Современная электронная библиотека ModernLib.Net

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

ModernLib.Net / Виктор Майер-Шенбергер / Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - Чтение (Ознакомительный отрывок) (стр. 3)
Автор: Виктор Майер-Шенбергер
Жанр:

 

 


Рассмотрим анализ ДНК. Формируется новая отрасль индивидуального генетического секвенирования, что обусловлено грандиозным падением стоимости технологии и многообещающими медицинскими возможностями. В 2012 году цена декодирования генома упала ниже 1000 долларов США – неофициальной отраслевой отметки, при которой технология приобретает массовый характер. Так, начиная с 2007 года стартап Кремниевой долины 23andme[29] стал предлагать анализ ДНК всего за пару сотен долларов. Этот анализ позволяет выявить особенности генетического кода человека, которые повышают его предрасположенность к развитию определенных заболеваний, например рака молочной железы или проблем с сердцем. А объединяя информацию о ДНК и здоровье своих клиентов, 23andme рассчитывает выявить новые закономерности, которые невозможно обнаружить другим способом.

Компания секвенирует крошечную часть ДНК человека из нескольких десятков участков, которые являются «маркерами». Они указывают на определенную генетическую слабость и представляют собой лишь выборку всего генетического кода человека. При этом миллиарды пар оснований ДНК остаются несеквенированными. В результате 23andme может ответить только на те вопросы, которые связаны с заданными маркерами. При обнаружении нового маркера потребуется еще раз секвенировать ДНК человека (точнее, его соответствующую часть). Работа с выборкой, а не целым набором данных имеет свои недостатки: позволяя проще и быстрее находить нужные данные, она не в состоянии ответить на вопросы, которые не были поставлены заранее.

Легендарный руководитель компании Apple Стив Джобс выбрал другой подход к борьбе против рака, став одним из первых людей в мире, просеквенировавших всю свою ДНК, а также ДНК своей опухоли. Это обошлось ему в шестизначную сумму, которая в сотни раз превышала обычный тариф 23andme. Зато Стив Джобс получил не просто выборку или набор маркеров, а целый набор данных, содержащий весь генетический код.

При лечении среднестатистического онкобольного врачам приходится рассчитывать, что ДНК пациента достаточно похожа на пробу, взятую для исследования. А у команды врачей Стива Джобса была возможность подбирать препараты, ориентируясь на их эффективность для конкретного генетического материала. Всякий раз, когда один препарат становился неэффективным из-за того, что рак мутировал и стал устойчивым к его воздействию, врачи могли перейти на другой препарат, «перескакивая с одной кувшинки на другую», как говорил Стив Джобс. В то время он язвительно заметил: «Я стану одним из первых, кто сумеет обойти рак, или одним из последних, кто умрет от него». И хотя его предсказание, к сожалению, не сбылось, сам метод получения всего набора данных (а не просто выборки) продлил жизнь Стива Джобса на несколько лет[30].

От малого к большему

Выборка – продукт эпохи ограниченной обработки информации. Тогда мир познавался через измерения, но инструментов для анализа собранных показателей не хватало. Теперь выборка стала пережитком того времени. Недостатки в подсчетах и сведении данных стали гораздо менее выраженными. Датчики, GPS-системы мобильных телефонов, действия на веб-страницах и Twitter пассивно собирают данные, а компьютеры могут с легкостью обрабатывать их.

Понятие выборки подразумевает возможность извлечь максимум пользы из минимума материалов, подтвердить крупнейшие открытия с помощью наименьшего количества данных. Теперь же, когда мы можем поставить себе на службу большие объемы данных, выборки утратили прежнюю значимость. Технические условия обработки данных резко изменились, но адаптация наших методов и мышления не поспевает за ней.

Давно известно, что цена выборки – утрата подробностей. И как бы мы ни старались не обращать внимания на этот факт, он становится все более очевидным. Есть случаи, когда выборки являются единственным решением. Однако во многих областях происходит переход от сбора небольшого количества данных до как можно большего, а если возможно, то и всего: «N = всё».

Используя подход «N = всё», мы можем глубоко изучить данные. Не то что с помощью выборки! Кроме того, уже упоминалось, что мы могли бы достичь 97 %-ной точности, экстраполируя результаты на все население. В некоторых случаях погрешность в 3 % вполне допустима, однако при этом теряются нюансы, точность и возможность ближе рассмотреть некоторые подгруппы. Нормальное распределение, пожалуй, нормально. Но нередко действительно интересные явления обнаруживаются в нюансах, которые невозможно в полной мере уловить с помощью выборки.

Вот почему служба Google Flu Trends полагается не на случайную выборку, а на исчерпывающий набор из миллиардов поисковых интернет-запросов в США. Используя все данные, а не выборку, можно повысить точность анализа настолько, чтобы прогнозировать распространенность какого-либо явления не то что в государстве или всей нации, а в конкретном городе[31]. Исходная система Farecast использовала выборку из 12 000 точек данных и хорошо справлялась со своими задачами. Но, добавив дополнительные данные, Орен Эциони улучшил качество прогнозирования. В итоге система Farecast стала учитывать все ценовые предложения на авиабилеты по каждому маршруту в течение всего года. «Это временные данные. Просто продолжайте собирать их – и со временем вы станете все лучше и лучше понимать их закономерности», – делится Эциони[32].

Таким образом, в большинстве случаев мы с удовольствием откажемся от упрощенного варианта (выборки) в пользу полного набора данных. При этом понадобятся достаточные мощности для обработки и хранения данных, передовые инструменты для их анализа, а также простой и доступный способ сбора данных. В прошлом каждый из этих элементов был головоломкой. Мы по-прежнему живем в мире ограниченных ресурсов, в котором все части головоломки имеют свою цену, но теперь их стоимость и сложность резко сократились. То, что раньше являлось компетенцией только крупнейших компаний, теперь доступно большинству.

Используя все данные, можно обнаружить закономерности, которые в противном случае затерялись бы на просторах информации. Так, мошенничество с кредитными картами можно обнаружить путем поиска нетипичного поведения. Единственный способ его определить – обработать все данные, а не выборку. В таком контексте наибольший интерес представляют резко отклоняющиеся значения, а их можно определить, только сравнив с массой обычных транзакций. В этом заключается проблема больших данных. А поскольку транзакции происходят мгновенно, анализировать нужно тоже в режиме реального времени.

Компания Xoom специализируется на международных денежных переводах и опирается на хорошо известные большие данные. Она анализирует все данные, связанные с транзакциями, которые находятся в обработке. Система подняла тревогу, заметив незначительное превышение среднего количества транзакций с использованием кредитных карт Discover Card в Нью-Джерси. «Система обнаружила закономерность там, где ее не должно быть», – пояснил Джон Кунце, президент компании Xoom[33]. Сами по себе транзакции выглядели вполне законно. Но оказалось, что они инициированы преступной группировкой, которая пыталась обмануть компанию. Обнаружить отклонения в поведении можно было, только изучив все данные, чего не сделаешь с помощью выборки.

Использование всех данных не должно восприниматься как сверхзадача. Большие данные не обязательно таковы в абсолютном выражении (хотя нередко так и есть). Служба Flu Trends базируется на сотнях миллионов математических модельных экспериментов, использующих миллиарды точек данных. Полная последовательность человеческого генома содержит около трех миллиардов пар оснований. Однако само по себе абсолютное число точек данных (размер набора данных) не делает их примером больших данных как таковых. Отличительной чертой больших данных является то, что вместо упрощенного варианта случайной выборки используется весь имеющийся набор данных, как в случае службы Flu Trends и врачей Стива Джобса.

Насколько значимо применение подхода «N = всё», отлично иллюстрирует следующая ситуация. В японском национальном спорте – борьбе сумо – выявилась практика договорных боев. Обвинения в проведении «боев в поддавки» всегда сопровождали соревнования в этом императорском виде спорта и строго запрещались. Стивен Левитт, предприимчивый экономист из Университета Чикаго, загорелся идеей научиться определять такие бои. Как? Просмотрев все прошлые бои без исключения. В своей замечательной исследовательской статье, опубликованной в American Economic Review[34], он описывает пользу изучения всех данных. Позже эта идея найдет свое отражение в его бестселлере «Фрикономика»[35].

В поиске отклонений Левитт и его коллега Марк Дагген просмотрели все бои за последние 11 лет – более 64 000 поединков. И попали в десятку. Договорные бои действительно имели место, но не там, где их искало большинство людей. Речь шла не о чемпионских поединках, которые могли фальсифицироваться. Данные показали, что самое занятное происходило во время заключительных боев турнира, которые оставались незамеченными. Казалось, что на карту поставлено немного, ведь у борцов фактически нет шансов на завоевание титула.

Одна из особенностей сумо в том, что борцам нужно победить в большинстве из 15 боев турнира, чтобы сохранить свое положение и доходы. Иногда это приводит к асимметрии интересов, например, если борец со счетом 7:7 сталкивается с противником со счетом 8:6. Результат имеет огромное значение для первого борца и практически безразличен второму. Левитт и Дагган обнаружили, что в таких случаях, скорее всего, победит борец, который нуждается в победе. На первый взгляд, это «подарок» одного борца другому. Но в тесном мире сумо все взаимосвязано.

Может, парень просто боролся решительнее, поскольку цена победы была столь высока? Возможно. Но данные говорят об обратном: борцы, которые нуждаются в победе, побеждают примерно на 25 % чаще, чем следовало ожидать. Вряд ли дело лишь в одном адреналине. Дальнейший разбор данных также показал, что при следующей встрече тех же двух борцов тот, кто проиграл в предыдущем бою, в три-четыре раза вероятнее выиграет, чем при третьем или четвертом спарринге.

Эта информация всегда была очевидной, была на виду. Но анализ случайной выборки может не выявить такие закономерности. Анализ больших данных, напротив, показывает ее с помощью гораздо большего набора данных, стремясь исследовать всю совокупность боев. Это похоже на рыбалку, в которой нельзя сказать заранее, удастся ли что-то поймать и что именно.

Набор данных не всегда измеряется терабайтами. В случае сумо весь набор данных содержал меньше бит, чем обычная цифровая фотография. Но так как анализировались большие данные, в расчет бралось больше данных, чем при случайной выборке. В этом и общем смысле «большой» – скорее относительное понятие, чем абсолютное (в сравнении с полным набором данных).

В течение долгого времени случайная выборка считалась хорошим решением. Она позволяла анализировать проблемы больших данных в предцифровую эпоху. Однако при выборке часть данных теряется, как и в случае преобразования цифрового изображения или песни в файл меньшего размера. Наличие полного (или почти полного) набора данных дает гораздо больше свободы для исследования и разностороннего рассмотрения данных, а также более подробного изучения их отдельных особенностей.

Подходящий пример – камера Lytro. Она стала революционным открытием, так как применяет большие данные к основам технологии фотографии. Эта камера захватывает не только одну световую плоскость, как обычные камеры, но и около 11 миллионов лучей всего светового поля. Точное изображение, получаемое из цифрового файла, можно в дальнейшем изменять в зависимости от того, на какой объект кадра нужно настроить фокус. Благодаря сбору всех данных не обязательно настраивать фокус изображения изначально, ведь он настраивается на любой объект изображения после того, как снимок уже сделан. Снимок содержит лучи всего светового поля, а значит, и все данные, то есть «N = всё». В результате информация лучше подходит для «повторного использования», чем обычные изображения, когда фотографу нужно выбрать объект фокусировки, прежде чем нажать на кнопку затвора.

Поскольку большие данные опираются на всю или максимально возможную информацию, точно так же мы можем рассматривать подробности и проводить новый анализ, не рискуя четкостью. Мы проверим новые гипотезы на любом уровне детализации. Это позволяет обнаруживать случаи договорных боев в борьбе сумо, распространение вируса гриппа по регионам, а также лечить раковые заболевания, воздействуя целенаправленно на поврежденную часть ДНК. Таким образом, мы можем работать на небывало глубоком уровне понимания.

Следует отметить, что не всегда необходимы все данные вместо выборки. Мы все еще живем в мире ограниченных ресурсов. Однако все чаще целесообразно использовать все имеющиеся данные. И если ранее это было невозможно, то теперь – наоборот.

Подход «N = всё» оказал значительное влияние на общественные науки. Они утратили свою монополию на осмысление эмпирических данных, а анализ больших данных заменил ранее востребованных высококвалифицированных специалистов по выборкам. Общественные дисциплины во многом полагаются на выборки, исследования и анкеты. Но если данные собираются пассивно, в то время как люди заняты обычными делами, погрешности, связанные с исследованиями и анкетами, сходят на нет. Теперь мы можем собирать информацию, недоступную ранее, будь то чувства, высказанные по мобильному телефону, или настроения, переданные в твитах. Более того, исчезает сама необходимость в выборках[36].

Альберт-Лазло Барабаши, один из ведущих мировых авторитетов в области сетей, и его коллеги исследовали взаимодействия между людьми в масштабе всего населения. Для этого они проанализировали все журналы анонимного мобильного трафика за четыре месяца, полученные от оператора беспроводной связи, который обслуживал около пятой части всего населения страны. Это был первый анализ сетей на общественном уровне, в котором использовался набор данных в рамках подхода «N = всё». Благодаря масштабу, который позволил учесть звонки миллионов людей в течение длительного времени, появились новые идеи, которые, скорее всего, не удалось бы выявить другим способом[37].

Команда обнаружила интересную закономерность, не свойственную небольшим исследованиям: если удалить из сети людей, имеющих множество связей в сообществе, оставшаяся социальная сеть станет менее активной, но останется на плаву. С другой стороны, если из сети удалить людей, имеющих связи за пределами их непосредственного окружения, оставшаяся социальная сеть внезапно распадется, словно повредили саму ее структуру. Это стало важным, но совершенно неожиданным открытием. Кто бы мог подумать, что люди с большим количеством близких друзей настолько менее важны в структуре сети, чем те, у кого есть более отдаленные связи? Выходит, что разнообразие высоко ценится как в группе, так и в обществе в целом. Открытие заставило по-новому взглянуть на то, как следует оценивать важность людей в социальных сетях.

Мы склонны думать, что статистическая выборка – это своего рода непреложный принцип (такой, как геометрические правила или законы гравитации), на котором основана цивилизация. Однако эта концепция появилась менее ста лет назад и служила для решения конкретной задачи в определенный момент времени при определенных технологических ограничениях. С тех пор эти ограничения весьма изменились. Стремиться к случайной выборке в эпоху больших данных – все равно что хвататься за хлыст в эпоху автомобилей. Мы можем использовать выборки в определенных обстоятельствах, но они не должны быть (и не будут) доминирующим способом анализа больших наборов данных. Все чаще мы можем позволить себе замахнуться на данные в полном объеме.

Глава 3

Беспорядочность

Число областей, в которых можно использовать все имеющиеся данные, неуклонно растет, однако увеличение количества приводит к неточности. В наборы данных всегда закрадывались ошибочные цифры и поврежденные биты. Эту проблему следует попытаться решить хотя бы потому, что это возможно. Чего нам никогда не хотелось, так это мириться с такими ошибками, считая их неизбежными. В этом и состоит один из основных переходов от малых данных к большим.

В мире «малых данных» сокращение количества ошибок и обеспечение высокого качества данных становились естественным и необходимым толчком к поиску новых решений. Поскольку собиралась лишь малая часть информации, мы заботились о том, чтобы она была как можно более точной. Поколения ученых оптимизировали свои инструменты, добиваясь все большей точности данных, будь то положение небесных тел или размер объектов под микроскопом. В мире, где правили выборки, стремление к точности принимало характер одержимости, сбор лишь ограниченного числа точек данных неминуемо вел к распространению ошибок, тем самым снижая точность общих результатов.

На протяжении большей части истории наивысшие достижения человека были связаны с завоеванием мира путем его измерения. Одержимость точностью началась в середине XIII века в Европе, когда астрономы и ученые взяли на вооружение как никогда точную количественную оценку времени и пространства – «меру реальности», выражаясь словами историка Альфреда Кросби.

Негласно считалось, что, если измерить явление, его удастся понять. Позже измерения оказались привязанными к научному методу наблюдения и объяснения – способности количественно измерять воспроизводимые результаты, а затем записывать и представлять их. «Измерить – значит узнать», – говорил лорд Кельвин. И это стало основным постулатом. «Знание – сила», – поучал Фрэнсис Бэкон. В то же время математики и те, кто позже стал актуарием или бухгалтером, разработали методы, которые сделали возможным точный сбор и регистрацию данных, а также управление ими[38].

К XIX веку во Франции (в то время ведущей стране в мире по уровню развития науки) была разработана система строго определенных единиц измерения для сбора данных о пространстве, времени и не только. Другие страны перенимали эти стандарты. Дошло до того, что признанный во всем мире эталон единиц измерения стал закрепляться в международных договорах. Это явилось вершиной эпохи измерений. Лишь полвека спустя, в 1920-х годах, открытия в области квантовой механики навсегда разрушили веру в возможность достичь совершенства в измерениях. Тем не менее, не считая относительно небольшого круга физиков, инженеры и ученые не спешили расставаться с мыслью о совершенстве измерений. В деловой сфере эта идея даже получила более широкое распространение, по мере того как рациональные науки – математика и статистика – начали оказывать влияние на все области коммерческой деятельности.

Между тем множатся ситуации, в которых неточность воспринимается скорее как особенность, а не как недостаток. Взамен снижения стандартов допустимых погрешностей вы получаете намного больше данных, с помощью которых можно совершать новые открытия. При этом действует принцип не просто «больше данных – какой-то результат», а, по сути, «больше данных – лучше результат».

Нам предстоит иметь дело с несколькими видами беспорядочности. Это может быть связано с тем, что при добавлении новых точек данных вероятность ошибок возрастает. Следовательно, если, например, увеличить показатели нагрузки на мост в тысячу раз, возрастет вероятность того, что некоторые показатели будут ошибочными. Вы увеличите беспорядочность, сочетая различные типы информации из разных источников, которые не всегда идеально выравниваются. Или, определив причину жалоб, направленных в центр обработки заказов с помощью программного обеспечения для распознавания речи, и сравнив эти данные со временем, затраченным со стороны оператора на их обработку, можно получить несовершенную, но полезную общую картину ситуации. Кроме того, беспорядочность иногда связана с неоднородностью форматирования. В таком случае, прежде чем обрабатывать данные, их следует «очистить». «Существуют буквально тысячи способов упомянуть компанию IBM, – отмечает знаток больших данных Дж. Патил, – от IBM до International Business Machines и Исследовательского центра Т. Дж. Уотсона»[39]. Беспорядочность может возникнуть при извлечении или обработке данных, поскольку путем преобразования мы превращаем их в нечто другое. Так, например, происходит, когда мы анализируем настроения в сообщениях Twitter, чтобы прогнозировать кассовые сборы голливудских фильмов. А беспорядочность сама по себе… беспорядочна.

Представьте себе, что вам нужно измерить температуру в винограднике. Если у вас только один датчик температуры на весь участок земли, необходимо убедиться, что он работает точно и непрерывно. Если же для каждой из сотен лоз установлен отдельный датчик, вероятно, рано или поздно какой-то из них станет предоставлять неправильные данные. Полученные данные могут быть менее точными (или более «беспорядочными»), чем от одного точного датчика. Любой из отдельно взятых показателей может быть ошибочным, но в совокупности множество показателей дадут более точную картину. Поскольку набор данных состоит из большего числа точек данных, его ценность гораздо выше, и это с лихвой компенсирует его беспорядочность.

Теперь рассмотрим случай повышения частоты показателей. Если мы возьмем одно измерение в минуту, то можем быть уверены, что данные будут поступать в идеально хронологическом порядке. Измените частоту до десяти или ста показателей в секунду – и точность последовательности станет менее определенной. Так как информация передается по сети, запись может задержаться и прибыть не по порядку либо попросту затеряться. Информация получится немного менее точной, но ввиду большого объема данных отказаться от строгой точности вполне целесообразно.

В первом примере мы пожертвовали точностью отдельных точек данных в пользу широты, получив взамен детали, которые не удалось бы обнаружить другим путем. Во втором случае отказались от точности в пользу частоты, зато увидели изменения, которые иначе упустили бы из виду. Такие ошибки можно устранить, если направить на них достаточно ресурсов. В конце концов, на Нью-Йоркской фондовой бирже производится 30 000 сделок в секунду, и правильная последовательность здесь чрезвычайно важна. Но во многих случаях выгоднее допустить ошибку, чем работать над ее предотвращением.

Мы можем согласиться с беспорядочностью в обмен на масштабирование. Один из представителей консалтинговой компании Forrester однажды выразился так: «Иногда два плюс два может равняться 3,9. И это достаточно хорошо»[40]. Конечно, эти данные не могут быть абсолютно неправильными, и мы готовы в некоторой степени пожертвовать точностью в обмен на понимание общих тенденций. Большие данные преобразуют цифры в нечто более вероятностное, чем точность. В этом процессе обществу придется ко многому привыкнуть, столкнувшись с рядом проблем, которые мы рассмотрим в этой книге. Но на сегодняшний день стоит просто отметить, что при увеличении масштаба беспорядочность неизбежна, и с этим нужно смириться.

Подобный переход можно заметить в том, в какой степени увеличение объема данных важнее других усовершенствований в вычислительных технологиях. Всем известно, насколько вычислительная мощность выросла за эти годы в соответствии с законом Мура, который гласит, что число транзисторов на кристалле удваивается примерно каждые два года. В результате компьютеры стали быстрее, а память – объемнее. Производительность алгоритмов, которые управляют многими нашими системами, также увеличилась, но осталась несколько в тени. По некоторым данным, вычислительные алгоритмы улучшились примерно в 43 000 раз в период между 1988 и 2003 годами – значительно больше, чем процессоры в соответствии с законом Мура[41]. Однако многие достижения, наблюдаемые в обществе благодаря большим данным, состоялись не столько за счет более быстрых чипов или улучшенных алгоритмов, сколько за счет увеличения количества данных.

Так, шахматные алгоритмы изменились лишь немного за последние несколько десятилетий, так как правила игры в шахматы полностью известны и жестко ограничены. Современные компьютерные программы по игре в шахматы играют гораздо лучше, чем их предшественники, потому что лучше просчитывают свой эндшпиль[42]. И это им удается просто потому, что в систему поступает больше данных. Варианты эндшпиля при оставшихся шести (и менее) фигурах на шахматной доске полностью проанализированы, а все возможные ходы («N = всё») представлены в виде массивной таблицы, которая в несжатом виде заполнила бы более терабайта данных. Благодаря этому компьютеры могут безупречно вести все важные эндшпили. Ни один человек не сможет переиграть систему[43].

То, насколько можно усовершенствовать алгоритмы, увеличив количество данных, убедительно продемонстрировано в области обработки естественного языка – способа, с помощью которого компьютеры распознают слова, используемые нами в повседневной речи. Примерно в 2000 году Мишель Банко и Эрик Брилл из исследовательского центра Microsoft Research поставили задачу улучшить средство проверки грамматики – элемент программы Microsoft Word. Перед ними было несколько путей: улучшение существующих алгоритмов, поиск новых методов или добавление более сложных функций. Прежде чем выбрать один из них, они решили посмотреть, что будет, если существующие методы применить к гораздо большему количеству данных. Большинство исследований по машинному обучению алгоритмов полагались на корпусы[44], состоящие из миллиона слов, а то и меньше. Поэтому Банко и Брилл выбрали четыре алгоритма общего назначения и ввели в них на три порядка больше данных: 10 миллионов слов, затем 100 миллионов и, наконец, миллиард.

Результаты поразили. Чем больше данных подавалось на входе, тем лучше были результаты работы всех четырех типов алгоритмов. Простой алгоритм, который хуже всех справлялся с половиной миллиона слов, показал наилучший результат, обработав миллиард слов. Степень точности возросла с 75 до более чем 95 %. И наоборот, алгоритм, который лучше всех справлялся с небольшим объемом данных, показал наихудший результат при больших объемах. Следует отметить, что при этом его результат, как и результат остальных алгоритмов, значительно улучшился: с 86 до 94 % точности. «Эти результаты показывают, что нам, возможно, понадобится пересмотреть свое представление о том, на что стоит тратить время и средства: на разработку алгоритмов или на развитие корпусов», – отметили Банко и Брилл в одной из своих научных статей на эту тему[45].

Итак, чем больше данных, тем меньше затрат. А как насчет беспорядочности? Спустя несколько лет после того, как Банко и Брилл начали активно собирать данные, исследователи компании Google, их конкурента, стали рассуждать в том же направлении, но еще более масштабно. Они взялись тестировать алгоритмы, используя не миллиард слов, а корпус из целого триллиона слов. Целью Google была не разработка средства проверки грамматики, а еще более сложная задача – перевод.

Концепция так называемого «машинного» перевода появилась на заре вычислительной техники, в 1940 году, когда устройства состояли из вакуумных ламп и занимали целую комнату. Идея стала особенно актуальной во времена холодной войны, когда в руки США попало огромное количество письменных и устных материалов на русском языке, но не хватало человеческих ресурсов для их быстрого перевода.

Специалисты в области компьютерных наук начали с того, что выбрали сочетание грамматических правил и двуязычный словарь. В 1954 году компания IBM перевела 60 русских фраз на английский язык на основе словарного запаса компьютера, состоящего из 250 пар слов, и шести правил грамматики. Результаты оказались многообещающими. В компьютер IBM 701 с помощью перфокарт ввели текст «Мы передаем мысли посредством речи» и получили на выходе We transmit thoughts by means of speech. В пресс-релизе по случаю такого события отмечалось, что было «благополучно переведено» 60 предложений. Директор программы профессор Леон Достерт из Джорджтауна заявил, что машинный перевод станет «свершившимся фактом» предположительно через «лет пять, а то и три [года]»[46].

Первоначальный успех был обманчив. К 1966 году комитет по вопросам машинного перевода признал, что потерпел неудачу. Проблема оказалась сложнее, чем они предполагали. Суть перевода заключалась в обучении компьютеров не только правилам, но и исключениям. Этому трудно обучить компьютер в прямой форме. В конце концов, перевод состоит не только в запоминании и воспроизведении, как могло показаться раньше. Речь идет о поиске подходящих слов среди множества альтернативных вариантов. Что значит bonjour? «Доброе утро», «добрый день», «здравствуйте» или, может быть, «привет»? Все зависит от обстоятельств.

В конце 1980-х годов у исследователей из компании IBM родилась новая идея. Вместо того чтобы загружать словари и явные лингвистические правила в компьютер, они позволили ему автоматически вычислять статистическую вероятность того, что то или иное слово либо словосочетание на одном языке лучше всего соответствует аналогу на другом. В 1990-х годах в проекте компании IBM Candide был задействован десятилетний опыт переводов стенограмм заседаний канадского парламента, опубликованных на французском и английском языках, – около трех миллионов предложений[47]. Поскольку это официальные документы, их переводы были выполнены с соблюдением чрезвычайно высоких требований. По меркам того времени количество данных было огромным. Эта технология, получившая известность как «статистический машинный перевод», ловко превратила задачу перевода в одну большую математическую задачу. И это сработало. Компьютерный перевод неожиданно стал намного лучше. Однако вслед за начальным прорывом компании IBM не удалось внести каких-либо значительных улучшений, несмотря на большие вложения. В конечном счете проект был закрыт.


  • Страницы:
    1, 2, 3, 4, 5