ваши умственные фильтры , и в результате появился ответ . Метод сработал , он будет действенным всегда . Все , что необходимо сделать ,- -это избавиться от лишнего груза предрассудков , от окаменевшего мусора в голове , изменить произвольную настройку ваших умственных фильтров в отношении других вещей , которые вам всегда хотелось сделать , и тогда удастся найти нужный ответ на любую проблему , какую вы только пожелаете исследовать .
      Р . Д ж о у н с

 

ПСИХОЛОГИЧЕСКИЕ БАРЬЕРЫ

      На одном из семинаров по теории изобретательства слушателям была предложена такая задача:
      «Допустим, 300 электронов должны были несколькими группами перейти с одного энергетического уровня на другой. Но квантовый переход совершился числом групп на две меньшим, поэтому в каждую группу вошло на 5 электронов больше. Каково число электронных групп? Эта сложная проблема до сих пор не решена». Слушатели - высококвалифицированные инженеры - заявили, что они не берутся решать эту задачу:
      – Тут квантовая физика, а мы - производственники. Раз другим не удалось, нам подавно не удастся…
      Тогда я взял сборник задач по алгебре и прочитал текст задачи:
      «Для отправки 300 пионеров в лагерь было заказано несколько автобусов, но так как к назначенному сроку два автобуса не прибыли, то в каждый автобус посадили на 5 пионеров больше, чем предполагалось. Сколько автобусов было заказано?»
      Задача была решена мгновенно…
      Изобретательская задача почти всегда имеет устрашающую окраску. В любой математической задаче есть более или менее явственный подтекст: «Меня вполне можно решить. Такие задачи уже неоднократно решались». Если математическая задача «ие поддается», ни у кого не возникает мысли, что она вообще не решается. В задаче изобретательской подтекст совсем иной: «Меня уже пытались решать, да не вышло! Не зря умные люди считают, что тут ничего не поделаешь…»
      В журнале «Изобретатель и рационализатор» была опубликована статья, рассказывающая о проблеме разгрузки смерзшихся грузов. Автор статьи так представлял читателям эту проблему:
      «Одна из этих вековечных трудностей, вот уже много лет досаждавшая шахтерам и металлургам, железнодорожникам и коксохимикам,- разгрузка смерзающихся грузов. От нее зависит иногда «жизнь и смерть» целых предприятий…»
      Далее шло описание предложений, не нашедших применения («Меня уже пытались решать, да не вышло!»), и заканчивалась статья так:
      «Стремительно летит быстротекущее время. Раскрываются загадочные тайны атомного ядра, чуткие уши радиотелескопов внимают шепоту далеких галактик… А пока руду выгружают по-старому, всем миром наваливаясь на нее с ломами и кирками».
      С самого начала изобретатель предупрежден, что перед ним «одна из вековечных трудностей». Еще не изложена задача, еще ничего конкретного не сказано, а изобретателя всячески пугают. Ведь не всякий отважится взяться за устранение «вековечной трудности», да еще такой, которая не поддается даже тогда, когда «раскрываются загадочные тайны атомного ядра» и «чуткие уши радиотелескопов внимают шепоту далеких галактик»!
      Проблема разгрузки смерзшихся грузов действительно «вековечная». Однако «вековечная» не обязательно значит трудная. Случается, конечно, что длительное время проблему не удается решить, несмотря на многочисленные и правильно ведущиеся атаки. Но такие случаи чрезвычайно редки. Производство выдвигает лишь те задачи, для решения которых уже имеются условия. Маркс писал: «…человечество ставит себе всегда только такие задачи, которые оно может разрешить, так как при ближайшем рассмотрении всегда оказывается, что сама задача возникает лишь тогда, когда материальные условия ее решения уже существуют или, по крайней мере, находятся в процессе становления».
      Если в течение длительного времени задача остается нерешенной, то это значит, что само направление поисков выбрано неверно. В этом случае даже легкая задача вполне может стать «вековечной». Так, например, было с менисковым телескопом. Его могли изобрести, как подчеркивает Д. Д. Максутов, современники Декарта и Нью-
      тона, а сделано изобретение было только в эпоху, когда «чуткие уши радиотелескопов внимают шепоту далеких галактик»…
      Чем «вековечнее» задача, тем она обычно легче решается. В самом деле, когда задача появилась, уже были или создавались условия для ее решения. Каждая неудачная попытка решения уменьшала степень неопределенности задачи, сужала поле поисков. Шло время, степень трудности решения задачи уменьшалась, а арсенал техники непрерывно обогащался. Значит, изменилось соотношение сил: сама задача становилась легче, а средства ее решения росли, крепли. За редчайшим исключением, в технике нет задач, которые вообще (даже в будущем) не удалось бы решить. Невозможно нарушить основные законы природы - законы сохранения и законы диалектики, остальное если и невозможно, то лишь временно.
      * * *
      «Все, что человек способен представить в своем воображении, другие сумеют претворить в жизнь» - эти слова принадлежат Жюлю Верну. Действительно, история научной фантастики дает яркие примеры превращения «невозможного» в «возможное».
      В делом получается такая картина:
      ???? Сбылось или обязательно сбудется в ближайшее время а фантастических идей Подтверди- отняли^ лась принци- сказались пиальная ошибочными осуществинии иеосу* мость ществнмьадв
      ???? Кол* во % Кол-во % Кол-во %
      ???? 108 64 59 34 32 10 9
      ???? 86 57 66 20 23 9 11
      ???? 50 21 42 26 52 3 6
      Столетняя история научной фантастики свидетельствует: у смелыхидей большая вероятность осуществления, чем у идей осторожных.
      Придуманный Ж. Верном артиллерийский способ за пуска космических снарядов считался классическим примером «невозможного». И все-таки молодой ученый из университета в Монреале Джеральд Гоулл объявил о возможности использовать пушку для космических исследований.
      По сравнению с достижениями ракетной космонавтики- запуском многотонных спутников, выходом человека в открытый космос, полетами на Луну - стрельба из жюльверновской пушки выглядит, конечно, не слишком внушительно. Однако у «пушечной космонавтики» неплохие перспективы: ведь на один пилотируемый аппарат приходятся десятки беспилотных, которые проще и эффективнее запускать жюльверновским способом.
      В печати появилось сообщение, что группа американских специалистов совместно с канадскими инженерами занялась разработкой проекта «Харп». Этим проектом предусматривается использовать для зондирования атмосферы артиллерийские орудия с диаметром ствола 127, 178 и 406 мм.
      Закончено проектирование орудия с длиной ствола около 150 м. Вес его - 3 тыс. т, диаметр ствола - 814 мм. По расчетам разработчиков, с помощью этого орудия можно будет посылать контейнеры с аппаратурой весом около 7,5 т на высоту нескольких сот километров или выводить на орбиту вокруг Земли спутник весом 0,5 т. Стоимость вывода спутника составит всего 50 тыс, долларов, включая стоимость самого спутника.
      Словом, если бы идею Ж. Верна не считали заведомо неосуществимой, то, возможно, еще в 20-е годы удалось бы вывести на орбиту искусственные спутники весом в несколько десятков килограммов…
      Тут стоит напомнить, что и ракетные космические корабли могли бы появиться несколько раньше. Но не без оснований выдающийся советский исследователь Юрий Васильевич Кондратюк писал в 1928 году: «Перебирая в уме удивительные достижения науки и техники последних лет, невольно задаваясь вопросом, почему не решена на практике до сих пор задача межпланетных сообщений… приходишь к выводу: от недостатка дерзости и инициативы…» *
      Недостаток дерзости и инициативы задержал и появ* ление квантовых генераторов. Идея направленного теплового луча была высказана Г. Уэллсом в 1898 году. 21 год спустя А. Эйнштейн дал теоретическое обоснование физических процессов, делающих возможным создание квантовых генераторов. Лазеры, по мнению Ч. Таун-са, могли появиться в конце 20-х годов. В 1951 году советский ученый В. Фабрикант подал заявку на квантовый генератор и… получил отказ: экспертиза сочла идею изобретения неосуществимой. Впоследствии экспертам пришлось пересмотреть это решение: изобретатель получил авторское свидетельство…
      Близка к осуществлению и «невероятная» идея Александра Беляева о человеке-амфибии. Любопытно проследить, как постепенно менялась оценка этой идеи. Вот три высказывания, опубликованные в разное время одним и тем же человеком - инженером, автором нескольких изобретений.
       1958 год:«…не люди-амфибии, а люди, вооруженные аппаратами для подводных спусков и плаваний, освоят неизведанные глубины».
       1965 год:«Амфибий еще нет, может быть, их и ие будет…»
       1967 год:«Сейчас человек пробует без акваланга опускаться на большие глубины, дышать под водой, как дышат киты. И не появятся ли когда-нибудь созданные с участием химии, техники и медицины настоящие Ихтиан-дры? Море покорится этим людям, для которых воздух и вода станут одинаково привычными стихиями».
      Меньше чем за десятилетие в корне изменилась оценка «невероятной» идеи! Теперь эта оценка значительно ближе к истине.
      Нерешимых задач нет, но тем не менее история изобретения чаще всего начинается с того, что кто-то говорит: «Невозможно!»
      Нет ни одного сколько-нибудь значительного изобретения, по поводу которого в свое время не было бы сказано «невозможно».
      Причины, заставляющие говорить «невозможно», и доказательства невозможности бывают самые различные. Иногда действует простое невежество. Так, в 20-х годах прошлого столетия, когда уже были построены десятки паровозов, влиятельный английский журнал «Куортерли Ревью» утверждал: «Нет ничего более смешного и глупого, чем обещание построить паровоз, который двигался бы в два раза быстрее почтовой кареты. Так же маловероятно, впрочем, что англичане доверят свою жизиь такой машине, как и то, ч'то они дадут себя добровольно взорвать на ракете».
      Вскоре паровоз Стефенсона «Ракета» провел пассажирский состав со скоростью около сорока километров в час…
      Когда изобретатель телефона Грэхэм Белл начал продажу своих аппаратов, одна из американских газет потребовала, чтобы полиция положила конец «шарлатанскому выманиванию денег из карманов доверчивой публики». Газета заявила: «Утверждение, что человеческий голос можно передать по обычному металлическому про* воду с одного на другое место, является в высшей степени смешным…»
      И все-таки невежество не главная причина, заставляющая говорить «невозможно». Чаще всего это говорят люди, которых никак нельзя заподозрить в невежестве. В воспоминаниях О. Пикара, изобретателя стратостата и батискафа, есть такие строки: «Специалисты того времени находили мои предложения неосуществимыми. То, что теперь для нас элементарно, тогда казалось утопией. Единственным возражением, которое выдвигали против меня, было: «все это до сих пор не существует». Как много раз приходилось мне слышать соображения такого рода…»
      * * *
      Что же побуждает знающего и вообще нисколько не консервативного человека не верить в новое?
      Вот характерный пример. Несколько лет назад один из крупных специалистов по автомобилестроению писал; «Допустим, нужно определить диаметр колеса будущего автомобиля. Уже известно, что из года в год наблюдается сокращение диаметра: взяв колеса разных автомобилей за 50 лет, можно увидеть, что уменьшение их становится все менее заметным: приближается момент, когда оно и вовсе остановится. Однако был короткий период, в течение которого диаметр колеса резко сократился; если ограничиться изучением только этого периода, можно прийти к неправильному выводу: диаметр колеса через 20 лет дойдет до нуля!»
      Внимательно проследите за ходом этого рассуждения. Исходная мысль абсолютно правильная: диаметр автомобильных колес из года в год уменьшается, и, зная эту тенденцию, можно заглянуть в будущее. Далее идет логический вывод: наступит момент, когда машина вообще лишится колес. Тут-то и появляется «невозможно». Во-первых, как так - автомобиль без колес, ведь «это до сих пор не существует!» Во-вторых, уменьшение диаметра колес становится все менее заметным. Значит, «невозможно»…
      Попробуем, однако, разобраться в этих доводах.
      Действительно, бесколесных автомобилей раньше не было. И мы к этому настолько привыкли, что трудно представить себе автомобиль, висящий над дорогой «без ничего». Но это еще не основание для категорического «невозможно». Просто мы не знаем, как это осуществить, хотя вообще очень заманчиво избавиться от колёс. Ведь они играют чисто служебную роль. Следовательно, стремление к уменьшению диаметра колес - тенденция отнюдь не случайная, и нельзя ожидать, что она сойдет на нет. Правда, колеса ниже какого-то предела практически не могут уменьшаться. Сам принцип, заложенный в конструкции колесного автомобиля, вступает в противоречие с тенденциями автомобилестроения.
      История техники знает множество случаев, когда та или иная конструкция «не хотела» продолжать развиваться. Исход всегда был один - от такой конструкции отказывались. И если колеса автомобиля тоже пришли в противоречие прогрессивной технической тенденции, значит, пора подумать о бесколесном автомобиле.
      Вывод этот полностью подтверждается практикой. Диаметр колеса, как это ни казалось невероятным, дошел до нуля: появились автомобили на воздушной подушке.
      В развитии техники сочетаются два пути - эволюционный (в пределах одного уровня) и революционный (переход с одного уровня на другой). Схематически это развитие можно представить в виде ломаной линии с большим числом поворотов. Узкий специалист хорошо видит
      направление одного отрезка. Думая о будущем, он сщд*иен видеть это будущее развитием настоящего, он как бы мысленно продолжает конечный отрезок линии.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17