Современная электронная библиотека ModernLib.Net

Марк Алданов. Сочинения в шести книгах - Ульмская ночь (философия случая)

ModernLib.Net / Отечественная проза / Алданов Марк Александрович / Ульмская ночь (философия случая) - Чтение (Ознакомительный отрывок) (стр. 4)
Автор: Алданов Марк Александрович
Жанр: Отечественная проза
Серия: Марк Алданов. Сочинения в шести книгах

 

 


Были увлечены чуть ли не все математики и философы. Насколько мне известно, единственное исключение - и странное составил д'Аламбер. Странное потому, что, по своей пламенной вере в торжество разума, он должен был бы ухватиться за новую науку крепче, чем кто-либо другой. Зато столь близкий ему по духу Кондорсе увлекается больше всех. Он хочет создать "социальную математику". Впрочем, он допускает, что в общественных науках не все будет доступно исчислению и предвидению; однако разве дело не обстоит так же с физикой и с близкими к ней точными науками? И там, и здесь есть "бесконечное множество предметов, к которым всегда будет закрыт доступ математике; можно на это себе ответить, что и там, и здесь число вещей к которым математический анализ может быть применен, столь же безгранично" (34). Труд Кондорсе характерно и называется: "Опыт применения анализа к вероятности решений, принимаемым большинством голосов". Уж если можно применять теорию вероятностей к решениям будущего Учредительного Собрания (книга появилась за четыре года до революции - и за девять лет до самоубийства автора), то к чему же собственно ее применять нельзя! Кондорсе не только верил в будущее торжество разума, но не сомневался в его близости. Теория вероятностей обещала победу над случаем, - чего же было желать еще! Легко было математику Бертрану через сто лет после того говорить об очевидных ошибках и наивности Кондорсе (35). Тогда его труд был принят иначе: он отвечал настроению эпохи. Менее простительно было такое настроение Лапласу, по крайней мере в ту пору, когда он писал "Essai philosophique sur les probabilits". Удивительное дело: в этой книге перечисляются почти все его предшественники по созданию и по применению теории вероятностей, но имени Кондорсе Лаплас не произносит, хотя писали они в сущности на одну и ту же тему и почти в одном и том же духе.
      Л. - Это, быть может, по политическим соображениям было не очень удобно наполеоновскому графу, позднее ставшему королевским маркизом. Лаплас, при всем своем гении, был лукавый царедворец. В 1810 году он посвятил свой труд "Наполеону Великому", а после крушения Наполеона довольно бессовестно, хотя и совершенно справедливо, писал: "Взгляните, в какую бездну несчастий часто погружает народы честолюбие и коварство их вождей". Мог ли такой человек сочувствовать погибшему жирондисту, одному из светских святых революции?
      А. - Вы видите, что и вам не всегда удается отвлекаться от личности и биографии ученого. Тут ничего непозволительного нет, особенно, когда дело идет о Лапласе: он тоже достаточно "красочная" фигура. Все же ваш подход к нему частью политический, частью моральный. Я ставлю вопрос иначе. В 1814 году все, случившееся в мире в течение двадцати пяти лет, могло казаться людям лишь глупой шуткой. На престол казненного Людовика XVI вступил его брат, и совершенно непонятно было, зачем и во имя чего погибло несколько миллионов людей. О торжестве разума тогда было говорить уже довольно неловко, тем более, что, на беду, теория вероятностей ровно ничего не предсказала. Но во взглядах Лапласа никакой перемены не произошло. Напомню вам его сто раз с толком и без толку цитировавшуюся фразу: "Ум, который в известный момент знал бы все действующие в природе силы и относительное положение составляющих ее существ, - если бы он был достаточно обширен для того, что бы подвергнуть анализу эти данные, - мог бы объединить в одной формуле движения самых великих тел и самых легких атомов: ничто не было бы ему неизвестным, его взору предстало бы будущее, как прошлое" (36).
      Л. - Что ж, эта мысль сродни учению Декарта и отвечает "картезианскому состоянию ума".
      А. - Ни в какой мере. Лаплас не очень любил "картезианское состояние ума" и недолюбливал самого Декарта (37). В истории точных наук, кажется, не было слов более знаменитых, чем приведенная мною фраза Лапласа. Ею восторгалось несколько поколений ученых, да, может быть, продолжает кое-кто восторгаться и в нынешнем поколении. Но, кажется, не было и слов более антифилософских, - даже не грубо-материалистических, а почти маниакально-механических. Это получше "Бюхнеров и Молешотов", получше и диалектического материализма, который, по крайней мере в его новейшем выражении, такого механизма и не проповедует (хотя всем видам материализма отказываться от фразы Лапласа было бы одинаково трудно). Отмечу и странную судьбу этой фразы, - как бы завещания 18-го века 19-ому в истории точных наук. Ее считали откровением, но следовать ей в изысканиях было невозможно: можно было только скорбеть о том, что такой "ум" еще не появился на свет Божий... Кажется, Н. О. Лосский высказал мысль, что в условиях свободы диалектический материализм переродился бы в одну из идеалистических систем. С механизмом лапласовского вида и этого случиться не могло бы. Если бы по случайности нашлась какая-либо государственная власть, которая сделала бы с ним то же, что советская власть сделала с историческим материализмом, т. е. объявила его обязательным ученьем и десятилетьями вдалбливала его в головы своих граждан, то они задохлись бы в "Лапласизме" еще гораздо хуже, чем теперь Россия задыхается от советской метафизики. С ним просто нечего было бы делать и некуда ткнуться, тогда как при помощи методов нынешней советской философии все-таки можно изучить, например, вопрос об исторической роли хлопководства в Туркестане. Непонятно, что сказал эти слова именно Лаплас, видевший вблизи, как происходят большие исторические события. На его глазах прошла французская революция, он был министром Наполеона, хорошо его знал и мог бы видеть, определялись ли "движением атомов", могли ли бы быть "объединены в общую формулу" решения, от которых зависели судьбы мира. Что ж делать, можно быть гениальным математиком, никак не будучи философом. Лаплас вдобавок в душе ненавидел и презирал все "метафизическое". Пуассон, во многом похожий на Лапласа, в частном разговоре однажды сообщил, что они вдвоем часто проходили по Avenue de l'Observatoire, почему-то всякий раз, вступая на эту прекраснейшую из улиц, начинали беседу на "метафизические" темы - и всякий раз, доходя до какого-то дерева в конце улицы, Лаплас неизменно произносил непристойные слова. Эти два великих математика были настоящими энтузиастами теории вероятностей; едва ли кто другой больше, чем они, способствовал ее необычайному развитию. Но думаю, что философская сторона этой теории была им не очень ясна. Они не видели и того, что исходят из аксиоматики все-таки произвольной. Через сто лет после них известный физик Липпман говорил Анри Пуанкаре об основной теореме теории ошибок: "Все в нее верят, так как экспериментаторы считают ее математической теоремой, а математики думают, что она экспериментальный факт" (38). Это порою случается и с общими положениями теории вероятностей. В философском отношении некоторые из них все-таки недалеко ушли от простой неученой человеческой речи с простыми неучеными определениями: "верно", "вероятно", "похоже на правду", "сомнительно", "ложно", "нелепо".
      . - Вы много говорили об определениях случая и предложили одно, весьма странное. Есть ли у вас заодно и определение смежного понятия вероятности? Математики его дают. Не знаю, как философы, в частности те, которые занимались историей математических наук.
      А. - Философского определения вероятности не дают ни те, ни другие. Курно вначале вообще не хотел пользоваться этим понятием, - так оно неясно (39). В недавнее время прямо или косвенно возражали против него Анри Пуанкаре и особенно Бертран. Мизес, кстати, указал (40), что самое слово "вероятность" Гете употреблял не в том смысле, в котором его употребляют математики. Конечно, семантические соображения большого значения не имеют. Отмечу попутно, что Курно был не очень доволен и словом "hasard": "Оно иностранного происхождения и случайного ввоза (d'importation accidentelle) и не принадлежит к органическому фонду языка" (41). Кант говорит: "Вероятностью называется то, что имеет на своей стороне больше половины уверенности (Gewissheit), дабы быть признано истинным". Уж лучше тогда пользоваться одними математическими определениями. А такие понятия теории вероятностей, как "математическая надежда", "моральная надежда"? Если не ошибаюсь, в русской науке Чебышев первый стал пользоваться термином "математическое ожидание" (42), который, по крайней мере, свободен от элемента желательности, присущего слову "надежда". Да и он свое выражение предлагает в несколько условной форме: "Если мы примем называть вообще математическим ожиданием" и т. д. Быть может, не слишком удачно тут и слово "моральный". О "моральной надежде" сам Лаплас говорит, что она "определяется (se rgle) тысячей обстоятельств, точно расценить которые невозможно" (43). Спорны в философском отношении и понятия "равновероятный", "равновозможный", - "equiprobable", "gleichmglich". А можно ли считать философски бесспорным основное положение теории вероятностей, первый принцип Лапласа: "Вероятность это отношение числа благоприятных случаев к числу всех случаев возможных"? Пуанкаре считал его сомнительным. Так же как будто относится к нему и Мизес, который своей теорией "коллективов" один, после Курно, внес нечто новое в философскую часть теории вероятностей. Лаплас (да и другие до него и после него) называл это положение неопределенным словом "принцип". Это, конечно, не теорема, так как она не доказана и недоказуема. Это и не гипотеза, так как на ней построена вся теория вероятностей, а трудно было бы построить огромную науку на недоказанной гипотезе. Вы видите, что это произвольная аксиома, оказавшаяся необычайно плодотворной.
      Л. - Это положение самого обыкновенного здравого смысла. Лаплас и называет теорию вероятностей "здравым смыслом, сведенным к вычислению", "le bon sens rduit au calcul" (44).
      A. - Здравый смысл говорит также, что через одну точку можно провести на плоскости только одну линию, параллельную данной прямой. Быть может, теория вероятностей еще ждет своего Лобачевского. Первые философские возражения были против нее сделаны еще в 18-ом столетии, повторяю, д'Аламбером. Его скептические замечания вызвали против него резкие и даже грубые нападки. "Некоторые большие геометры, - пишет он сам, - признали мои сомнения заслуживающими внимания. Другие большие геометры нашли их абсурдными, - зачем смягчать употребленные ими выражения?" (45). Я не мог установить, кого д'Аламбер разумел под первыми "большими геометрами". К вторым же принадлежал Даниель Бернулли, который отозвался об его соображениях даже в еще более сильных выражениях ("ridicule"). К чему сводилась критика д'Аламбера? Он указал на разницу между математически-возможным и физически-возможным. Математически совершенно возможно, что, в игре в чет и нечет, чет выпадет подряд сто или тысячу раз, а нечет не выпадет ни разу. Однако, этого физически быть не может. Собственно, полагалось бы дать доказательство физической невозможности этого; д'Аламбер привел лишь аналогию: "Можно дать только следующую ее причину: не бывает в природе, чтобы эффект был всегда и неизменно один и тот же, как нет в природе сходства между всеми людьми, между всеми деревьями". Мы опять тут видим, как опыт или наблюдение легко меняются местами с математической дедукцией в проблемах теории вероятностей. Примером могла бы быть и так называемая "Петербургская проблема", чрезвычайно занимавшая математиков восемнадцатого века. Математически было бы совершенно возможно, чтобы, при игре Павла с Петром, с такими-то правилами о ставках (не буду утомлять вас подробностями), Павел выиграл бесконечное число раз и выигранная им сумма превысила всякую данную величину. Петербургские и иностранные математики долго бились над этой проблемой; с философской точки зрения она собственно не разрешена и до сих пор. Один из ученых даже договорился до такого довода: такая возможность при игре Павла с Петром исключается, так как состояние Петра, как бы богат он ни был, все же имеет пределы; он не мог бы проиграть больше того, что у него было! - По свойству человеческой природы, мы легче воспринимаем не математические, а физическую возможность и невозможность. Если в рулетке, скажем, номер 22 выпадет пять раз подряд, то верно ни один игрок не поставит на него в шестой, хотя математически он может так же легко выпасть снова, как может выпасть какой угодно иной номер. В романе капитана Марриетта "Простак Питер", во время морского сражения ядро пробивает дыру в палубе враждебного судна. Находящийся на этом судне молодой моряк уткнул в эту дыру голову, "ибо, по вычислениям профессора Иннмана, есть 32,647 с десятыми шансов против того, чтобы в ту же дыру попало еще второе ядро". Я не читал этого романа, но нашел упоминание о моряке и ядре в книге доктора Левинсона (46). Конечно, профессор Иннман никаких таких "вычислений" сделать не мог - и не только потому, что никогда не существовал. Но не-ученому человеку вы в подобном случае и не вдолбили бы в голову, что второе ядро может с одинаковой математической вероятностью угодить и в эту дыру, и в любую другую точку судна. Это шутка романиста. Возможна, однако, гораздо более серьезная философская критика теории вероятностей. Вероятное, правдоподобное предполагает существование верного, правды. Но если правда сама основывается на теории вероятностей, то получается внутреннее противоречие или заколдованный круг. То, что относится ко всем научным законам, должно ведь относиться и к закону больших чисел. "Случай есть нечто стоящее вне законов". Тогда не ищите закона для случая. "Случай есть псевдоним нашего незнания"? Какая же у незнания может быть теория? Основной закон Бернулли висел в воздухе до того, как Чебышев дал ему чисто-математическое доказательство. Из десяти принципов Лапласа, из которых я привел лишь один первый (основной принцип всей теории), лишь немногие, никак, например, не третий и четвертый (47) (тоже основной и чрезвычайно важный), выдержали бы строгий и критический экзамен. Теория вероятностей могла бы откровенно это признать (но не признала), и это нимало не уменьшило бы ее огромного значения, как новые геометрии не уменьшили значения геометрии Эвклида, - она ведь осталась полезнейшей и необходимейшей из геометрий. Так и теория вероятностей оказывает человечеству очень большие услуги, хотя и не в тех областях, к которым ее пытались применить Кондорсе, Лаплас и Пуассон. Очень высока и ее внутренняя ценность, не уступающая ценности учений Лобачевского и Гильберта. Главная же ее заслуга в том, что она до сих пор - самая мощная, самая общая и самая успешная попытка человеческой мысли ограничить роль случая во многих областях познавательного. Это должен был с особенной ясностью чувствовать Паскаль. Бессмертная книга "Мыслей" вся насквозь проникнута "метафизическим ужасом" перед мощью Случая с большой буквы. Это, конечно, не имеет отношения к его соображениям о задаче де Мере: трик-трак метафизического ужаса вызывать ни у кого не мог. У людей же 18-го века, вместо метафизики, столь им ненавистной, было просто глубокое сознание того, что надо бы свести случай к минимуму, надо, чтобы и войн не было, и чтобы невинных людей не отправляли на казнь. Когда Кондорсе в последние недели жизни, скрываясь от властей, ожидая каждый час ареста и казни, писал "Esquisse d'uri tableau historique du progrs de l'sprit humain", со всей прежней трогательной и непонятной верой в близкое торжество Разума, он верно и думать забыл о своей книге по теории вероятностей. Но если бы о ней вспомнил, то, конечно, пришел бы к выводу, что оба эти его труда, столь несходные по форме, исходили из одних и тех же душевных настроений и служили одной и той же цели. От этой веры 18-го века наука, конечно, отошла. Она и в детерминизме теперь уверена не очень твердо.
      Л. - Если б наука отказалась от детерминизма, то она тем самым вообще покончила бы с собой, и это было бы, разумеется, наиболее трагическое харакири в истории мысли: при отрицании детерминизма никакое научное исследование вообще невозможно. Вы, вероятно, здесь имеете в виду уравнения Гейзенберга? Но с ними просто произошло недоразумение (48). Вопрос об индетерминации, к которому они имели отношение в одной частной физико-математической теории, смешали с общим спором о детерминизме и индетерминизме.
      А. - Не уверен, что вы правы: кто, быть может, смешал, а кто и не смешивал. Принцип Гейзенберга может быть верен или неверен, причинность может быть "ограниченной" или нет, но к случаю это отношения не имеет. Я приведу вам, в несколько измененной и "модернизированной" форме, превосходный пример Курно. Человек Икс выходит из дому на улицу. Он делает это по известным причинам: скажем, прогулка полезна для его здоровья; или же он привык уходить в тот час, когда у него убирают дома кабинет; или же у него назначено в это утро свидание; или ему нужно что-то купить. Можете прибавить к этим сознательным мотивам еще несколько полусознательных или подсознательнах, вплоть хотя бы до Фрейдовских. Как бы то ни было, перед вами тут реальная конкретная цепь причинности. Но наряду с ней, совершенно независимо от нее, действуют другие сходные цепи. В конце улицы, на которой живет этот человек, стоит высокий старый дом, по таким-то причинам нуждающийся в ремонте. Его владелец, по своим соображениям, решается произвести ремонт. Под крышей на подмостках работает каменщик Игрек. Он работает плохо: стар, или болен, или устал, или в этот день много выпил. В ту минуту, когда человек Икс проходит по тротуару мимо этого дома, человек Игрек неумышленно роняет ему на голову тяжелый кирпич, - его рука со скрюченными от ревматизма пальцами этого кирпича не удержала. Человек Икс падает мертвый с раздробленной головой. Во всех этих отдельных цепях причинность действовала без отказа. Но скрещение цепей было случаем. Можно, конечно, придумать философские "объяснения": например, "видно, такова была судьба Икса", - это объяснение ровно ничего не объясняет, да собственно ничего и не значит. Наука в этом и в других сходных объяснениях не при чем. Другие примеры Курно гораздо менее убедительны. Два брата, - говорит он, служат в одной армии и погибают в одном сражении. Человеческий ум в этом ничего странного не находит: естественно, что братья старались держаться близко друг к другу, поэтому они попадали часто в одни и те же опасные места поля битвы и легко могли погибнуть рядом. Но вот другое событие. Знаменитые генералы Клебер и Дезэ долго были братьями по оружию, вместе сражались на Рейне, вместе отправились с Бонапартом в Египет. Затем Клебер в Египте остался, а Дезэ вернулся в Европу. Но оба они погибают в один день и в один час: Клебера в Каире закалывает убийца, а Дезэ под Маренго убивает австрийская пуля. Третий пример: тоже в один день и один час умирают далеко друг от друга Джефферсон и Джон Адаме, которые долго были вождями враждебных партий и один за другим правили Соединенными Штатами. Эти примеры Курно не только не поясняют идеи случая, но скорее ее затемняют. Еслиб даже было верно, что Дезэ и Клебер или Адаме и Джефферсон умерли в один час (разница в минутах во всяком случае была), то это было бы не более "неестественно", чем, например, то, что Шекспир и Сервантес оба скончались в 1616 году, или даже чем то, что в одном месяце, в феврале 1953 года, в Нью-Йорке и в Филадельфии умерли два знавших друг друга столяра. Цепи причинностей тут даже не скрещиваются. Но огромной заслугой Курно, разительно сказавшейся в его первом примере, было именно разъяснение понятия цепей причинности и его применение к идее случая. Другая его заслуга в том, что он разрушил несостоятельную и даже нелепую концепцию Боссюэта-Лапласа, согласно которой никакого случая нет. Курно дал случаю и определение. Оно меня, как вы можете вывести из моего общего взгляда, удовлетворить не может, но, конечно, оно неизмеримо лучше всех дававшихся до него и после него. Вот оно: "Мы называем случайными (fortuits) или результатами случая (hasard) такие события, которые вызываются сочетанием явлений, принадлежащих к независимым цепям в общем порядке причинностей" (49). По-моему, в учении Курно есть пять недостатков. Первый заключается в том, что он не признал полной прерывности общего понятия причинности, - того, что физики называют le discontinu: или же, пользуясь для иллюстрации (разумеется, только для иллюстрации) языком современных физиков, я скажу, что он мог бы ввести и не ввел в свое учение идею квант, которую Планк ввел в физику. Второй недостаток был в его подходе к цепям причинности во времени: для Курно важен лишь момент единого скрещения двух цепей А и В: тогда возникает случай. Однако цепь А имеет свою историю и до, и после момента скрещения с В. На протяжении этой истории цепь А скрещивалась с другими цепями С, Д, Е, и эти цепи оказываются вовлеченными в соотношение с цепью В. В применении к нашему примеру предположим, что раздавленный камнем человек Икс был богачом и имел завещание, по которому его состояние отходило к его молодой жене. Оставшись неожиданно вдовой, она через год или через десять лет выходит замуж за бедного человека Дзет, жизнь которого таким образом меняется в прямой зависимости от скрещения цепей А и В, т. е. от несчастного конца человека Икс. Человек Дзет следовательно вовлекается в цепь причинности до того совершенно чуждую ему: он, быть может, отроду не знал и не видел человека Икс.
      Л. - По-моему, тут противоречие. Можно говорить либо о первом "недостатке", либо о втором. Выходит как будто, что у вас причинность то прерывна, то беспрерывна.
      А. - Тут противоречия нет, ибо цепь беспрестанно перескакивает из одной плоскости в другую... Винсент Шин где-то говорит: "у каждого из нас есть две жизни: та, которая есть, и та, которая могла быть". Не могу с этим согласиться: у каждого из нас есть подлинная жизнь и тысяча других возможных... Третий, уже иного порядка, недостаток учения Курно заключается в принимаемом и им принципиальном различии между явлениями малыми и глубокими. На самом деле никакого принципиального различия тут нет: вторые интеграл первых. Часто, например, теперь различают так называемую "малую историю", la petite histoire, от истории "настоящей" или "большой". И здесь нет ни малейшего принципиального различия. Четвертый недостаток Курно разделяет со всеми классиками теории вероятностей. Он не видел, что в основе этой теории лежат произвольные аксиомы. Правда, он писал до революции, произведенной в геометрии Гильбертом, и мог не знать о другой, гораздо более ранней революции, произведенной Лобачевским. И, наконец, пятый недостаток, тоже общий у него, по крайней мере, с Кондорсе, Лапласом и Пуассоном (никак не с д'Аламбером): он верил в возможность применения теории вероятностей к целому ряду научных "дисциплин", в которых ей решительно нечего делать. Курно родился в 1801 году, но, по общему складу своего ума, он все-таки еще был человеком 18-го столетия со всеми его иллюзиями.
      Л. - Вы этих иллюзий не разделяете. К каким же научным дисциплинам вы считаете эту теорию неприложимой?
      А. - Я считаю ее неприложимой именно к тому, к чему ее прилагали Кондорсе, Лаплас, Пуассон и столь многие другие. Возьмите любой современный курс этой науки, - вы увидите, что в первой части даются ее общие положения с разными иллюстрациями, в частности с неизменным в течение почти трех столетий, очень полезным, но немного надоевшим примером шаров и орла и решетки; затем начинаются главы о применениях в разных науках, в разных кругах явлений: теория вероятностей в физике, в химии, метеорологии, в климатологии, в биологии, в статистике, в страховом деле, в социологии, в истории, в свидетельских показаниях, в судебных решениях, в парламентских голосованиях и т. д., вплоть до явлений сомнамбулизма (о которых есть что-то не совсем мне понятное у самого Лапласа). Так, в старых учебниках по этике, сначала дается чистая этика, излагаются ее обоснования, ее история, а затем начинаются главы об этике в личной жизни, в политике, в семье, в браке, в отношении к жене, в педагогии и т. п. Едва ли нужно говорить, что некоторые применения теории вероятностей не только совершенно законны, но и дали превосходные, ценнейшие результаты. Могут быть и еще новые, тоже совершенно законные и даже обязательные, ее приложения. Думаю например, что подготовка войны может и будет все в большей мере основываться на теории вероятностей. Да так собственно было и в прежние времена, только тогда хорошие военные министры руководились ею бессознательно, быть может, никогда о ней и не слышав (до Паскаля и Фермата теории вероятностей не было, но хорошие военные министры были). При создавании вооруженных сил страны можно до некоторой степени исходить из соображений вероятности, особенно в подсчете того, чем располагает и будет располагать противник. Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3, 4