— Это уж ты сам выясняй, — отвечала Таня. — А теперь нам и вправду пора в кино.
— В кино, в кино! — захлопал в ладоши Нулик. — Тамошний брегет, наверное, вот-вот зазвонит…
— Ба! — встрепенулся Сева. — А про брегет-то мы и забыли. Тут наш Магистр опять малость оплошал. А может, и не он, а хозяин кафе. Где это он нашёл у Пушкина «желудок — верный наш брегет»?
— Как — где? — удивился я. — В «Евгении Онегине», конечно.
— Что-то не помню! — пробурчал Сева. — Есть там «пока недремлющий брегет, не позвонит ему обед»… Есть «но зов брегета им доносит, что новый начался балет».
— Правильно, — кивнул я, — только это строчки из первой главы. А «желудок — верный наш брегет» — из пятой. Так что на сей раз Магистр ничего не напутал.
— Вот мы говорим «брегет, брегет», — сказал Нулик, надевая пальто, — а что это такое?
— Всего лишь старинные часы со звоном. И называются они так по имени их изобретателя, парижского часовых дел мастера Брегета.
— Товарищи! — закричал президент. — Прошу! Умоляю! Поторопитесь! Зов брегета нам доносит, что новый начался сеанс.
Ну и память у этого малыша! Только раз слышал, а уже запомнил, да ещё перекроил на свой лад! Поистине волшебное дитя!
А в кино в тот день мы всё-таки опоздали и хроники не видели. Нулик по этому поводу выдал на-гора историческую фразу: «Заниматься наукой надо в свободное от кино время!»
РЕПОРТАЖ РАССЕЯННОГО МАГИСТРА
2 Марко 2
Международный автобус мчит нас с Единичкой в Сьеррахимеру. Драгоценный конверт в наших руках, и, следовательно, разгадка тайны исчезнувшей марки близка. Но недаром говорят: близок локоть, да не укусишь… От избытка предположений у меня лопается голова, и чтобы она действительно не лопнула, Единичка придумала небольшую разрядку.
— Как вы думаете, — спросила она, — чего больше: целых положительных чисел или их квадратов?
Это было так неожиданно, что я сразу и не понял, чего она от меня хочет, но тут же рассмеялся и ответил на её более чем детский вопрос:
— Разумеется, целых положительных чисел значительно больше, чем их квадратов.
Для наглядности я написал на бумажке последовательные квадраты натурального ряда чисел: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961.
— Взгляни сюда, — сказал я Единичке, — видишь, как редко встречаются в натуральном ряду квадраты целых чисел! Поначалу они расположены ещё более или менее близко: 1, 4, 9, 16, 25, 36… Но чем дальше, тем они реже. Вот, например, в третьей сотне первый квадрат 225, за ним сразу следует 256, потом 289. А в десятой сотне квадраты встречаются и того реже. Их всего два: 900 и 961. Теперь представь себе десяти — или стозначные квадраты, — между ближайшими из них такие расстояния, что от одного до другого нужно лететь самолётом. Так что тут и двух мнений быть не может: квадратов куда меньше, чем натуральных чисел.
Единичка, надо ей отдать справедливость, слушала меня не перебивая, но затем сказала:
— А по-моему, раз каждое целое число можно возвести в квадрат, значит, чисел и их квадратов совершенно одинаковое количество.
Ну и характерец! Знает ведь, что неправа, а всё-таки спорит.
— Что с того, что у каждого числа есть свой квадрат? — возмутился я. — Выкинь из натурального ряда все числа, представляющие собой квадраты, и ты увидишь, как мало пробелов образуется в этом ряду. Нет, квадраты твои просто тонут в общей куче чисел. И не спорь, пожалуйста!
— А я и не спорю, — хладнокровно сказала Единичка, — я только пытаюсь понять, в чём тут загвоздка. Допустим, я не стану выбрасывать квадраты, как предлагаете вы, а подпишу их по порядку под каждым числом натурального ряда: под единицей — единицу, под двойкой — четвёрку, под тройкой — девятку, под четвёркой — 16 и так далее.
1 2 3 4 5 6 7 8…
1 4 9 16 25 36 49 64…
Таким образом под каждым целым числом будет стоять его квадрат, и, стало быть, квадратов столько же, сколько целых чисел. Правда ведь?
— Не пытайся меня запутать! — вспылил я. — И вообще прекратим эту бесплодную дискуссию.
— Пожалуйста, — пожала плечами Единичка. — Но ведь от этого целых чисел не станет больше, чем их квадратов…
Ещё секунда — и я сразил бы её неоспоримым аргументом, но тут как раз автобус остановился у городских ворот, над которыми красовалась надпись: «Сьеррахимера». Чуть пониже белела табличка, оповещающая всех и вся, что вход и въезд в Сьеррахимеру посторонним воспрещён. Мы так и сели! Для чего же, спрашивается, надо было мчаться сюда сломя голову? И что теперь делать с конвертом? Как передать его пресловутому Кактусу? Ответа на это не было. В довершение всех бед, автобус, высадив нас, тотчас развернулся и как ни в чём не бывало укатил обратно в Сьеррадромадеру, а мы с Единичкой остались перед наглухо запертой решёткой.
— Голубчик, — обратился я к стоявшему у ворот часовому, — не скажете ли, отчего нас не пускают?
Ответ был столь же краток, сколь и неубедителен:
— Не велено!
— Это я и сам прочитал. Но по какой причине? — допытывался я.
— А по той, что вот уже восемь месяцев и двенадцать дней их превосходительство вице-губернатор решают задачу, которую задал им один проходимец. Решают, решают, да все без толку. А проходимец возьми да и скройся! Вот и приказано никого не пускать, пока задача не решится.
Услыхав это, я сразу понял, что не все потеряно.
— Мы спасены! — шепнул я Единичке и, приняв внушительный вид, сказал часовому: — Немедленно доложите вашему правителю, что дело его в шляпе, потому что ко двору его пожаловал сам Магистр Рассеянных Наук. А где Магистр, там нерешённых задач не бывает!
Слова мои, видимо, произвели на часового известное впечатление. Он тут же позвонил в комендатуру и попросил доложить о нас вице-губернатору.
Пока мы стоим и ждём ответа, позвольте рассказать вам о необыкновенном конверте, лежащем в моём рюкзаке, а главное — о великом открытии, сделанном Единичкой. Как вам уже известно, конверт был вскрыт и, кроме того, пуст. Поначалу это нас и озадачило и огорчило. Но тут Единичке пришло в голову обратить внимание на марку, наклеенную в правом верхнем углу конверта. И что бы вы думали? Только не падайте в обморок от неожиданности! Это была та самая марка, за которой мы с Единичкой гоняемся по всем террам и сьеррам, какие только существуют на белом свете! Да, да, та самая марка, на которой вместо Христофора Колумба изображён Марко Поло! Марка, сохранившаяся всего лишь в двух экземплярах, один из которых украден!
Ну вот, сенсационное сообщение сделано, теперь, пожалуй, самое время заняться логическими выкладками. Марка украдена. Марка, лежащая в сейфе Джерамини-младшего, исчезла. Но эта же марка наклеена на конверт, который Джерамини посылает некоему Кактусу. Обстоятельство более чем странное. Выходит, Джерамини украл марку сам у себя… Но зачем?
На этом месте я вынужден прервать свои рассуждения, так как мы с Единичкой отправляемся на индульгенцию к вице-губернатору Сьеррахимеры… Как видите, имя Магистра Рассеянных Наук сделало своё дело: нас ждут, и с не-тёр-пе-ни-ем!
Итак, как говорят французы, вернёмся к нашим баранам, то есть я хотел сказать — к нашему губернатору. Когда нас ввели в роскошный дворцовый парк, губернатор сидел под шёлковым, затканным диковинными цветами и птицами балдахином и смотрел себе под ноги. Я подошёл поближе, чтобы приветствовать его, но он даже не поднял головы. Я кашлянул — никакого впечатления. В чём дело? Слепой он, что ли? Или, чего доброго, глухой? Тогда я подошёл ещё ближе и приготовился отвесить неразговорчивому правителю классический испанский поклон — совсем как в театре! Но тут он взвился как ужаленный и завизжал:
— Стоп! Ни с места!
— Что случилось? — спросил я, испуганно попятившись и, надо сказать, весьма обескураженный таким нелюбезным приёмом.
Губернатор схватился за голову.
— Он ещё спрашивает! Разве вы не видите, что чуть не наступили на задачу?!
Я посмотрел вниз и увидал полукруг из листового золота диаметром эдак сантиметров пятьдесят. Ничего себе задачки предлагают в этой стране! Подумать только, сколько драгоценного металла ушло на эту штуковину…
— Так это и есть ваша задача? — спросил я. — А в чём она заключается?
Тут наконец губернатор впервые обратил ко мне свои ясные очи, в которых сверкало откровенное злорадство.
— О, задача хитрая! На мой взгляд, даже чересчур. Но вы ведь, кажется, похвалялись её решить?
— Да, ваше вице-губернаторство, — подтвердил я скромно, но твёрдо.
— Для вашего же блага советую вам сдержать обещание, иначе придётся вам познакомиться с обитателем вон той клетки.
Я посмотрел в указанном направлении и увидел невдалеке большую, полускрытую зеленью клетку, откуда доносились какие-то странные звуки: рёв, блеяние, шипение… Мне, признаться, сразу стало как-то неуютно. Не то чтобы я усомнился в своих математических способностях, но решать задачи приятнее, знаете ли, в более миролюбивой обстановке. Однако я и вида не подал, что взволнован, и попросил моего мучителя изложить существо задачи.
— Извольте, — сказал он. — Вот вам золотой полукруг. Надо провести в нём мелом одну, да, да — одну-единственную линию, но так, чтобы она разделила его на две части, из которых большая равна квадрату радиуса этого полукруга.
— Но это же квадратура круга! — воскликнул я, похолодев. — А квадратура круга, все знают, — задача неразрешимая.
— Тем хуже для вас, — усмехнулся правитель и хотел хлопнуть в ладоши, чтобы позвать стражу.
Но тут в саду отчётливо прозвучал спокойный голосок Единички:
— Повремените, ваша светлость! Магистр пошутил. Он отлично знает, что ваша задача не имеет ничего общего с квадратурой круга. Дайте мне линейку и циркуль, и я вам докажу, что задачу эту может решить не только Магистр Рассеянных Наук, но даже его ученица.
Вице-губернатор оторопел.
— Ты? Ты — от горшка два вершка… Советую тебе оставить эту затею. Кстати, учти, что, решая эту задачу, можно пользоваться только циркулем. Линейки не полагается.
Душа у меня снова ушла в пятки. Единичка тоже, казалось, призадумалась, но потом внимательно взглянула на полукруг и улыбнулась.
— Как же я сразу не заметила, что на полукруге имеются две отметины! — сказала она с облегчением. — Одна — посередине диаметра, другая — посередине дуги. Где циркуль, ваша светлость? Велите подать его сюда.
Принесли большой школьный циркуль. Единичка вставила в него мелок, сделала с его помощью какие-то засечки, потом описала жирную дугу и торжествующе отбросила циркуль в сторону.
— Вот и всё! Большая отделённая мною часть полукруга в точности равна квадрату его радиуса.
Признаться, у меня не было уверенности в Единичкиной правоте. К сожалению, не было её и у вице-губернатора: он строгим голосом потребовал доказательств. И что бы вы думали? Единичка представила их незамедлительно!
И тут произошло нечто необычайное. Вице-губернатор прослезился от счастья, опустился перед Единичкой на одно колено и предложил ей остаться у него в должности главного математика! Разумеется, дорогая моя спутница любезно отказалась от этой чести, отговорившись тем, что ей сперва нужно окончить десятилетку.
— В таком случае, — воскликнул губернатор, — я буду ждать сколько угодно! Даже если вам вздумается сидеть в каждом классе по два года.
— Надеюсь, этого не случится! — засмеялась счастливая Единичка.
Но восхищённый правитель Сьеррахимеры никак не хотел отказать себе в удовольствии отблагодарить её, если не по-царски, то по крайней мере по-губернаторски.
— Раз уж нельзя вам оставаться здесь, — сказал он, — так разрешите мне сделать вам достойный подарок. Примите от меня это сверкающее золотое полукружие, чтобы блеск его всю жизнь напоминал вам о вашей блестящей победе.
Единичка церемонно присела (и откуда только у неё эти придворные манеры?).
— Слов нет, ваша милость, подарок действительно блестящий. Но, право же, золото мне ни к чему. Что я стану делать с таким огромным богатством?
— Было бы богатство, а уж истратить его — дело нехитрое! — засмеялся губернатор.
Но Единичка упрямо стояла на своём.
— Вижу, отблагодарить вас не так-то просто, — сказал наконец озадаченный вельможа. — Что ж, будь по-вашему. Не стану больше навязывать вам драгоценности. На сей раз я предложу вам редкость. Да, редкость, которую я недавно приобрёл за 350 тысяч колумбов — не более и не менее!
350 тысяч колумбов! Где-то я уже слышал эти слова. В голове моей возникли какие-то смутные воспоминания. Я хотел сказать об этом, но Единичка пребольно ущипнула меня за руку и заявила своему высочайшему благодетелю, что ей не терпится взглянуть на таинственную диковину.
Стоит ли говорить, что мы испытали, когда открыли принесённую по знаку губернатора шкатулку и увидали… Ах, что мы увидали! На алой бархатной подушечке лежала она — знакомая вам уникальная марка!
Только я собрался удивить губернатора, показав ему родную сестрицу его филателистической редкости, как Единичка ущипнула меня ещё больней, чем в первый раз, и заговорила сама:
— Увы, ваша светлость, я и на этот раз должна отказаться от подарка.
— Но почему?! — взревел изнемогающий от избытка благодарности губернатор.
Единичка скромно потупилась.
— Не хочу вас обижать, но дело в том, что на всём свете существуют только две такие марки.
— Ну да, — подтвердил губернатор, — одна в Терранигугу, вторая в Сьерранибумбуме.
— Почти так, — осторожно возразила Единичка, — потому что марка, хранившаяся в Терранигугу, недавно украдена.
Не может быть! — вскричал вице-губернатор, страшно побледнев. — Я об этом ничего не знал!
— Не мудрено, ваша светлость, — сказал я, — ведь уже восемь месяцев и двенадцать дней, как в Сьеррахимеру нет доступа никому со стороны!
— В самом деле, — пробормотал губернатор. — Неужели, воспользовавшись моим неведением, мне продали краденую марку?
— Судя по всему, ваша марка не из Терранигугу, — задумчиво сказала Единичка.
Губернатор вздохнул с облегчением:
— Слава богу! Значит, мне продали ту, что хранилась в Сьерранибумбуме.
— Скорей всего, так. Вопрос в том, с ведома ли владельца…
— Вы хотите сказать, что и эта марка краденая?! — снова ужаснулся губернатор.
Единичка уклончиво потупилась.
— Как знать…
— Сейчас мы это выясним! — Губернатор решительно хлопнул в ладоши. — Немедленно позвать сюда синьора Кактуса! Он продал — он пусть и отвечает!
Услыхав знакомое имя, я так и подскочил на месте, а Единичка разом забыла свои великосветские выкрутасы и затрубила что-то свирепое и воинственное. Точно она дикий индеец и собирается оскальпировать этого Кактуса… Однако увидеть его нам все же не довелось. Посланный за ним слуга вернулся один и доложил, что синьор Кактус срочно покинул Сьеррахимеру. Автомобиль его видели на шоссе, ведущем в Сьерранибумбум.
— Урррра!.. — заорал я и, подхватив Единичку, закружился с ней в неистовом танце.
— Не понимаю, чему вы радуетесь? — спросил сбитый с толку губернатор.
Чему я радуюсь? Ну, этого я ему не скажу… Но вы-то, конечно, понимаете, в чём дело! Теперь у меня все основания думать, что Кактус украл марку у синьора Альбертини и помчался заметать следы. Правда, есть тут и некая неувязка, потому что тот же Кактус каким-то образом связан с синьором Джерамини… Да, клубок снова запутывается. И всё же гордиева петля вокруг шеи преступника стягивается все туже…
— Скорей отделывайся от губернатора! — шепнул я Единичке. — Мы срочно едем в Сьерранибумбум!
ДВАДЦАТЬ ШЕСТОЕ ЗАСЕДАНИЕ КРМ
возглавлял, против обыкновения, не Нулик, а Олег: во время похода в кино президент проявил излишний интерес к мороженому и совершенно обезголосел. Изо рта у него вырывались сплошные шипящие и хрипящие, что, впрочем, не мешало ему оставаться заядлым спорщиком.
Только Олег позвонил в колокольчик и открыл заседание словами: «Итак, вернёмся к нашим баранам!», как президент, хрипя и давясь, заявил, что не позволит оскорблять Магистра и Единичку.
— Действительно неудобно как-то, — поддержала его Таня. — Ну при чём тут бараны? Помнится, Магистр сам сказал что-то такое. Но относилось это к губернатору…
— Да не к губернатору оно относилось, — возразил Сева. — «Вернёмся к нашим баранам» говорят тогда, когда хотят вернуться к существу дела.
— Объяснение точное, — подтвердил я. — Остаётся выяснить, откуда пошло это иносказательное выражение.
— Понятия не имею, — честно признался Сева.
— Беда поправимая, — сказал я. — Есть такая весёлая французская пьеска «Адвокат Патлен». Появилась она давным-давно, в шестнадцатом веке. Действие происходит в суде. Слушается дело о баранах. Хитрый адвокат Патлен всё время старается запутать ясный вопрос и отвлечь от него внимание судьи. А замороченный судья то и дело восклицает: «Вернёмся же к нашим баранам!»
— Забавная, наверное, сценка! Интересно, кто её написал?
— То-то и дело, что автор неизвестен.
— Автор неизвестен, автора давным-давно нет, а бараны его все живут, — философствовал Нулик.
— По этому случаю вернёмся наконец к нашим баранам, — предложил я. — Первым долгом обсудим вопрос Единички: чего больше — натуральных чисел или их квадратов?
— Но Единичка уже ответила на него! — возразила Таня. — И Магистру вряд ли удастся её опровергнуть.
— Между прочим, — напомнил Олег, — этим вопросом мы уже занимались. В прошлом году, когда говорили о множествах…
— А ведь верно! — сказала Таня. — Вопрос Единички и в самом деле касается множеств…
— Притом бесконечных множеств, — уточнил Сева. — И Единичка, конечно же, права: раз каждое число натурального ряда можно возвести в квадрат, значит, квадратов существует ровно столько, сколько натуральных чисел, то есть бесконечное множество.
— Надо сказать, Единичка доказала это очень простым способом, — вмешался я. — Над каждым квадратом она надписала его порядковый номер, то есть попросту пересчитала их. Недаром множества, которые можно перенумеровать, называются счётными.
— А разве есть множества, которые пересчитать нельзя? — спросил Нулик.
— Конечно. Вот, например, множество точек на отрезке прямой. Оно несчётное, хотя количество точек на любых отрезках прямой всегда одинаково.
— Как же так? — прошептал Нулик, окончательно потеряв голос от изумления.
— Вот так. Где, по-твоему, точек больше: на средней линии треугольника или на его основании?
— Что за вопрос! — фыркнул Нулик. — Конечно, на основании! Ведь оно вдвое длиннее средней линии.
— Не угадал. Пусть средняя линия вдвое меньше основания, а точек и тут и там совершенно одинаковое множество.
Я нарисовал треугольник, начертил его среднюю линию и провёл из вершины с десяток лучей, которые пересекли и среднюю линию и основание.
— Как видишь, каждый луч, пересекающий среднюю линию, непременно пересечёт и основание треугольника. Таких лучей я могу провести сколько угодно через любую точку средней линии. А раз так, значит, любой точке средней линии непременно соответствует какая-нибудь точка основания. Стало быть, множество точек и тут и там одинаково. Вот что бывает, когда имеешь дело с бесконечными несчётными множествами. Здесь сплошь да рядом часть равна целому.
— Ну и фокус! — выдохнул Сева.
— В бесконечности такие фокусы — дело обычное.
— Да, с бесконечностью лучше не связываться, — сказал Нулик. — И вообще пора нам отправляться на индульгенцию к вице-губернатору.
— А может, всё-таки на аудиенцию? — подмигнул Сева.
— Все остришь, да зря, — остановила его Таня. — Он ни того, ни другого не знает.
— Ничего, сейчас мы его просветим. Индульгенция, дорогой президент, слово латинское. В прямом значении это милость, а вообще-то так называется у католиков церковная грамота об отпущении грехов. Вот, например, натворил ты что-нибудь и хочешь искупить свою вину. Ступай к священнику да не забудь денег прихватить — и отпущение тебе обеспечено.
— А если денег у меня нет?
— Нет, так и ходи непрощенный.
— Ну и ладно! — неожиданно рассвирепел Нулик. — Не надо мне такой индульгенции!
— Мне тоже, — серьёзно согласился Олег. — Откупаться от грехов деньгами, это не для нас с тобой! Правда, Нулик? Мы люди порядочные. Махнём-ка лучше на приём, то бишь на аудиенцию к губернатору, и займёмся задачей о золотом полукруге.
Но президента, видимо, такая перспектива не слишком устраивала. Он вдруг безмолвно замотал головой, указывая пальцем на своё горло.
— А ещё порядочный человек! — потешалась Таня. — Спорить у него голоса хватает, а как надо задачу решать — так нет его!
Она взяла циркуль, линейку, вычертила на бумаге полукруг и сделала на нём две отметки: одну посередине диаметра, другую посередине полуокружности.
— Явное нарушение! — не выдержал президент. — Во-первых, решать задачу с помощью линейки по условию нельзя, а во-вторых, полукруг должен быть золотой.
— Во-первых, — весело передразнила Таня, — обойдёшься и нарисованным полукругом. Во-вторых, к решению я ещё только приступаю. Значит, так. Требуется отделить от полукруга часть, равновеликую квадрату, сторона которого равна радиусу полукруга.
— А это и есть квадратура круга! — запрыгал на одной ножке Нулик.
— Так думает Магистр, — возразила Таня. — И он, как всегда, неправ. В задаче о квадратуре круга требуется заменить равновеликим квадратом весь круг. Мы же должны заменить квадратом всего лишь часть круга.
— Все равно, — не унимался президент, — значит, это частичная квадратура круга.
— Скорее, наоборот, — поправил я, — не частичная квадратура, а квадратура части круга. И если полный круг заменить равновеликим квадратом немыслимо, то хитро выделенную часть круга в квадрат превратить можно. Это и собирается доказать нам Таня.
Таня отмерила циркулем расстояние от конца диаметра до его середины.
— Все видят, что расстояние между ножками циркуля равно радиусу полукруга? — спросила она.
— Все видят, — сказал Нулик.
Тогда Таня воткнула иглу циркуля в левый конец диаметра и, повернув циркуль против хода часовой стрелки, засекла карандашом небольшую дугу. Потом она вставила иголку в середину полуокружности и тем же радиусом засекла другую дугу, которая пересеклась с первой.
— Теперь смотрите внимательно, — сказала Таня. — Из точки пересечения этих двух дужек тем же раствором циркуля, то есть радиусом полукруга, провожу внутри нашего полукруга дугу. Эта дуга начинается из левого конца диаметра и доходит до середины полуокружности. Таким образом, полукруг разделился на две неравные части, и площадь большей из этих двух частей равна r^2, то есть равновелика квадрату со стороной, равной радиусу… Пожалей своё горло, Нулик! Я и так знаю, что ты хочешь сказать, и потому прямо перехожу к доказательству.
Таня соединила концы диаметра с серединой полуокружности. Получился равнобедренный треугольник.
— Доказать, что боковая сторона треугольника разделила меньшую часть полукруга на два равновеликих сегмента, нетрудно. Потому пусть каждый сделает это сам. А теперь посмотрите сюда, на эти три сегмента. Все они образованы боковыми сторонами треугольника, которые одновременно и хорды полукруга. Стало быть, площади этих трех сегментов равны между собой. А раз они равны, значит, треугольник и большая часть полукруга тоже равновелики. Ведь сегмент, отнятый от треугольника слева, прибавляется к этому треугольнику справа! А так как площадь треугольника равна r^2 (ведь основание у него 2r, высота r, а 2r*(1/2)r=r^2), то значит, и площадь искомой нами части полукруга тоже равна r^2.
— Ловко доказано… — вздохнул Сева.
— Ловко, но длинновато, — заметил Олег. — Я бы доказал это проще.
Он тут же вычертил новый полукруг и циркулем отделил от него ту часть, что полагается. Затем на левой половине полукруга построил квадрат, приняв за сторону вертикальный радиус.
— А теперь смотрите внимательно, — продолжал Олег. — Видите, из каких частей состоят квадрат и отделённая часть полукруга?
— Видим, — прохрипел Нулик. — Они имеют по общей части и… — Тут он запнулся.
— …и по равному сектору — четверти круга, — закончил его мысль Олег.
— Вот именно. А это значит, что большая часть полукруга и квадрат равновелики, — заключил президент и добавил неожиданно чистым голосом: — Что и требовалось доказать.
— Редкий случай в медицине! — заметил Сева. — Лечение геометрией.
— А ведь в самом деле прошло! — радовался Нулик. — Ой, как легко стало! Точно с меня гордиеву петлю сняли…
— Что-то ничего о такой не слыхал, — усмехнулся Сева.
— Как это не слыхал! Почитай письмо Магистра.
— Все равно, нет гордиевой петли. Есть гордиев узел. Такое же иносказательное выражение, как «вернёмся к нашим баранам». Только баранам около четырехсот лет, а узлу более двух тысяч.
— А сам ты узнал об этом только вчера из какой-нибудь энциклопедии, — как бы невзначай проронила Таня.
— Чего и вам желаю, — отбил удар Сева, ничуть не смутившись. — И не надо мне будет тогда рассказывать, что Александр Македонский во время похода в Малую Азию попал во фригийский город Гордий, иначе — Гордион, расположенный недалеко от нынешней столицы Турции Анкары. В городе показали Александру колесницу, у которой дышло и хомут были связаны тугим узлом, да так крепко, что развязать их не было никакой возможности. Тамошний оракул — сказали Александру — предрёк, что человек, который сумеет распутать этот узел, станет владыкой мира.
— Ну, дальше всё ясно, — сказал Нулик. — Александр, конечно, узел распутал.
— Сразу видно: не знаешь ты Александра Македонского! Он попросту вынул меч и разрубил заколдованный узел одним ударом. Отсюда «разрубить гордиев узел» значит действовать в запутанных обстоятельствах смело и решительно.
Севин рассказ привёл президента в необычайное возбуждение.
Разрубая воображаемый узел, он вдруг так хватил кулаком по столу, что стеклянная вазочка для карандашей полетела на пол и разбилась вдребезги.
— Александр Македонский, конечно, был великий человек, но зачем же стулья ломать! — кротко заметил Сева после небольшой паузы.
— Какие стулья? — пролепетал президент, растерянно разглядывая стеклянные брызги на полу.
— Да нет, это я к слову, — улыбнулся Сева. — Из гоголевского «Ревизора»!
И тотчас пожалел о своей шутке: Нулик выглядел таким несчастным!
Олег между тем вооружился совком и веником, спокойно собрал осколки и отнёс их на кухню. Вернувшись, он сказал как ни в чём не бывало:
— Вот обсуждаем мы оговорки Магистра, решаем нерешённые им задачи, а детективную сторону дела совершенно упускаем! А ведь кое-что вроде бы проясняется…
— Да, — кивнул Сева, — проясняется и одновременно затуманивается.
— Действительно, — согласился Олег. — Убей — не пойму, каким образом марка, украденная у Джерамини, снова очутилась у него? И зачем он её собирался отправить какому-то Кактусу?
— А то, что в Сьеррахимере обнаружилась ещё одна такая же марка, разве не загадочно? — сказала Таня.
— Загадочней некуда. Так что с выводами, пожалуй, придётся повременить до следующего письма, — решил Сева.
— Хотел бы я знать, каких чудищ держал в клетке вице-губернатор? — заговорил Нулик, как всегда, довольно быстро оправившись от конфуза. — Наверное, целый зверинец! Кто-то там рычал, шипел, блеял…
— По всему видно, в клетке помещалась живая государственная эмблема Сьеррахимеры, — предположил Олег.
Президент вытаращил глаза.
— Почём ты знаешь, какая там эмблема?
— Не удивлюсь, если это химера — мифическое чудище с львиной головой, змеиным хвостом и туловищем дикой козы.
— Да разве чудища такие встречаются? — усомнился президент.
— Только в мифах, — заверил его я, — или на башнях какого-нибудь собора в виде причудливых каменных фигур. Если и существует на свете химера, то как понятие иносказательное. Так мы называем нечто неосуществимое, несбыточное, призрачное…
— Например, обед, — сказал Нулик, взглянув на часы.
— Ты прав, — согласился я. — Давно пора обедать…
На улице Нулик взял меня за пуговицу пальто.
— Как вы думаете, — спросил он тихо, чтобы не слышали остальные, — отчего Олег не разбранил меня за расколотую вазочку?
— Хороший хозяин никогда не подаст вида, что заметил оплошность гостя.
— Наверное, потому что тут уж все равно ничего не поделаешь! — решил Нулик и зашагал к трамвайной остановке.
РЕПОРТАЖ РАССЕЯННОГО МАГИСТРА
История повторяется
Шоссе, соединяющее Сьеррахимеру и Сьерранибумбум, великолепное: бетонное основание покрыто идеально ровным асфальтом, так что дорога способна выдержать самые тяжёлые многотонные грузовики. Но их-то как раз тут и не бывает, потому что Сьерранибумбум, как известно, государство кукольное и все в этой стране, в том числе и транспорт, игрушечное. По сверхпрочному шоссе снуют взад и вперёд заводные автомобильчики, пластмассовые самосвалы, крохотные паровозики, лошадки на колёсиках — словом, все, что продаётся в магазине «Детский мир».
Мне, например, подали трехколесный велосипед. Помнится, в детстве я катался на таком с удовольствием, но теперь передвигаться на нём приходилось не иначе, как перебирая ногами по асфальту. Единичке досталась деревянная лошадка, вернее, лошадиная голова, надетая на палочку. Впрочем, девочка галопировала на ней, как на заправском рысаке. Не то — я на моём велосипедике! Бежать сидя — этого мне ещё никогда не приходилось. Я прямо из сил выбился и каждую минуту спрашивал у Единички, скоро ли наконец мы приедем, на что она каждый раз отвечала: «Мы ещё и до середины-то не доехали».
Слова её так засели у меня в голове, что я против воли стал в них вдумываться и вдруг понял, что у дороги середины нет вообще, — так же, впрочем, как и у любого отрезка. Единичку моё открытие удивило. Усомнившись в его правильности, дотошная девчонка достала сантиметр и принялась измерять свою палочку, сняв с неё предварительно лошадиную голову. Оказалось, длина палочки метр. Тогда Единичка отметила 50 сантиметров от конца палки и сделала в этом месте отметку карандашом.