Современная электронная библиотека ModernLib.Net

Мифы о безопасном ПО - уроки знаменитых катастроф

ModernLib.Net / Аджиев Валерий / Мифы о безопасном ПО - уроки знаменитых катастроф - Чтение (стр. 1)
Автор: Аджиев Валерий
Жанр:

 

 


Аджиев Валерий
Мифы о безопасном ПО - уроки знаменитых катастроф

      Сферу применения Windows вообще надо ограничить использованием в быту и метлой гнать из корпоративных систем в силу безнадежной убогостью в плане безопасности и надежности. Оставить только как одну из систем для кухарок и прочих пользователей, для которых проблема надежности не столь критична.
      Вот статейка про ПО вообще и ОС в частности:
      Валерий Аджиев
      Мифы о безопасном ПО: уроки знаменитых катастроф
      Катастрофа Ariane 5 Инциденты с Therac-25 Мифы о безопасности ПО Эпитафия Эпилог Литература
      "Если бы строители строили здания так же, как программисты пишут программы, первый залетевший дятел разрушил бы цивилизацию"
      Второй закон Вейлера
      Не секрет, что ошибки в программном обеспечении "ответственных" систем могут вызвать чрезвычайные последствия, тем не менее, в обществе, особенно на уровне массового потребителя ИТ, продолжает витать иллюзия непогрешимости компьютера и работающего на нем ПО. В статье подробно разбираются две вошедших в историю компьютерной индустрии катастрофы и обсуждаются некоторые мифы, связанные с такими понятиями, как безопасность и риски в контексте разработки и эксплуатации программно-аппаратных систем.
      Слово "безопасность" не сходит со страниц компьютерной прессы. Однако, употребляется оно обычно в контексте поддержания целостности данных и особенно обеспечения их конфиденциальности. Что ж, тема интересная:
      Internet, банки, спецслужбы, хакеры ... все, к чему приложимо вошедшее в повседневный обиход слово "seсurity". Есть, однако, у "безопасности" и другое измерение, чаще обозначаемое не столь популярным термином "safety", про которое говорят меньше, но важность его применительно к компьютерным системам поистине нельзя переоценить.
      В мире постоянно происходят катастрофы, большие, малые аварии и все чаще их причиной становится ненадлежащее функционирование компьютерных систем и, в частности, их программного обеспечения. Оборона, авиация и космос, медицина, технологические процессы на современных ядерных, химических и других производствах вот неполный перечень тех предметных областей, где низкое качество ПО и даже единичные дефекты в нем находят воплощение в терминах потерянных человеческих жизней и разрушенных материальных ценностей.
      Над такого рода "ответственными" (mission-critical) системами работает целая отрасль, в которой крутятся очень большие (по-преимуществу, бюджетные) деньги и где как справедливо принято считать сосредоточено значительное количество высококвалифицированных программистов и проектировщиков, надлежащим образом поставлен менеджмент, отлажены процессы разработки и контроля. И тем не менее, "кое-где... порой..." ПО дает сбой, и резонанс тогда бывет громкий. Разберем две знаменитых истории, в одной из которых программистские ошибки привели к беспрецедентным материальным потерям, в другой к смерти нескольких человек, и попытаемся за этими частными случаями увидеть некоторые общие проблемы, стоящие сегодня перед всей программной индустрией.
      Катастрофа Ariane 5
      4 июня 1996 г. был произведен первый запуск ракеты-носителя Ariane 5 детища и гордости Европейского Сообщества. Уже через неполные 40 сек. все закончилось взрывом. Автоподрыв 50-метровой ракеты произошел в районе ее запуска с космодрома во Французской Гвиане. За предшествующие годы ракеты серии Ariane семь раз терпели аварии, но эта побила все рекорды по вызванным ею убыткам. Только находившееся на борту научное оборудование потянуло на пол-миллиарда долларов, не говоря о прочих разноообразных издержках; а астрономические цифры "упущенной выгоды" от несостоявшихся коммерческих запусков и потеря репутации надежного перевозчика в очень конкурентном секторе мировой экономики ("стоимость рынка" к 2000 г. должна превысить 60 млрд. долл.) с трудом поддаются оценке. ебезынтересно отметить, что предыдущая модель ракета Ariane 4 успешно запускалась более 100 раз.
      Буквально на следующий день Генеральный директор Европейского Космического Агенства (ESA) и Председатель Правления Французского ационального Центра по изучению Космоса (CNES) издали распоряжение об образовании независимой Комиссии по Расследованию обстоятельств и причин этого чрезвычайного происшествия, в которую вошли известные специалисты и ученые изо всех заинтересованных европейских стран. Возглавил Комиссию представитель Французской Академии аук профессор Жак-Луи Лион (Jacques-Louis Lions).
      Кроме того, был сформирован специальный Технический Комитет из представителей заказчиков и подрядчиков, ответственных за производство и эксплуатацию ракеты, в чью обязанность было вменено незамедлительно предоставлять Комиссии всю необходимую информацию.
      13 июня 1996 г. Комиссия приступила к работе, а уже 19 июля был обнародован ее исчерпывающий доклад, который сразу же стал доступен в Сети [1]. Что же касается информации, которую при участии нескольких институтов осмысляла Комиссия, то она состояла из телеметрии, траекторных данных, а также оптических наблюдений за ходом полета. Были собраны (что само по себе было непросто, так как взрыв произошел на высоте приблизительно 4 км, и осколки были рассеяны на площади около 12 кв. км. в саванне и болотах) и изучены части ракеты и оборудования. Кроме того, были заслушаны показания многочисленных специалистов и изучены горы производственной и эксплуатационной документации.
      Технические подробности аварии
      Положение и ориентация ракеты-носителя в пространстве измеряются авигационной Системой (Inertial Reference Systems IRS), составной частью которой является встроенный компьютер, вычисляющий углы и скорости на основе информации от бортовой Инерциальной Платформы, оборудованной лазерными гироскопами и акселерометрами. Данные от IRS передаются по специальной шине на Бортовой Компьютер (On-Board Computer OBC), который обеспечивает необходимую для реализации программы полета информацию и непосредственно через гидравлические и сервоприводы управляет твердотопливными ускорителями и криогенным двигателем типа Вулкан (Vulkain).
      Как обычно, для обеспечения надежности Системы Управления Полетом используется дублирование оборудования. Поэтому две системы IRS (одна активная, другая ее горячий резерв) с идентичным аппаратным и программным обеспечением функционируют параллельно. Как только бортовой компьютер OBC обнаруживает, что "активная" IRS вышла из штатного режима, он сразу же переключается на другую. Впрочем, и бортовых компьютеров тоже два.
      Теперь, следуя Докладу Комиссии [1], проследим все значимые фазы развития процесса, оказавшегося в конце концов аварийным. Момент старта обозначим H0 - это и будет точка отсчета для всех событий, хотя отслеживать их мы будем в обратном начиная с момента саморазрушения системы порядке. Для полноты картины упомянем, что предшествующие старту операции происходили в нормальном режиме вплоть до момента H0-7 минут, когда было зафиксировано нарушение "критерия видимости". Поэтому старт был перенесен на час; в H0 = 9 час. 33 мин. 59 сек. местного времени "окно запуска" было вновь "поймано" и был, наконец, осуществлен сам запуск, который и происходил штатно вплоть до момента H0+37 сек. В последующие секунды произошло резкое отклонение ракеты от заданной траектории, что и закончилось взрывом. Итак:
      * в момент H0+39 сек. из-за высокой аэродинамической нагрузки вследствие превышения "углом атаки" критической величины на 20 градусов произошло отделение стартовых ускорителей ракеты от основной ее ступени, что и послужило основанием для включения Системы Автоподрыва ракеты; * изменение угла атаки произошло по причине нештатного вращения сопел твердотопливных ускорителей; * такое отклонение сопел ускорителей от правильной ориентации вызвала в момент H0 + 37 сек. команда, выданная Бортовым Компьютером на основе информации от активной авигационной Системы (IRS 2). Часть этой информации была в принципе некорректной: то, что интерпретировалось как полетные данные, на самом деле являлось диагностической информацией встроенного компьютера системы IRS 2; * встроенный компьютер IRS 2 передал некорректные данные, потому что диагностировал нештатную ситуацию, "поймав" исключение (exception), выброшенное одним из модулей программного обеспечения; * при этом Бортовой Компьютер не мог переключиться на резервную систему IRS 1, так как она уже прекратила функционировать в течение предшествующего цикла (занявшего 72 мсек.) по той же причине, что и IRS 2; * исключение, "выброшенное" одной из программ IRS, явилось следствием выполнения преобразования данных из 64-разрядного формата с плавающей точкой в 16-разрядное целое со знаком, что привело к "Operand Error"; * ошибка произошла в компоненте ПО, предназначенном исключительно для выполнения "регулировки" Инерциальной Платформы. Причем что звучит парадоксально, если не абсурдно этот программный модуль выдает значимые результаты только до момента H0 + 7 сек. отрыва ракеты со стартовой площадки. После того, как ракета взлетела, никакого влияния на полет функционирование данного модуля оказать не могло; * однако, "функция регулировки" действительно должна была (в соответствии с установленными для нее требованиями) действовать еще 50 сек. после инициации "полетного режима" на шине авигационной Системы (момент H0-3 сек.), что она с усердием дурака, которого заставили богу молиться, и делала; * ошибка "Operand Error" произошла из-за неожиданно большой величины BH (Horizontal Bias горизонтальный наклон), посчитанной внутренней функцией на основании величины "горизонтальной скорости", измеренной находящимися на Платформе датчиками. Величина BH служила индикатором точности позиционирования Платформы; * величина BH оказалась много больше, чем ожидалось потому, что траектория полета Ariane 5 на ранней стадии существенно отличалась от траектории полета Ariane 4 (где этот программный модуль использовался ранее), что и привело к значительно более высокой "горизонтальной скорости".
      Финальным же действием, имевшим фатальные последствия, стало прекращение работы процессора; соответственно, вся авигационная Система перестала функционировать. Возобновить же ее действия оказалось технически невозможно.
      Осталось добавить, что всю эту цепь событий удалось полностью воспроизвести с помощью компьютерного моделирования, что вкупе с материалами других исследований и экспериментов позволило заключить; причины и обстоятельства катастрофы полностью выявлены.
      Причины и истоки аварии
      Прежде всего проследим, откуда взялось первоначальное требование на продолжение выполнения операции регулировки после взлета ракеты.
      Оказывается, оно было заложено более чем за 10 лет до рокового события, когда проектировались еще ранние модели серии Ariane. При некотором (весьма маловероятном!) развитии событий взлет мог быть отменен буквально за несколько секунд до старта, например в промежутке H0-9 сек., когда на IRS запускался "полетный режим", и H0-5 сек., когда выдавалась команда на выполнение некоторых операций с ракетным оборудованием. В случае неожиданной отмены взлета необходимо было быстро вернуться в режим "обратного отсчета"
      (countdown) и при этом не повторять сначала все установочные операции, в том числе приведение к исходному положения Инерциальной Платформы (операция, требующая 45 мин. время, за которое можно потерять "окно запуска").
      Было обосновано, что в случае события отмены старта период в 50 сек. после H0-9 будет достаточным для того, чтобы наземное оборудование смогло восстановить полный контроль за Инерциальной Платформой без потери информации за это время Платформа прекратит начавшееся было перемещение, а соответствующий программный модуль всю информацию о ее состоянии зафиксирует, что поможет оперативно возвратить ее в исходное положение (напомним, что все это в случае, когда ракета продолжает находиться на месте старта). И действительно, однажды, в 1989 г., при старте под номером 33 ракеты Ariane 4, эта особенность была с успехом задействована.
      Однако, Ariane 5, в отличие от предыдущей модели, имел уже принципиально другую дисциплину выполнения предполетных действий настолько другую, что работа рокового программного модуля после времени старта вообще не имела смысла. Однако, модуль повторно использовался без каких-либо модификаций видимо из-за нежелания изменять программный код, который успешно работает.
      В конце концов, было бы странно, если бы тривиальная ошибка переполнения (даже если она и возникла) была бы столь фатальной, что с ней невозможно бороться. Почему же программный код (написанный на таком оснащенном всеми необходимыми для обеспечения надежности средствами языке, как Ада) оказался незащищеным до такой степени, что наступили столь катастрофические последствия?
      Расследование показало, что в данном программном модуле присутствовало целых семь переменных, вовлеченных в операции преобразования типов. Оказалось, что разработчики проводили анализ всех операций, способных потенциально генерировать исключение, на уязвимость. И это было их вполне сознательным решением добавить надлежащую защиту к четырем переменным, а три включая BH, оставить незащищенными. Основанием для такого решения была уверенность в том, что для этих трех переменных возникновение ситуации переполнения невозможно в принципе. Уверенность эта была подкреплена расчетами, показывающими, что ожидаемый диапазон физических полетных параметров, на основании которых определяются величины упомянутых переменных, таков, что к нежелательной ситуации привести не может. И это было верно но для траектории, рассчитанной для модели Ariane 4. А ракета нового поколения Ariane 5 стартовала по совсем другой траектории, для которой никаких оценок не выполнялось. Между тем она (вкупе с высоким начальным ускорением) была такова, что "горизонтальная скорость" превзошла расчетную (для Ariane 4) более чем в пять раз.
      Но почему же не была (пусть в порядке перестраховки) обеспечена защита для всех семи, включая BH, переменных? Оказывается, для компьютера IRS была продекларирована максимальная величина рабочей нагрузки в 80%, и поэтому разработчики должны были искать пути снижения излишних вычислительных издержек. Вот они и ослабили защиту там, где теоретически нежелательной ситуации возникнуть не могло. Когда же она возникла, то вступил в действие такой механизм обработки исключительной ситуации, который оказался совершенно неадекватным.
      Этот механизм предусматривал следующие три основных действия. Прежде всего, информация о возникновении нештатной ситуации должна быть передана по шине на бортовой компьютер OBC; параллельно она вместе со всем контекстом записывалась в перепрограммируемую память EEPROM (которую во время расследования удалось восстановить и прочесть ее содержимое), и наконец, работа процессора IRS должна была аварийно завершиться. Последнее действие и оказалось фатальным именно оно, случившееся в ситуации, которая на самом деле была нормальной (несмотря на сгенерированное из-за незащищенного переполнения программное исключение), и привело к катастрофе.
      Осмысление
      Произошедшая с Ariane 5 катастрофа имела исключительно большой резонанс и по причине беспрецедентных материальных потерь, и вследствие очень оперативного расследования, характеризовавшегося к тому же открытостью результатов (впервые такая практика публичности была опробована при расследовании причин аварии космического корабля Challenger 1986 г.). Сразу стало очевидным, что данному событию суждено войти в историю не только космонавтики, но и программной инженерии. Поэтому неудивительно, что авария послужила поводом для оживленной дискуссии, в которой приняли участие многие известные специалисты.
      Ж.-М. Жезекель (J.-M. Jezequel) и Б.Мейер (B.Meyer) [2] пришли к совершенно однозначному выводу: допущенная (и так и не выявленная) программная ошибка носит, по их мнению, чисто технический характер и коренится в некорректной практике повторного использования ПО. Более точная формулировка: роковую роль сыграло отсутствие точной спецификации повторно-используемого модуля.
      Расследование показало, что обнаружить требование, устанавливающее максимальную величину BH (вмещающуюся в 16 битов), можно было с большим трудом: оно затерялось в приложениях к основному спецификационному документу. Мало того, в самом коде на этот счет не было никаких комментариев, не говоря уже о ссылке на документ с обоснованием этого требования.
      В качестве панацеи в такого рода ситуациях авторы предложили задействовать принцип "Контрактного Проектирования" (что и неудивительно, ибо его разработчиком как раз и является Мейер [3]). Именно "контракт" в духе языка Eiffel, явным образом (с помощью пред- и пост-условий) устанавливающий для любого программного компонента ограничения на входные и выходные параметры, и мог бы предотратить катастрофическое развитие событий. Был приведен и набросок такого контракта:
      convert (horizontal_bias:INTEGER): INTEGER is require horizontal_bias "= Maximum_bias do ...
      ensure ...
      end
      Соответственно, ошибка могла быть выявлена уже на этапе тестирования и отладки (когда проверка логических утверждений включается по специальной опции компилятора); если же пред- и пост-условия проверялись бы и во время полета, то сгенерированное исключение могло быть надлежащим образом обработано (правда, авторы оговариваются, что использование такого режима могло бы нарушить ограничения, связанные с вычислительной нагрузкой).
      Однако, самым важным достоинством использования контрактных механизмов является, по мнению авторов, явное присутствие легко понимаемых и при необходимости верифицируемых ограничений как в документации, так и в коде.
      При работе над сложными проектами типа Ariane именно контракты могли бы выступать в качестве опорных ориентиров для групп качества "QA Team", чья задача выполнять систематический мониторинг ПО на предмет соответствия требованиям. Авторы с сожалением заключают, что контрактные механизмы никак не получат должного распространения в современной практике. Более того, положение только усугубляется: например, в Java даже исчезла присутствовавшая в языке Cи скромная по возможностям инструкция "assert". В составной части CORBA языке IDL (Interface Definition Language), предназначенном обеспечить полномасштабное повторное использование компонентов в распределенной среде, отсутствует какой-либо механизм спецификации семантики. То же относится и к ActiveX. Авторы заключают: без полной и точной спецификации, основанной на пред- и пост-условиях и инвариантах, "повторное использование программных компонентов совершенное безрассудство".
      Эта точка зрения вызвала многочисленные отклики. Хотя полезность использования контрактных механизмов никто не оспаривал, все же взгляд авторов многим показался упрощенным. аиболее обстоятельный критический разбор их статьи выполнил сотрудник Locheed Martin Tactical AirCraft Systems, известный специалист в области разработки ответственных систем Кен Гарлингтон (Ken Garlington) [4]. Он начал с того, что указал на ошибку в приведенном наброске контракта, где предполагается, что BH преобразуется не из вещественного (как то было в реальности) числа, а из целого.
      Показательно, пишет Гарлингтон, что он оказался первым, кто обратил внимание на столь очевидный прокол, а ведь статью читали и публично обсуждали многие квалифицированные специалисты. С тем же успехом (а точнее неуспехом) могла пройти мимо этого дефекта и "QA-team". Так что даже точная спецификация сама по себе не панацея. Гарлингтон также подробно разобрал нетривиальные проблемы, возникающие при написании не "наброска", а действительно полной спецификации контракта для данной конкретной ситуации.
      Вывод Гарлингтона вполне отвечает здравому смыслу: проблема носит комплексный характер и обусловлена прежде всего объективной сложностью систем типа Ariane. Соответственно, одним лекарством болезнь, приводящая к появлению ошибок в ПО, вылечена быть не может. Хотя то, что процесс мониторинга спецификаций, кода и документов с обоснованием проектных решений при разработке ПО для Ariane 5, оказался неадекватен, отметила и Комиссия по расследованию аварии. В частности, подчеркнуто, что к процессу контроля не привлекались специалисты из организаций, независимых как от заказчика, так и от подрядчика системы, что нарушило принцип разделения исполнительных и контрольных функций.
      Большие претензии были предъявлены не только к процессу тестирования как таковому, но и к самой его стратегии. а этапе тестирования и отладки системы было технически возможно в рамках интегрального моделирования процесса полета исследовать все аспекты работы IRS, что позволило бы почти гарантированно выявить ошибку, приведшую к аварии. Однако, вместо этого при моделировании работы всего комплекса IRS рассматривалась как черный ящик, заведомо выдающий то, что ожидается. Почему? А зачем тестировать то, что успешно работало в течение многих лет?!
      Было обращено внимание и на невыявленную при анализе требований к проекту взаимную противоречивость между необходимостью обеспечения надежности и декларацией о величине максимально допустимой нагрузки на компьютер, что и явилось предпосылкой принятия программистами потенциально опасного компромиссного решения о защите от переполнения не всех семи, а только четырех переменных. Впрочем, как справедливо замечает Б.Мейер, всякий инженерный процесс предполагает принятие компромиссных решений в условиях множества разноречивых требований; вопрос в том, насколько полна информация, на основании которой такие решения принимаются.
      Особый разговор о механизме обработки исключительных ситуаций, который, как уже говорилось, жил своей особой жизнью в отрыве от общего контекста всей ситуации с полетом, и в итоге уподобился тому врачу, что без всякого осмотра пристрелил пришедшего к нему с непонятными симптомами больного, дабы тот не мучился. Реализация именно такого механизма явилась следствием распространенной при разработке "ответственных" систем проектной культуры особо и радикально реагировать на возникновение случайных аппаратных сбоев.
      Принцип действий здесь "простой, как мычание", исходящий из критериев безусловного обеспечения максимальной надежности: отключать допустившее сбой оборудование и тут же задействовать резервный блок: вероятность того, что этот блок также выдаст случайный сбой, да еще в той же ситуации, для надлежаще спроектированных и отлаженных аппаратных систем чрезвычайна мала.
      В данном же случае, возникла систематическая программная ошибка; "систематическая" в том смысле, что при повторении тех же входных условий, она обязательно возникнет вновь, ибо тавтология здесь уместна запрограммирована. Вот почему подключение резервной авигационной Системы ничего не дало: ведь ПО на нем исполнялось то же самое, соответственно и обе IRS, и дублирующие друг друга Бортовые Компьютеры с неотвратимостью натыкались на ту же ситуацию и с покорностью обреченных на заклание овец шли к катастрофе. Очевидно, что необходимо по крайней мере отнять у "врача"
      пистолет: прекращать функционирование аппаратуры при возникновении программного "исключения" целесообразно лишь после комплексного анализа ситуации, но никак не автоматически.
      В контексте данной статьи интересно мнение главного редактора журнала "Automated Software Engineering" Башара узейбеха (Bashar Nuseibeh) [5], который, дав обзор разных точек зрения на причины аварии и придя к выводу, что "все правы", связал все-таки катастрофу Ariane 5 с более общими проблемами разработки программных систем. Он отметил, в частности, что современные тенденции в программной инженерии, связанные с разделением интересов вовлеченных в разработку независимо работающих персонажей (что связано с широким внедрением таких подходов, как объектно-ориентированные и компонентные технологии) не получают надлежащего балансирующего противовеса в виде менеджмента, способного координировать всю работу на должном уровне.
      Эта тема заслуживает дальнейшего обсуждения, но сначала обратимся к еще одной печально знаменитой истории.
      Инциденты с Therac-25
      Вспомним более давнюю историю, почти во всем отличную от ситуации с Ariane 5, а сходную только в том, что она также была подробно задокументирована [6] и получила в свое время большой резонанс как повлекшая наиболее тяжкие последствия за всю не столь долгую историю использования медицинских комплексов, управляемых компьютерами. Правда в этом случае полномасштабного официального расследования проведено не было; источниками информации послужили, в основном, протоколы встреч пользователей системы с производителем и материалы многочисленных судебных разбирательств.
      Технические подробности инцидентов
      В 1985-87 гг. 6 человек получили смертельную дозу облучения во время сеансов радиационной терапии с применением медицинского ускорителя Therac-25 (количество пациентов, также подвергшихся переоблучению, но выживших, точно не известно). Производителем установки являлось одно из подразделений Канадского Агентства Атомной Энергии (Atomic Energy of Canada Limited AECL).
      Модель Therac-25, законченная в виде прототипа в 1976 г. и поступившая в промышленную эксплуатацию в 1982 г. (пять установок в США и шесть в Канаде) была развитием ранних моделей Therac-6 и Therac-20. При этом некоторые программные модули, разработанные для ранних моделей, использовались повторно (в том числе поставленные партнером, французской фирмой CGR, сотрудничество AECL с которой прекратилось к моменту начала работ над Therac-25).
      Первый зафиксированный факт переоблучения, случившийся в Онкологическом Центре в Marietta (штат Джорджия) в июне 1985 г., просто отрицался и не был должным образом исследован: производитель с цифрами оценки рисков в руках утверждал, что на данной системе это просто невозможно. По странному совпадению, проведенный сеанс облучения не был документирован, так как почему-то вышел из строя принтер; в результате поданный родственниками пациента иск не получил хода ввиду отсутствия документальных доказательств, хотя доза облучения по оценкам была превышена в 100 раз.
      Следующий инцидент, случившийся в июле того же года в Онкологическом Центре Онтарио как раз был задокументирован хорошо, но производитель не смог воспроизвести ситуацию, и ее отнесли на счет случайного сбоя аппаратуры; в ПО сомнений по-прежнему просто не было. И трагические инциденты продолжились.
      Очередной из них произошел в Онкологическом Центре Восточного Техаса в марте 1986 г. В данном случае процессом управляла опытный оператор, проведшая уже более 500 подобных сеансов. Она быстро ввела предписанные параметры, после чего заметила, что вместо режима облучения электронными лучами заказала лучи рентгеновские (которыми пользовали большинство пациентов). Коррекция требовала исправления всего одной буквы; нажав кнопку, она вошла в режим редактирования, скорректировала в нужном месте "x" на "e", затем несколькими нажатиями клавиши "Return" (благо, все остальные параметры были введены правильно) достигла нижней (командной) строки экрана, убедилась, что против каждого введенного параметра горит "VERIFIED", а статус системы ожидаемый ("BEAM READY"), и выдала команду начать процесс облучения. Однако, неожиданно система встала, на консоли высветилось сообщение "MALFUNCTION 54", а статус системы изменился на "TREATMENT PAUSE", что свидетельствовало о проблеме невысокой степени серьезности. Висевшая тут же бумага с кодами ошибок "исчерпывающе" поясняла, что "MALFUNCTION 54" означает "dose input 2". Забегая вперед, укажем, что много позже, во внутренней документации производителя было обнаружено, что это сообщение выдавалось в случае "ненадлежащей дозы облучения" причем, как для слишком большой, так и для слишком малой, что само по себе странно (да и просто недопустимо ведь ситуации принципиально разные).
      Озадаченная операторша взглянула на высветившееся количество отпущенной дозы и увидела, что оно пренебрежимо мало. Поэтому она без долгих раздумий выдала команду на продолжение процесса, после чего вся описанная выше ситуация повторилась.
      Тем временем пациент, который возлежал на столе в изолированном от оператора помещении, испытал некое подобие электрического шока. Он тоже был опытным (для него это был девятый сеанс), поэтому понял, что творится что-то неладное. Однако, дать сразу же знать об этом оператору через специально для того предназначенные видео и аудио средства он не смог: как выяснилось, видео было по непонятным причинам отключено, а аудиоканал просто неисправен.
      После повторного шокового удара пациент вскочил и нимало шокировал уже операторшу, начав ломиться в стеклянные двери ее помещения. Поначалу его и лечили от электрошока (он умер через пять месяцев). Позднейшее моделирование ситуации показало, что пациент получил менее чем за 1 сек. на участок позвоночника в
      1 кв. см. дозу в диапазоне от 16500 до 25000 рад (в то время, как ему было предписано принять в этом сеансе 180 рад, а всего 6000 рад за шесть с половиной недель).
      Прибывший из AECL инженер, несмотря на все усилия, оказался не в состоянии воспроизвести ситуацию, хотя заверил, что переоблучение в принципе невозможно. Были успешно прогнаны все тесты, система снова вступила в эксплуатацию, и через три недели инцидент повторился во всех деталях с тем же трагическим результатом. Только после этого установка была выведена из эксплуатации, и началось углубленное расследование, шедшее, кстати, очень трудно. Опуская множество деталей, приведем его итоги, интересные с программистской точки зрения.
      Особенности ПО как предпосылки для инцидентов
      В комплексе не использовалась какая-либо стандартная операционная система: была разработана специальная мультизадачная ОС реального времени, для компьютера PDP-11/23 с 32Kбайт и написанная на языке ассемблера. Специальный планировщик координировал деятельность всех одновременно исполняющихся процессов. Задачи, запускавшиеся каждые 0.1 сек., разделялись на "критические", исполнявшиеся первыми, и "некритические". К критическим отнесены три приоритетных задачи (рис. 1):
      * "Servo", ответственная за все операции, связанные с эмиссией радиационных пучков и доставкой их к месту назначения; * "Housekeeper", выполнявшая верификацию всех параметров и ответственная за блокировку работы в случае возникновения нештатной ситуации, а также за сообщения о таких ситуациях; * "Treat", управлявшая самим процессом лечения, который был разделен на 8 операционных фаз. В зависимости от значения переменной Tphase вызывалась одна из восьми подпрограмм, по окончании работы которой Treat в зависимости от значений нескольких разделяемых с другими критическими и некритическими задачами переменных, вырабатывала план на новый цикл.

  • Страницы:
    1, 2, 3