Современная электронная библиотека ModernLib.Net

Galileo - Мир, созданный химиками. От философского камня до графена

ModernLib.Net / Химия / Петр Образцов / Мир, созданный химиками. От философского камня до графена - Чтение (Ознакомительный отрывок) (Весь текст)
Автор: Петр Образцов
Жанр: Химия
Серия: Galileo

 

 


Петр Образцов

Мир, созданный химиками. От философского камня до графена

Предисловие

Как часто в рекламе самых разных товаров звучит фраза: “Здесь нет никакой химии!” Изо всех сил нас призывают покупать йогурты и шампуни, лапшу и мыло, стиральные порошки и сладкую газировку только “из натуральных компонентов”, а также овощи и фрукты, выращенные “без химических удобрений и пестицидов”, короче – без “химии”! Химией пугают детей, домохозяек и пенсионеров.

Должен всех разочаровать: “без химии” ничего не бывает просто потому, что все в мире – от воздуха до человеческого тела и от кефира до Гималайских гор – состоит из химических веществ. Некоторые, правда, считают, что есть вещества “искусственные”, а есть природные, прежде всего органические вещества, из которых состоят живые организмы. Этих некоторых можно смело считать неявными поклонниками витализма – учения, согласно которому нельзя получить органическое вещество в колбе, в лаборатории. Якобы органическое вещество образуется только в результате жизнедеятельности живого существа, отсюда, отсюда, кстати, и сам термин. Латинское “vita” – это жизнь, и живому присуща некая “жизненная сила”. Однако еще в 1828 году Фридрих Вёлер взял и синтезировал мочевину из неорганических веществ – из цианата калия KNCO и сульфата аммония (NH4)2S04. Потом синтетические органические вещества посыпались, как из рога изобилия, который тоже, кстати, представляет собой в основном органическое вещество, а именно белок кератин.

Уже в XX веке были синтезированы действительно отсутствующие в природе органические вещества – прежде всего синтетические органические полимеры, хотя издавна были известны и природные, например кожа, хлопок, шерсть, да и целлюлоза древесины. Правда, до поры до времени об их полимерной структуре не знали. Сейчас представить себе жизнь без пластмасс и прочей синтетики просто невозможно. Читая эту книгу, вы сидите в комнате с окрашенными синтетическими красками обоями, приклеенными к стенам синтетическим клеем. Возможно, на полу у вас лежит пластиковый линолеум, а письменный стол изготовлен из древесно-стружечных плит, сформованных с помощью фенолформальдегидной смолы. На вас рубашка, наполовину сотканная из синтетических нитей, тапочки из пластика или с искусственным мехом. Кресло, скорее всего, тоже из ДСП и искусственной кожи. Еще сто лет назад обо всех этих веществах и материалах даже не подозревали.

Само слово “химия” произошло от арабского “аль-хем”, а то, в свою очередь, – от древнеегипетского “кеми”, что означало одновременно и “черная земля”, и “Египет”. Вероятно, там первые химики и появились. Это были жрецы, знавшие толк в бальзамировании фараонов и священных животных – кошек, а также в изготовлении стекла и получении меди путем восстановления медной руды древесным углем. Скорее всего, именно они, а не арабские алхимики первыми научились перегонять жидкости и получили этиловый спирт. Пиво и пальмовое вино у них было, нагревать напитки в керамических и даже стеклянных сосудах они умели, а догадаться об охлаждении выделяющихся паров уже ничего не стоило.

Впрочем, существует и другая теория происхождения слова “химия” – от китайского слова “цзинь”, золото. Доказательством китайского происхождения и слова, и самой науки является близость звучания “цзинь” (или “кин” по-японски) и древнегреческого “химиа” – металлургия, а также использование ключевого иероглифа “золото” при записи всех китайских слов, обозначающих металлы. Однако многим ученым эта теория кажется не очень убедительной.

В этой книге речь идет о химии, о науке, имеющей богатую историю, в которую, кстати, большой вклад внесли и российские ученые.

Мы вспомним и про алхимию, и про иатрохимию, и про ужасные случаи применения химических открытий – боевые отравляющие вещества и “Циклон Б”, и про драматические обстоятельства открытия радиоактивных элементов. А вот как все начиналось.

Глава 1 В поисках камня

Невозможно сказать, кто из одушевленных обитателей нашей планеты был первым химиком. А вот неодушевленным – можно, таким первым химиком была сама природа. Все процессы образования Земли из газопылевого облака, последующие реакции между различными компонентами раскаленного каменного шара, появление воды, а затем и органических форм жизни, сначала в виде растений, – это все химические процессы. Впрочем, радиоактивный распад, происходящий до сих пор в глубинах планеты и обусловливающий ее высокую по космическим масштабам температуру, все-таки скорее относится к физике. А первым живым химиком можно считать того неандертальца, который сознательно сохранил в пещере зажженную молнией щепку, а потом зажигал от нее так же сознательно подготовленные дровишки. Горение дерева представляет собой типичную химическую реакцию окисления кислородом, которую при желании можно даже записать в виде схемы:


CxHyOz (органические вещества дерева) + О2 -> СО2 + Н2О


Несколько позже уже настоящие хомо сапиенсы начали осуществлять довольно сложные реакции восстановления руд различных металлов. Появилась младшая дочь химии – металлургия. Например,


2CuO + C = 2Cu + CO2 (восстановление руды – оксида меди – углеродом)


Восстановление железа из его руды требует гораздо больших температур, которые были достигнуты путем вдувания в горн воздуха кузнечными мехами. Такой способ получения железа был открыт во втором тысячелетии до н. э., по-видимому, хеттами. В гробнице Тутанхамона XIV века до н. э. был обнаружен кинжал с железным лезвием, явно принесенный в дар юному фараону хеттскими послами. Окончательно железный век установился к 1000 году до н. э. Интересно, что железные изделия античных времен демонстрируют высокую устойчивость к коррозии, и лишь в Новейшее время было выяснено, что коррозии способствует сера, содержащаяся в каменном угле для выплавки железа из руды. А в древности использовали древесный уголь, в котором серы практически нет.


Fe3O4 + 2C = 3Fe + 2CO2 (получение железа из руды)


Процессы получения некоторых металлов были известны уже древнеегипетским жрецам, они же составили рецепты бальзамов для мумифицирования своих фараонов, высших чиновников, кошек и прочей живности, и они же, скорее всего, изобрели дистилляцию и соответственно крепкие алкогольные напитки – а не только пиво и слабое винцо, как обычно принято считать. В III веке в египетской Александрии уже сформировались основные положения предшественницы научной химии – алхимии. Числу семи известных тогда планет удачно соответствовали семь известных металлов, тут же было придумано и сопоставление. Серебру соответствовала Луна, золоту – Солнце, ртути – Меркурий, меди – Венера, железу – ясное дело, Марс, олову – Юпитер, свинцу – Сатурн. Причем вначале изучение этих металлов и их соединений даже не следовало бы относить к алхимии, лишь через некоторое время целью исследований стал поиск философского камня и возможности трансмутации, то есть превращения свинца в серебро, а ртути в золото. Уникальная способность ртути образовывать твердые сплавы с золотом и серебром навела химиков прошлого на мысль, что этот металл является первоосновой, первичным металлом.

Со временем утвердились основные положения алхимии, а именно:

Существует material prima – первичная материя, заполняющая все и вся, но загрязненная различными примесями. Удалив эти примеси, можно получить философский камень, превращающий, как уже было сказано, неблагородные металлы в благородные. К сожалению, о бессмысленности этого действия вследствие неминуемой катастрофической инфляции алхимики не подозревали. Кроме того, алхимики свято верили, что философский камень исцеляет все болезни и дарит бессмертие. Заметим, они уже тогда догадались, что желать надо не вечной жизни, а вечной молодости.

Алхимики признавали четыре первопричины Аристотеля: тепло, сухость, холод, влажность. Эти первопричины образуются при сочетании четырех стихий: огонь + воздух = тепло, огонь + земля = = сухость, вода + земля = холод, воздух + вода = влажность. При переводе на русский язык названия знаменитого фильма Люка Бессона “Пятый элемент” переводчики не поняли, что в данном случае под словом element имеются в виду именно стихия и фильм про пятую стихию, то есть любовь, должен называться “Пятая стихия”.

Алхимики, поразившись одинаковому количеству планет Солнечной системы и металлов, уверовали в мистическое влияние небесных тел на все процессы, протекающие на Земле, в том числе на зарождение металлов. О том, что Солнце вовсе не планета, вращающаяся вокруг Земли, а независимая звезда, они, разумеется, не знали. До Коперника было еще очень далеко.

Совпадение количества планет и металлов привело их к убеждению, что металлов и не может быть больше семи. Это отражено в занятном стихотворении народовольца Николая Морозова. Просидевший 25 лет в Петропавловской и Шлиссельбургской крепостях революционер не только призывал к оживлению мертвых и критиковал хронологию истории, став предшественником группы математика Фоменко, но и увлекался химией. Но все-таки революционер не сошел с ума, и этот стишок, надо надеяться, отражает не его точку зрения, а алхимиков:

Семь металлов создал свет,

По числу семи планет:

Дал нам Космос на добро,

Медь, железо, серебро,

Злато, олово, свинец…

Сын мой! Сера их отец!

И спеши, мой сын, узнать:

Всем им ртуть родная мать!

Ну и, наконец, алхимики не сомневались в возможности превращений, трансмутаций, причем считали, что в золото можно превратить не только свинец и ртуть, но и все остальные металлы, прибавив к ним “качество” серебра или золота.

К VIII веку центр алхимии переместился на арабский Восток. Джабир ибн Хайян, называемый в Европе попросту Гебером, придумал ртутно-серную теорию происхождения металлов, впрочем, не сильно отличающуюся от классической. Через пару веков другой алхимик добавил к ртути и сере еще и “твердость”, или философскую соль. Однако практичные арабы не слишком увлекались философией и значительно больше времени посвящали экспериментам. В результате именно им принадлежит честь изобретения большинства видов алхимической, да и просто химической, посуды – реторт, перегонных кубов, разного вида колб, водяных и песчаных бань. После завоевания Месопотамии и Багдада турками многие алхимики бежали в Европу, где передали свои знания европейским ученым. Самым заметным из них был Альберт Великий (XIII век), автор знаменитых “Правил”. В этом объемистом труде впервые описаны все операции, которые использовали алхимики. К ним относятся перегонка, возгонка (сейчас называемая сублимацией), осаждение или преципитация, фильтрование, кристаллизация и кальцинация, или попросту обжиг. Эти операции химики применяют и сейчас, несмотря на появление большого числа чисто физических методов исследования и анализа типа спектроскопии или ядерного магнитного резонанса.

Золотая наша железка

Как и в любом другом виде деятельности человека, в алхимии было много жуликов. Примерно в XVI веке “имя им стало легион”. Занимались эти махинаторы тем, что составляло смысл деятельности классического алхимика, а именно получали золото из неблагородных веществ. В принципе такая трансмутация возможна. Например, из ртути действительно можно получить золото, бомбардируя этот “первичный металл” потоком быстрых нейтронов, что и было сделано американцами в 1940 году. Правда, стоимость такого золота будет раз в сто больше котировок этого металла на Лондонской бирже. Но это не так и важно, поскольку ядерные реакции алхимикам по понятным причинам были неизвестны и недоступны. Соответственно алхимическим махинаторам приходилось изготавливать золото для своих коронованных покровителей из… золота. Точнее, из его соединений.

Простейшим вариантом обмана каких-нибудь Карла или Августа под соответствующими номерами было разложение амальгамы золота – твердого сплава золота со ртутью, по внешнему виду на золото совсем непохожего. А при большом содержании ртути амальгама к тому же может оставаться жидкой, тут уж совсем не уличишь ученого негодяя в обмане. При нагревании амальгамы, хоть твердой, хоть жидкой, ртуть отгоняется и в тигле появляется золото, столь необходимое коронованным особам для выдачи зарплаты своим ландскнехтам и для ублажения очередной любовницы. В различных музеях Европы хранится несколько десятков монет, отчеканенных из такого алхимического золота. Однако в большинстве случаев алхимических фальшивомонетчиков разоблачали и, как правило, казнили. Причем в Германии был даже изобретен особый ритуал казни алхимиков – их вешали на позолоченной виселице, одев в парчовый кафтан.

В XVI веке, во времена Реформации и ослабления католицизма, акции алхимиков сильно пошатнулись. В этой древней науке произошли существенные изменения. Кстати, алхимию не стоит считать какой-то чепухой и набором заблуждений вроде астрологии. Алхимия – настоящая наука, со своими методами исследований, специфическим языком, часто воспроизводимыми результатами и набором пусть невнятных, но теорий. Алхимия нисколько не противоречит химии, а лишь является ее предшественницей. Так вот, реформировал алхимию великий Теофраст Бомбаст фон Гогенгейм (1493–1541), публиковавший свои работы под псевдонимом Парацельс. Греческая приставка пара- означает “возле”, “около” или “отклонение”. Парапсихология – это отклонение от подлинной психологии, это лженаука. Парамагнетики отклоняются в сторону магнитного поля. Но Теофраст Бомбаст при выборе псевдонима использовал первое значение приставки, и поэтому Парацельс означает “около Цельса”, в смысле равный Цельсу. Сам же Авл Корнелий Цельс – это знаменитый древнеримский ученый и врач, составивший энциклопедию знаний начала нашей эры, в частности по терапии, хирургии, гигиене и патологии. Ясно, что Теофраст Бомбаст относился к себе без излишней скромности, что подтверждается текстами его хвастливых сочинений.

Однако именно Парацельсу алхимия обязана поворотом к более материалистическому пониманию веществ и природы и появлением иатрохимии[1]. Парацельс считал, что нужно уже бросить искать философский камень – пора заняться составлением лекарственных препаратов. Парацельс, подтверждая необходимость введения Соли как третьего “принципа” в дополнение к Ртути и Сере, полагал, что любая болезнь есть нарушение равновесия этих “принципов” в организме человека. Для восстановления же равновесия в качестве лекарств он предложил использовать разнообразные вещества неорганического происхождения – соединения мышьяка, свинца, ртути вместе с традиционными растительными препаратами. Соединения этих металлов, как известно, ядовиты в больших концентрациях, но безвредны и даже полезны в малых, поэтому Парацельса можно считать первым гомеопатом, а его иатрохимию – предшественницей этого направления в медицине, пусть и необъяснимого с позиций современной науки, а может, и просто неверного. Но о гомеопатии немного позже.

Чтобы закончить с иатрохимией, а вместе с ней и с классической алхимией, упомянем самого выдающегося представителя иатрохимии Ван Гельмонта (1578–1644). Он первым ввел понятие об истинных простых частях сложных тел, отвергая аристотелевские стихии и алхимические принципы, хотя и не сумел выделить из сложных тел эти самые простые части. Простыми же он считал те вещества, которые можно получить при разложении сложных тел, и поэтому посчитал простым веществом воду, всегда появляющуюся при распаде растений и животных. Ван Гельмонта можно также считать автором количественного анализа, поскольку он первым не просто растворил серебро в “крепкой водке” – азотной кислоте, но и выделил его обратно путем разложения нитрата серебра, причем в строго том же количестве. На алхимическом языке приведенная ниже реакция описывается так: “Крепкая водка пожирает Луну и выделяет лисий хвост, жидкость на песчаной бане сгусти, и получишь адский камень”.


Ag + 2HNO3 = AgNO3 + NO2 + H2O


“Луна” – это, как уже было сказано, серебро, а “лисий хвост” – оксид азота NO2 рыжего цвета, “адский камень” – это нитрат серебра AgN03, или ляпис, которым прижигают порезы. При этом выделяется бактерицидное серебро в виде мельчайших частиц черного цвета. Серебро восстанавливает из ляписа любая органика, в том числе верхний слой кожи, но Ван Гельмонт получал серебро, “прокаливая адский камень в печи с появлением Луны”.


Однако Ван Гельмонт все-таки был алхимиком, а потому иногда проводил совершенно абсурдные опыты и выдвигал абсолютно фантастические теории. Именно ему принадлежит знаменитый способ изготовления живых организмов, а именно домашних мышей. Напомним, что способ несложен: нужно в корзину для грязного белья насыпать влажного зерна пшеницы и ждать 21 день. Мыши обязательно появятся. Кстати, если производить этот опыт не в городской квартире на пятом этаже, а, скажем, в деревне или на даче, то мыши действительно появятся!

Незадолго до смерти Ван Гельмонта в 1661 году англичанин Роберт Бойль опубликовал книгу “Скептический химик”, в которой назвал эксперимент главным способом изучения природы и предложил методику поиска истинно простых элементов, число которых считал много большим четырех, намекая на стихии Аристотеля. Этот год можно считать концом алхимии и рождением химии, хотя алхимики продолжали заниматься своими поисками философского камня еще длительное время. Более того, как это ни странно, алхимия дожила и до нашего времени! Современная физика атомного ядра фигурирует понятиями кварков, из которых состоят все элементарные частицы – то есть уже не считающиеся элементарными. Этих кварков насчитывается три “поколения”, и современные алхимики спрашивают, а не являются ли эти поколения Ртутью, Серой и Солью? Впрочем, все это не более чем “размышлизмы” – экспериментальной алхимии, разумеется, не существует. Единственно достойное внимания определение современной алхимии звучит следующим образом: “Обычный художник нарисует очень похожий портрет итальянской тетки, а если бы этим занялся алхимик, то вышла бы Джоконда”.

Гомеопатическое ничто

Очень тесно связана с алхимией, в частности с учением об иатрохимии, старинная медицинская практика гомеопатии, имеющая под собой некоторые теоретические обоснования. В 2010 году исполнилось ровно двести лет, как немецкий врач Самуэль Ганеман (1755–1843) выпустил книгу “Органон рационального врачевания”, в которой описал придуманное им новое направление в медицине – гомеопатию. Основной принцип гомеопатии – лечение подобного подобным – предложил еще знаменитый античный врач и ученый Гален. Тех же убеждений придерживался и средневековый корифей алхимии и лекарственного врачевания Парацельс, однако современную гомеопатию связывают прежде всего с именем Ганемана.

Этот сын художника, расписывавшего мейсенский фарфор, попробовал сначала лечить лихорадку (малярию) корой хинного дерева, которая и сама по себе вызывает появление симптомов лихорадки у здорового человека. Исходно он применял довольно большие дозы хины, и больной действительно выздоровел, однако аналогичное использование рвотного камня для лечения неукротимой рвоты и кое-какие другие подобные процедуры привели к обратному эффекту. Но Ганеман свято поверил в основной принцип – лечить подобное подобным – и не прекратил эксперименты, а начал просто уменьшать дозу лекарства, разбавляя его поначалу в сто, а потом и в тысячи, и в миллионы (!) раз.

Таким образом, в гомеопатии лечат болезнь лекарством, которое в больших количествах вызывает у здорового те же симптомы, что проявляются у больного. Например, у наевшегося по неосторожности травки белладонны повышается температура, появляется жар и покраснение. Значит, если у вас повышенная температура, жар и покраснение кожи – например, из-за простуды, – гомеопат назначит вам препарат белладонны в отчаянно большом, совершенно неядовитом разбавлении.

Этот препарат делается так. Берем 1 кубик (миллилитр) крепкого, концентрированного экстракта белладонны в спирте, добавляем 99 кубиков дистиллированной воды и довольно интенсивно встряхиваем раствор. Гомеопаты называют это “потенцированием” и считают важнейшей операцией при изготовлении лекарства. Из полученного раствора отбираем 1 кубик, снова к нему добавляем 99 кубиков дистиллированной воды, встряхиваем и так далее.

После первого разбавления (“разведения” на языке гомеопатов) мы уменьшили концентрацию белладонны в 100 раз, после второго – в 10 тысяч раз. Гомеопаты используют разведения под номерами 5–6, хотя не стесняются использовать и тридцатые, и сотенные разведения. При этом разведение № 6 означает, что исходный экстракт был разбавлен в триллион (!) раз. Тридцатое разведение означает, что экстракт разбавлен в 1060 раз!

Именно разведение исходного лекарства в немыслимое количество раз вызывает неприятие гомеопатии врачами-аллопатами (от греческого “аллос” – “другой”), да и самыми обычными гражданами, сохранившими кое-какие воспоминания о школьном курсе химии. В этом курсе упоминается о числе Авогадро, показывающем, например, сколько молекул воды находится в небольшой рюмке с водой. Это число немного меньше 1024, и для той же белладонны такое количество молекул (причем разных молекул, поскольку белладонна – это смесь веществ) будет содержаться как раз в стакане на 100 кубиков. Значит, если мы произведем двенадцатое разведение белладонны – это разбавление в 1024 раз, – то в нашем стакане останется ровно 1 (одна) молекула какого-то вещества из белладонны. При дальнейших разведениях в стакане, разумеется, ни одной молекулы лекарства больше нет. Сотое разведение (в 10200 раз) – просто издевательство над здравым смыслом.

Так говорят аллопаты и не собираются дальше дискутировать на тему гомеопатии. А все успехи гомеопатии объясняют эффектом плацебо (от латинского placeo – быть довольным). Известно, что если вместо настоящего лекарства седовласый профессор в роговых очках и белоснежном халате подсовывает больному щепотку толченого мела, то в 30 % случаев больные выздоравливают. На самом деле они просто и не были больны, хоть и не симулировали. Такие болезни называют психосоматическими, то есть вызываемыми у себя самим больным. Наиболее яркий пример: средневековые фанатики ухитрялись усилием воли вызывать у себя появления стигматов – ран на руках и ногах, совпадающих с ранами на конечностях Иисуса Христа, распятого на кресте. Они не расцарапывали мышцы, нет, раны вызывались именно усилием воли!

Нельзя сказать, что гомеопаты ничего не понимают и не слышат аргументов аллопатов. И, понимая, что против числа Авогадро действительно не попрешь, они пытаются зайти с другого конца. Так, еще в XIX веке использовалось понятие “жизненная сила”, родственное витализму: при разведении и встряхивании гомеопат передает раствору некую мистическую энергию, действующую как исходное лекарство. Сейчас гомеопаты об этой теории не говорят, даже стесняются ее.

Самое современное объяснение – пресловутые “биоэнергоинформационные” свойства воды. В случае гомеопатии адепты теории говорят, что вода окружает молекулы препарата, “запоминает” его свойства и форму молекул, а после удаления этих молекул сама образовавшаяся дырка лечит, как исходный препарат. Давным-давно доказано, что ничего похожего не происходит, молекулы воды постоянно движутся, за мельчайшие доли секунды переходя с места на место. Пожалуй, самым приемлемым объяснением необъяснимого действия гомеопрепаратов является честное утверждение: да, мы пока не знаем, как работают эти калькарии, сульсии и арники. Однако двухвековой опыт гомеопатического лечения больных, в том числе и тех, с хворями которых не справились аллопаты, убеждает в эффективности метода. И с этим трудно не согласиться – все-таки уже (почти) точно известно, что эффект от лечения гомеопрепаратами выше, чем 30 % как при приеме плацебо. Выше, действительно выше. Есть и еще один очень забавный аргумент в пользу гомеопатии: при лечении гомеопрепаратами начисто отсутствуют побочные вредные эффекты. И действительно, как может быть вредной практически чистая вода?

Недавно появилась не подтвержденная пока экспериментально, вполне материалистическая теория, которая хоть как-то объясняет возможный лечебный эффект гомеопатических средств. Ее суть в том, что при многократном разбавлении и встряхивании в воде появляется растворенный диоксид кремния SiO2 и какие-то другие вещества из самого стекла пробирки. Причем становится ясно, почему нельзя для разведения в миллион раз просто капнуть одну каплю лекарства в бочку с водой, а требуется разбавлять постепенно – для увеличения времени контакта жидкости со стенками пробирки. И встряхивание требуется именно для этого. Расчеты показывают, что в стакане раствора лекарства, не содержащего ни единой молекулы действующего вещества, может содержаться до 2 миллиграммов диоксида кремния. Это раствор с концентрацией вещества, описываемой модным сейчас словечком “нано”. А лечебный эффект препаратов кремния – причем аллопатических препаратов! – при некоторых заболеваниях давно известен. Не исключено, что нанотехнологи когда-нибудь подтвердят эту теорию.

Кстати, одним из самых серьезных критиков гомеопатии был Дмитрий Иванович Менделеев, создатель великой Таблицы химических элементов, которая во многом определила развитие не только химии, но и всего естествознания нашего времени.

Глава 2 Вселенная Менделеева

В 1834 году в семье директора Тобольской гимназии родился семнадцатый ребенок, которого назвали Дмитрием. Не удивляйтесь, если увидите разночтения. Во многих биографиях Менделеева указывается, что он был четырнадцатым ребенком, но это как считать. Трое детей умерли сразу после родов Марии Дмитриевны Менделеевой, владелицы небольшой стекольной фабрики. Будущий великий ученый сначала было пошел по стопам отца: после окончания Петербургского педагогического университета работал учителем в Крыму и в Одессе, а потом преподавал химию в Петербургском университете. Но преподавание – это мелочь в его биографии. А как мы знаем, русскому человеку несвойственно размениваться на мелочи. И Менделеев совершил великое открытие – придумал свою Периодическую таблицу.

Об этом не принято говорить, но совершенно ясно, что построить ее на основании имевшихся данных тогда было просто невозможно, открытие Менделеева – гениальная догадка, пусть и пришедшая ему в голову после многолетних раздумий.

Вот перед нами нарисованная самим автором открытия рукописная табличка. К тому времени было известно всего чуть более 60 элементов с их атомными весами (сейчас элементов уже почти вдвое больше). Идея расположить элементы по порядку возрастания их атомных весов совершенно естественна и банальна. Несколько сложнее было заметить периодические закономерности в этом ряду, но и здесь немало было сделано и до Менделеева. Уже существовало “правило октетов” (химические свойства каждого восьмого элемента очень близки), “правило триад” (в каждой тройке близких по свойствам элементов средний элемент обладает и средним атомным весом). Однако никому из исследователей не удавалось, пусть даже с использованием этих закономерностей, построить систему для всех известных элементов. Объяснялось это тем, что и свойства многих элементов были неизвестны или определены неверно, да и атомные веса ряда элементов были измерены неправильно.

Несмотря на свое еще юношеское преклонение перед Ньютоном, автор Периодической системы был великим химиком, а не физиком. Поэтому за основу своей системы он взял химические свойства элементов, решив расположить химически похожие элементы друг под другом, но соблюдая принцип возрастания атомных весов. Ничего не выходит! Бериллий нарушал всю картину уже в первой строчке будущей таблицы – углерод оказался аналогом алюминия, а немного дальше таким аналогом оказывается и титан. И то и другое с точки зрения химических свойств элементов является совершеннейшим нонсенсом. Углерод – типичный неметалл, а что может быть “металличнее” алюминия или титана? Вот тут бы и прекратить поиски периодичности – и ряд крупнейших ученых того времени так и поступили.

Говорят, что Периодическая таблица приснилась Менделееву во сне. Может быть, и так. Хотя вряд ли, сам Менделеев опровергал эту типично журналистскую легенду. Но в любом случае способ преодоления получившейся несуразности вряд ли лежит в области логики, может быть, здесь не обошлось без интуиции. Менделеев просто взял и изменил атомный вес бериллия, а между кальцием и титаном поставил пустую карточку, предсказав таким образом элемент скандий.

Самое поразительное, что поступил он так не с двумя элементами, а чуть ли не с третьей частью всех тогда известных! Например, он присвоил урану атомный вес 240 вместо принятого 120 (увеличил аж в два раза!), переставил местами кобальт и никель, теллур и йод. Опубликовав в 1869 году первый вариант своей Таблицы, он предсказал сразу три элемента, изменил атомные веса у десятка элементов и при этом открыл, что “свойства элементов стоят в периодической зависимости от их атомного веса”. Да ничего подобного! От тех атомных весов ничего не зависело. Великий химик лукавил – он-то наверняка уже догадался, что “свойства элементов стоят в периодической зависимости от”… того номера в его таблице, которое он им присвоит! Менделеев фактически приказал элементам построиться в придуманный им ряд, и Природа послушно смирилась.

Как такое может быть, неизвестно. А как поэт Андрей Белый за 34 года до Хиросимы написал строки?

Мир рвался в опытах Кюри

Атомной лопнувшею бомбой…

История науки знает не так много предсказаний уровня Периодического закона и Таблицы. Великий акт творения Менделеева стал подлинно научной теорией только когда были открыты и скандий, занявший ту пустую карточку, и экаалюминий (галлий), и экасилиций (германий), и благородные газы, и среди них – аргон, прекрасно вставший в Таблице до калия, хотя его атомный вес больше. И Таблица не рухнула! А несколько позже английский физик Генри Мозли объяснил, что номер в Таблице равен заряду ядра атома и что на самом деле “свойства элементов стоят в периодической зависимости от заряда ядра, равного номеру в Таблице”. То есть точно по Менделееву.

Есть такая теория, что мир не только не познаваем, но и зависит от того, кто его познает, – исследователь неизбежно влияет на результат эксперимента. Градусник, помещенный в кипяток для измерения температуры, на тысячную долю градуса сам охлаждает воду. И потому есть множество одновременно существующих Вселенных с различающимися свойствами. Можно сказать, что наша Вселенная, состоящая сейчас из примерно 120 элементов, устроена Дмитрием Ивановичем Менделеевым.

Он прожил 73 года, написал около 500 статей по химии, физической химии, технике, физике, экономике, геодезии. Организовал и стал первым директором Палаты мер и весов, был профессором университета и действительным статским советником (то есть генералом), ушел из университета в знак протеста против сужения университетской автономии, был избран в 90 иностранных академий наук и забаллотирован при выборах в русскую. Российские академики сочли его труды недостаточно фундаментальными, слишком близкими к практическим нуждам.

В качестве хобби Дмитрий Иванович переплетал книги и сам себе шил одежду, считая ту, что продавалась в магазинах, неудобной. Для энциклопедии Брокгауза и Ефрона он написал статьи не только о винокурении, но и о варениках. Самым вредным человеческим качеством считал скромность и умело выбивал деньги из правительства для своей лаборатории, наблюдал солнечное затмение с воздушного шара. Придумал теорию неорганического происхождения нефти из карбидов металлов – после почти столетнего пренебрежения к ней сейчас возвращаются геологи и химики. Периодическую систему он создал в 35 лет.

На один из юбилеев Дмитрию Ивановичу подарили драгоценные, изготовленные из чистого алюминия химические весы: дешевый электрохимический способ получения этого металла был тогда неизвестен, хотя в работах Менделеева есть намек и на эту технологию. Американские физики синтезировали 101-й элемент Таблицы и назвали его менделевием, на Земле есть минерал имени Менделеева, вулкан и подводный горный хребет Менделеева, а на обратной стороне Луны – кратер Менделеева.

Но к светлому имени прилипли и дурацкие легенды. Прежде всего о том, что Д.И. Менделеев якобы придумал водку, точнее – назвал 40° лучшей концентрацией спирта в воде, при которой якобы водка самая “питкая”. Хорошо хоть, что не назвали ее самой полезной!

И до сих пор бытует легенда, что “стандарт русской водки высшего качества был утвержден царской правительственной комиссией во главе с Д.И. Менделеевым в 1894 году”. И вообще, история о том, что “водку изобрел Менделеев”, стала так же распространена, как в гоголевские времена фраза “немец луну сделал”. Поскольку хлебное вино у нас пьют уже лет триста-четыреста, с именем Менделеева стали связывать не само “зелено вино”, а выбор для водки крепости именно в 40°. Однако в трудах великого химика отыскать обоснование этого выбора не удается. Диссертация Менделеева “О соединении спирта с водой”, написанная в 1864 году и посвященная свойствам смесей спирта и воды, никак не выделяет эти 40°. Да, Менделеев действительно написал статьи “Водка” и “Винокурение” для словаря Брокгауза и Ефрона, но, собственно, и что из этого? Выше уже отмечалось, что он написал для энциклопедии и статью о варениках – так что жирность творога тоже придумал Менделеев?

И это еще не все. “Царская правительственная комиссия” никак не могла установить данный стандарт водки уже хотя бы потому, что эта организация – “Комиссия для изыскания способов к упорядочению производства и торгового обращения напитков, содержащих в себе алкоголь, – была образована по предложению С.Ю. Витте (а вовсе не царя) только в 1895 году! Причем Менделеев выступал на ее заседаниях в самом конце того же, 1895, года и по вопросу об акцизах.

Хочется, конечно, понять, почему именно 40°. Вот пара предположений. Во-первых, выбор для водки именно 40° – дело случая и удобства смешивания спирта с водой в соотношении “два к трем”. Более простое соотношение “один к одному” крепковато, хотя и такая 50-градусная водка выпускается. Во-вторых, если строго пересчитать 40 объемных процентов на весовые, то мы получим, что водка имеет весовую концентрацию 33,3 %, то есть ровно треть! Это как раз очень важно. Изготавливать водку путем смешивания спирта и воды по объему удобно, но не очень хорошо, поскольку объемы жидкостей зависят от температуры. А при смешивании по массе этот эффект отсутствует. В случае спирта сие очень важно, ведь у нас в России чрезвычайно трудно удержаться, чтобы спирт не украсть.

Дмитрий Иванович может считаться последним энциклопедистом – и не только в российской, но и в общемировой науке. Конечно, главное дело и достижение его жизни – Периодическая система элементов, и, говоря о Менделееве, вспоминают всегда именно об этом, но ведь и Леонардо да Винчи не только написал “Джоконду”. Он и много чего другого сделал. Хотя надо сказать, что Леонардо считают энциклопедистом и “универсальным человеком”, мягко говоря, несколько незаслуженно: практически ни одно из его изобретений не было и не могло быть реализовано, за исключением разве что колесика для высекания искры и воспламенения пороха в пистолете (почти точная копия используется и сейчас в зажигалках). Знаменитый танк Леонардо к настоящим танкам отношение имеет крайне отдаленное, рисунок велосипеда скорее всего подделка, а робот Леонардо самостоятельно двигаться не мог и представлял собой карикатуру на рыцаря.

А вот многие работы Дмитрия Ивановича – по метрологии, воздухоплаванию, метеорологии, сельскому хозяйству, экономике и даже по установлению акцизов на водку – были использованы современниками. Некоторые же его открытия – например, формула Менделеева – Клапейрона для идеальных газов или теория растворов – навсегда останутся в науке. Несколько его изобретений реализованы в первом российском ледоколе “Ермак”. Он разработал и первый отечественный бездымный порох.

Существует легенда, что в данном случае Менделеев не был особенно оригинален, зато он стал одним из первых в истории России промышленным шпионом. Во время командировки во Францию он ознакомился с бездымным порохом, рецепт изготовления которого французы ему не дали, вполне справедливо ссылаясь на секретность разработки, – это как раз правда. Но вот расчеты о поступавших на завод, где производился бездымный порох, целлюлозы, серной и азотной кислот Менделеев не производил, это совершеннейшая чепуха. К тому времени состав бездымного пороха (пироксилина), получающегося в реакции целлюлозы со смесью серной и азотной кислот, был отлично известен. Трудности составляли технические детали производства и физико-химические свойства продукта. Дело было в том, что патроны и снаряды, начиненные этим порохом, взрывались прямо в стволе орудия. Менделеев же сумел получить нитроклетчатку, которая полностью растворялась в смеси спирта и эфира.

Это вещество, названное им пироколлодием, показало прекрасные результаты. Однако из-за разного рода интриг производство менделеевского пироколлодия вскоре было прекращено, и, по российскому обыкновению, правительство предпочло покупать порох за границей, пусть и худшего качества.


Получение пироксилина:

(C6H10O5)n + 3nHNO3 = [C6H7O2(NO3)3]n + 3nH2O


Но самая экзотическая идея Дмитрия Ивановича – после Периодического закона, разумеется, – это неорганическая теория происхождения нефти: не из сгнивших лишайников и тушек динозавриков, а из глубоко под землей залегающих карбидов металлов. Эта теория, на которую еще недавно геологи посматривали с брезгливой усмешкой, вдруг в последнее время начала получать некоторое подтверждение. Нефть стали находить так глубоко и в таких слоях земли, где никогда никакой флоры-фауны не наблюдалось. Карбиды – это соединения тяжелых (и не очень тяжелых) металлов с углеродом, и если такой карбид поместить в воду, то происходит химическая реакция и выделяется углеводород. А углеводород – это и есть основа нефти. Простейший пример: карбид кальция СаС2, брошенный мальчишкой в воду, выделяет ацетилен, который можно поджечь спичкой.


Карбид кальция и его реакция с водой:

CaC2 + 2H2O = Ca(OH)2 + C2H2


Правда, до сих пор карбидов в глубинах земли не обнаружили и ученые несколько модифицировали теорию образования нефти из неорганических веществ, но все равно у ее истоков стоит Менделеев.

Или другая идея ученого – подземная газификация угля. Когда читаешь про страшные аварии, про гибель шахтеров в Сибири, на Украине или в Китае, и понимаешь, что в любом случае, при любой, самой совершенной системе безопасности, все равно люди будут гибнуть в шахтах, на страшной глубине, поневоле подумаешь, да не зарыть ли к черту все эти адские подземелья? И, вспомнив Дмитрия Ивановича, перейти на “современную” технологию, придуманную им сто лет назад.

Дмитрий Иванович Менделеев не получил Нобелевской премии, что больше говорит о премии, чем о великом ученом. Из российских ученых этой премии по химии удостоился (в 1956 году) только Николай Николаевич Семенов. Зато в 2010 году стали лауреатами Нобелевской премии, правда, не по химии, а по физике, два экс-российских ученых за открытие новой модификации углерода – графена. Кстати, именно углерод оказался одним из тех элементов, неестественное положение которого в предыдущих системах элементов привело Менделеева к мысли о смелом изменении атомных весов некоторых элементов. И вообще, углерод настолько важный элемент, что он вполне достоин отдельного рассказа.

Глава 3 Углеродная жизнь

Элемент углерод находится ровно посередине второго периода Таблицы Менделеева, образует неорганические и органические соединения и способен реагировать со множеством других веществ и элементов. Но главное свойство углерода – это возможность связывания самих атомов углерода друг с другом, то есть образование углеродных цепочек. Именно это свойство сделало углерод “элементом жизни” – из таких цепочек построены и наследственные молекулы ДНК (дезоксирибонуклеиновой кислоты) и РНК (рибонуклеиновой кислоты), и белки, из которых состоят наши мышцы, и все ферменты и углеводы, которые входят в состав множества наших органов, и жиры, из которых сделаны мембраны наших клеток (а также, увы, и наши животы). На углеродные цепочки нанизаны атомы и других элементов – азота, водорода, кислорода. Эти цепочки являются основным структурным элементом клеток растений, которыми мы питаемся, а также древесины, из которой мы изготавливаем стулья и обеденные столы, а также шкафы и кресла. То же самое относится, как это ни жутковато звучит, к клеткам съедобных и несъедобных животных, которые тоже состоят в основном из веществ с цепочками углерода.

Сажа и бриллианты

Но все это – об органических соединениях элемента углерод. А сам по себе элемент углерод образует неорганические модификации, иначе называемые аллотропическими. Еще не так давно признавали только три аллотропические модификации – алмаз, графит и аморфный углерод. Но в 60-е годы прошлого века был получен (кстати, советскими учеными) так называемый карбин, представляющий собой чистые цепочки из атомов углерода, без дополнительных атомов других элементов. Соединены атомы в карбине двойными или тройными плюс одинарными связями – так, чтобы каждый из атомов был четырехвалентным. Углерод практически во всех своих соединениях имеет валентность, равную четырем.


Карбин: —С=С=С=С=С—…

или

=С-С=С-С=С-


Алмаз построен совершенно по-другому. Каждый из атомов углерода находится в центре тетраэдра, в вершинах которого расположены четыре ближайших атома. Связь углерод-углерод очень прочная, именно поэтому алмаз обладает самой высокой из всех минералов твердостью и самым низким коэффициентом сжатия. Алмаз действительно почти невозможно сжать, но его легко разбить, алмаз довольно хрупок. Да, самое главное – не с точки зрения химии, конечно: специальным образом обработанный алмаз называется бриллиантом и очень ценится девушками. Любовь проходит, а бриллианты остаются.

Графит, тот самый, что в карандаше, в отличие от алмаза, легко истирается и превращается на бумаге в буквы – к примеру, в рукописи великих романов или письма с фронта. Говорят, что специалисты американского космического агентства НАСА якобы потратили несколько миллионов долларов на разработку ручки для письма в космической невесомости. Оканчивается история ударной фразой: “А русские космонавты пользовались карандашом”. Свойство графита истираться и оставлять следы на бумаге связано с тем, что графит представляет собой стопку слоев из шестигранников, в вершинах которых находятся атомы углерода. Сами слои между собой связаны слабо, и графит легко расслаивается – это и есть следы на бумаге. Графит можно сравнить с тортом “Наполеон”, где коржи не очень прочно склеены кремом.

Но графит, как и алмаз, состоит только из атомов углерода. Поэтому всегда было заманчивым как-то превратить графит в алмаз, что и было сделано. При огромном давлении и определенной температуре сейчас алмазы получают из графита тоннами. Правда, бриллианты из таких алмазов выходят не очень красивые, зато поверхности всяких буровых инструментов и обычных сверл, утыканные этими недорогими искусственными алмазами, работают просто великолепно.

А аморфный углерод – это просто мельчайшие частички графита, своей отдельной структуры у него нет. Строго говоря, аморфный углерод даже и не стоило выделять в отдельную аллотропическую модификацию. Из этого углерода состоит бурый и каменный уголь, сажа, а также активированный уголь – его приходится принимать некоторым гражданам после неумеренного употребления того самого напитка, авторство которого приписывают Дмитрию Ивановичу Менделееву.

Мячи и плоскости

В 1985 году химики сделали потрясающее открытие: была обнаружена принципиально новая модификация углерода – фуллерен. Исследователи изучали пары графита, испаренного лазерным лучом, и нашли в них молекулы, состоящие из 60 и 70 атомов углерода. После многочисленных экспериментов было установлено, что С60 представляет собой трехмерное тело икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников – точно как сшитый из разных кусков кожи футбольный мяч. В более крупном С70 в середину “мяча” врезан пояс из 10 атомов углерода – такая молекула напоминает удлиненный мяч для регби. Эти молекулы первооткрыватели назвали бакминстерфуллеренами в честь архитектора Бакминстера Фуллера, который строил здания именно из подобных структурных элементов – шести-и пятиугольников. Вскоре, впрочем, название сократили до фуллеренов. Через и лет после открытия ученые получили Нобелевскую премию по химии, и все эти годы обнаружились все новые и новые фуллерены.

Рекордным является фуллерен с 400 атомами углерода, таких конструкций даже Фуллер не делал.

Как мы уже говорили, простейший фуллерен С60 в точности похож на футбольный мяч, а следующий С70 – уже на мяч для регби. Если продолжить эту операцию и вставлять все новые углеродные пояса в фуллереновый “мяч”, то мы в какой-то момент получим трубку. Оканчиваться трубки будут как бы половинками фуллерена. Можно и иначе описать мысленную операцию получения этих нанотрубок, или тубулен: представьте себе, что мы ухватились за два противоположных края фуллерена и начали его растягивать. Если откуда-то будут постоянно поступать атомы углерода, то мы создадим такую трубу, цилиндр с округлыми краями.

Не мысленно, а на практике нанотрубки были получены в 1990-е годы то ли японцем Иидзимой, то ли еще кем-то одновременно с ним. А то и раньше. Но самое главное, что теперь их научились получать килограммами, и это еще одна аллотропическая модификация нашего многоликого углерода. Из нанотрубок делают сверхпрочные нити, используемые для композиционных материалов, в электронике, в медицине. В качестве экзотического, но еще нереализованного варианта использования нанотрубок размышляют о космическом лифте. Это вот что такое: от Земли к космической станции протянут сверхпрочный трос, по которому будет ездить лифт с грузом или людьми. Все это гораздо дешевле использования ракет, и нанотрубки по своей теоретической прочности отлично подходят для плетения такого троса. Но пока, правда, длинных нанотрубок никто не получал.

И наконец, в 2004 году выпускники подмосковного Физико-технического института Андрей (Андре) Гейм и Константин Новосёлов получили последнюю на данный момент аллотропическую модификацию углерода – одномерные пленки под названием “графен”. Этот графен не что иное, как один корж из того самого торта “Наполеон”, один слой в графите. Есть такое выражение: в мире нет ничего более плоского, чем графен. За открытие этого поразительного по своим свойствам вещества Гейм и Новосёлов получили в 2010 году Нобелевскую премию. Графен прочнее стали в 200 раз, обладает необычными электрическими свойствами и в перспективе сможет заменить дорогой кремний при производстве электронных компонентов. Из графена уже научились делать прозрачные ленты, и революция в электронике не за горами.

Графен был теоретически предсказан еще в 1950-е годы, но получить его никак не удавалось. Удивительно, но Гейм и Новосёлов сделали это, используя обыкновенную клейкую ленту скотч. Они приклеивали скотч к куску графита, отдирали прилипшие кусочки и исследовали их под микроскопом. В массе кусочков попадались и двухслойные, и однослойные пленки, которые наши соотечественники и исследовали.

В этой книге рассказывается не просто об интересных химических веществах и реакциях, но и об открывших эти вещества ученых. Поэтому, рассказывая про Гейма, Новосёлова и графен, нельзя не вспомнить их коллегу физика Сергея Дубоноса. Он работал в группе Гейма, защитил кандидатскую диссертацию, но главное – лучше всех и даже первым сумел отшелушить графен от графита. А потом бросил физику и уехал в Заокский район Тульской области, начал выращивать коз и ныне совершенно счастлив. Лучший друг Гейм звал его в Стокгольм на церемонию вручения премии, но Сергей Дубонос хотел поехать с детьми – им это было бы интересно, а ему не очень. Но столько билетов на церемонию не было, вот он и остался у себя на ферме. И собирается выучиться на краснодеревщика.

А Гейм и Новосёлов уехали за границу, работают в одном из крупных научных центров Великобритании. Ну что ж, это нормально, ученый и должен жить там, где ему предоставляются наилучшие условия для работы. И это далеко не первый случай. Кстати, касающийся именно Великобритании. Речь идет о великом русском химике Владимире Николаевиче Ипатьеве и “битве за Англию”. Об этом – в главе и, а сейчас расскажем о химике, который первым сообразил, как именно образуются цепочки углерода, как устроены органические вещества и почему вещества с одним и тем же количеством атомов, и не только углерода, проявляют разные, часто даже абсолютно разные свойства.

Структура Бутлерова

Александр Михайлович Бутлеров родился в 1828 году, учился в Казанском университете, после отъезда Карла Клауса в город Дерпт (о Карле Карловиче – в главе 14) возглавил преподавательский корпус химии в Казанском университете и в 1861 году впервые огласил на Съезде немецких естествоиспытателей и врачей свою теорию строения органических соединений. Сейчас ее положения показались бы очевидными, однако, как ни странно, до Бутлерова ученых как-то мало занимал хорошо известный сегодня факт, что химические и физические свойства любого индивидуального вещества зависят не только от его состава, то есть количества тех или иных атомов, но и от того, в каком порядке “собрана” молекула вещества из этих атомов, – то есть от строения молекулы. А как же иначе, спросите вы? А вот так: до Бутлерова вещество (точнее, молекулу вещества) считали этаким мешком, в который насыпали столько-то атомов углерода, столько-то азота, столько-то кислорода и так далее. Мешок потрясли и получили вещество.

Хотя само явление изомерии было обнаружено еще Юстасом Либихом в 1823 году, но не в случае органических веществ, а при изучении серебряных солей гремучей и изоциановой кислот. Либих сумел выяснить, что гремучее серебро Ag-O-N=C (или фульминат серебра) и изоцианат серебра Ag-N=C=O имеют одинаковый состав и совершенно различные свойства. Правда, написать формулы таким образом он не мог, в те времена еще не существовало методов установления химического строения, да не было и самих формул с использованием “черточек”, обозначающих химические связи. Просто Либих получил гремучее серебро и изоцианат серебра в результате реакций с использованием различных соединений, но выделил два продукта одинакового, как теперь говорят, брутто-состава. Через несколько лет после Либиха сам великий Берцелиус ввел понятие изомерии (от греческого слова, означающего “равнодольные”).

И только Бутлеров сумел разобраться в этом вопросе и объяснил явление изомерии, пояснить которое проще всего на примере углеводорода бутана.

Углеводороды, соединения только атомов углерода и водорода, имеют главную и побочную цепь связанных между собой атомов углерода начиная от простейшего метана СН4. Затем следует этан С2Н6, за ним пропан С3Н8, бутан С4Н10 и так далее, вплоть до углеводородов с числом атомов углерода 100 и более. Да, кстати, здесь речь идет о предельных углеводородах, в которых все связи углерод-углерод одинарные. Так вот, формулу пропана можно записать только так: СН3-СН2-СН3, у пропана изомеров нет. А вот у бутана С4Н10 уже два изомера: СН3-СН2-СН2-СН3 (линейный изомер) и СН3-СН2(СН3) – СН3. Скобка означает, что метальная группа СН3, как ветка у дерева, направлена в сторону от главной цепи – это разветвленный изомер. То есть изомеры имеют одинаковый состав, но разное строение и соответственно разные химические и физические свойства. Например, тот же линейный изомер бутана (нормальный, н-бутан) имеет температуру плавления -138 °C, а его изомер изобутан плавится при -160 °C.

Лучшим доказательством справедливости любой теории, хоть химической, хоть в области общественных явлений, является правильное предсказание. Справедливость структурной теории Бутлерова была доказана еще им самим, когда он предсказал существование четырех различных изомеров бутилового спирта (бутанола), различающихся по своим физическим и химическим свойствам. Ко времени создания теории был известен лишь один бутанол: (СН3)2СНСН20Н. А Бутлеров предсказал и написал формулы еще трех бутанолов: СН3СН2СН2СНОН, СН2СН(СН3)СНОН и (СН3)3СОН. Вскоре эти изомеры были синтезированы, и теория блестяще подтвердилась.

Братья Цис и Транс

Со времен Бутлерова открыт целый ряд других видов изомерии, в частности самая утонченная цис-транс-изомерия. Представим себе молекулу этилена СН2=СН2. Теперь по одному атому водорода у каждого из углеродов заместим на какую-нибудь группу, хоть на тот же простейший метил СН3-. Получим СН3-СН=СН-СН3. Эти группы, как и оставшиеся атомы водорода, все лежат в одной плоскости, по оси которой расположена двойная связь. И у метальных групп появляется возможность расположиться либо по одну сторону от этой двойной связи, либо по разные стороны. Если бы связь была одинарная, то никакой разницы не было бы, вокруг этой связи группы СН3– могут “вращаться” – и мысленно, и на самом деле. Для двойной связи так не проходит, и мы получаем два изомера диметилэтилена. Если по разные стороны – это транс-изомер. Одна из групп как бы переехала (транспортировалась) на другую сторону от двойной связи. “Транс” по-латыни – это “через”, “за”. Если по одну сторону – это цис-изомер. Приставка “цис-” так и переводится с латыни – “по одну сторону”. (Раньше ближневосточная страна Иордания называлась Трансиорданией, то есть “за рекой Иордан”. Иорданией эта страна стала называться только после первой войны с Израилем, когда Трансиордания захватила кусок Палестины за рекой Иордан и старое название потеряло смысл. Эти территории, уже не принадлежащие Иордании, называются сейчас Западным берегом реки Иордан или Палестинской автономией, а иногда используется термин Цисиордания.)

Конечно, цис– и транс-изомеры обладают различными свойствами. Иногда эти различия очень велики. Например, природный каучук из млечного сока дерева гевеи представляет собой цис-полимер вещества изопрена СН2=С(СН3) – СН2=СН2, трансполимер в этом соке полностью отсутствует. И этот цис-полиизопрен является самым лучшим материалом для изготовления резины, идущей на автопокрышки. Разумеется, химики постарались синтезировать каучук, чтобы не зависеть от капризной гевеи, но очень долго не удавалось подобрать такие условия и катализаторы, чтобы получался только цис-изо-мер, обычно на выходе имели смесь двух изомеров. Сейчас стереорегулярный, то есть состоящий почти полностью из цис-изомера, каучук делать научились, но это все еще дорогое и трудное предприятие. Вот почему в Малайзии, Индонезии и Вьетнаме под плантации гевеи продолжают вырубать уникальные дождевые леса.

Еще одно отличие между цис– и транс-изомерами – это их различное поведение в человеческом организме. Еще совсем недавно самым страшным врагом рода человеческого считалось сливочное масло, “от которого холестерин”. Это правда, в сливочном масле немало этого вещества, оно откладывается на стенках наших сосудов и может их закупорить, образовать тромб и так далее. Альтернативой считалось растительное масло, в котором холестерина нет, и маргарин, в котором холестерина тоже нет, да к тому же твердый маргарин удобен для готовки и намазывания на хлеб. Однако лет десять назад выяснилось, что маргарин-то пострашнее сливочного масла будет – в нем обнаружились трансжиры! Собственно, никто в этом и не сомневался, но на эти изомеры ранее внимания не обращали.

Жиры – это сложные эфиры глицерина и карбоновых кислот. А карбоновые кислоты могут быть либо только с одинарными связями углерод-углерод, либо и с двойными связями, причем такие жиры считаются полезнее. Однако лишь в том случае, если они представлены цис-изомерами. Жиры с транс-изомерами карбоновых кислот, которые для краткости так и называют трансжирами, оказались довольно вредными. Выяснилось, что любители маргарина более склонны к развитию стенокардии, инфаркта миокарда, аритмии и сердечной недостаточности. Теперь за границей требуют указывать на этикетках маргаринов, есть ли в них трансжиры, и если есть, то сколько.

Вот еще один пример различия свойств цис-и транс-изомеров, причем особенно важный для любителей анисовки – содержащих алкоголь напитков типа французского “Перно”, греческого “Узо” и болгарской “Мастики”. В этих анисовках содержится эфирное масло семени аниса, на 90 % состоящее из вещества анетола. У анетола есть и цис-, и транс-изомер, причем транс-анетол является широко распространенным ароматизатором и совершенно не ядовит, а цис-анетол очень токсичен. К счастью, цис-анетола в эфирном масле очень немного и при умеренном употреблении анисовки никакого отравления не происходит. Однако при длительном хранении напитка, особенно на свету, доля цис-анетола возрастает и этой анисовкой можно отравиться. Именно поэтому содержащие анетол напитки разливают в бутылки из темного, обычно зеленого или синего, стекла.

Звезда Полынь

Впрочем, отравиться можно и вполне свежим “Перно”. Кроме анетола, в “Перно” ранее содержался экстракт горькой полыни и напиток относился к группе абсентов (латинское название полыни – absinthium). Полынь – растение знаменитое. О нем даже в Священном Писании говорится: “Третий ангел вострубил, и упала с неба большая звезда, горящая подобно светильнику, и пала на третью часть рек и на источники вод. Имя сей звезде полынь, и третья часть вод сделалась полынью, и многие люди умерли от вод, потому что они стали горьки” (Откровение Иоанна Богослова).

Из эфирного масла экстракта полыни выделено вещество туйон, как считается вызывающее галлюцинации, что не доказано, и состояние измененной реальности, что уже совершенно точно известно. Лучшим свидетельством этого является известная картина Пикассо “Любительница абсента” с изображенной на ней дамочкой явно не в себе. Абсентом особенно увлекались во Франции в начале прошлого века, и существует даже предположение, что именно под воздействием абсента возникло “упадочное искусство” – декаданс. Сейчас туйон научились из абсента извлекать, и этот напиток снова входит в моду. Существует даже изящный способ употребления напитков с эфирными маслами, не только “Перно”, но и других, содержащих прежде всего анисовое масло. В неразбавленном состоянии эти напитки совершенно прозрачны, поскольку нерастворимое в воде эфирное масло растворяется в спирте и его крепких растворах (в данном случае 40°). Но если разбавить “Узо” водой раза в три-четыре, концентрация спирта падает, и в таком слабом водно-спиртовом растворе анисовое масло раствориться уже не может. В результате высвобождаются мельчайшие капельки масла, равномерно распределенные в стакане разбавленного напитка. Эту молочно-белую эмульсию крепостью градусов десять и пьют, а сам эффект помутнения раствора вызывает большой интерес у окружающих.

Изомерия в зазеркалье

Кроме цис– и транс-, был обнаружен еще один элегантный вид изомерии – хиральность (от древнегреческого “хейрос” – рука). Обнаруженная еще в середине XIX века, эта изомерия тоже связана с пространственным расположением одних частей молекулы относительно других, но особым образом. Хиральность – это когда отражение предмета в зеркале не совпадает с ним самим. Правая рука в зеркале становится левой. Или другой пример:

Так беспомощно грудь холодела,

Но шаги мои были легки,

Я на правую руку надела

Перчатку с левой руки.

Левая и правая перчатки – классический пример хиральности, которая как раз и основана на том, что ничего у героини Анны Андреевны Ахматовой выйти не могло, эти перчатки в принципе не совмещаются. То есть кое-как натянуть-то можно, но правой руке будет очень неудобно. Не этим ли объясняется волнение героини, а вовсе не расставанием с любимым, как принято думать? Не перепутаны ли причина и следствие?

Почти все биологические молекулы хиральны, поэтому при синтезе, например, лекарств это приходится учитывать. Различные клетки человеческого организма могут взаимодействовать только с “правыми” или “левыми” молекулами лекарства, а молекула противоположной хиральности может оказаться даже ядовитой. Так произошло с известным лекарством талидомидом, которое в 1960-е годы прописывали беременным в качестве успокаивающего средства. Тератогенность (от греческого “тератос” – уродство) талидомида привела к появлению приблизительно 10 тысяч детей с врожденными уродствами – без ручек, или без ножек, или с исковерканными конечностями. Тератогенен лишь один из изомеров талидомида, но этого оказалось достаточно, чтобы множество людей стали несчастными.

Критические различия в свойствах веществ одинакового химического состава и лишь с небольшими различиями в строении молекул являются одним из удивительных свидетельств могущества Природы, а обнаружение этих различий – могущества химической науки. Знание свойств изомеров позволяет целенаправленно получать более интересные с какой-либо точки зрения продукты. Например, октановое число углеводородов с разветвленной углеродной цепочкой обычно выше, чем у линейных углеводородов, и в нефтехимической промышленности проводят изомеризацию получаемых из нефти алканов (углеводородов только с одинарными связями) в изоалканы. Открытый Карозерсом (см. главу 15) капрон можно получить только из капролактама, который синтезируют из его изомера циклогексаноноксима.

Обычный белый сахар, или сахароза С12Н22О11, представляет собой соединенные химической связью два изомерных моносахарида – глюкозу и фруктозу, и при пищеварении на эти два вещества сахар сначала и распадается. Глюкоза С6Н12О6 является источником энергии для функционирования организма человека и при этом опасна для больных диабетом, у которых заторможена или вообще отсутствует активность фермента инсулина. В то же время ее изомер фруктоза с той же брутто-формулой С6Н12О6, обусловливающая сладость множества ягод и фруктов, диабетикам ничем не угрожает, для ее переработки инсулин не требуется. Кроме того, фруктоза почти в два раза слаще сахара, и соответственно для подслащивания чая или компота ее требуется значительно меньше. Для многих, к сожалению, очень многих жителей нашей страны особенно важно еще одно свойство фруктозы: она ускоряет перерабатывание алкоголя и превращение вреднейшего уксусного альдегида в безвредную уксусную кислоту СН3СООН. Уксусный альдегид СН3СОН – вещество, образующееся при распаде этилового спирта С2Н5ОН и вызывающее тяжелое состояние похмелья.

Препараты с фруктозой против этого синдрома уже производятся, а про другие вещества, используемые вместо сахара, рассказано в следующей главе. А заодно и про вещества “наоборот” – горькие и жгучие.

Глава 4 Почему сладкое сладко, а горькое горько

Мы часто говорим: “О вкусах не спорят”, при этом имеем в виду не только книги, музыку или кино, но и творения кулинаров. Одни, особенно дети, любят сладкое, другие – вкус бифштекса с кровью, на Востоке обожают полакомиться жареными личинками насекомых, во Франции едят лягушек. Но вкусы любых блюд можно все-таки попытаться определить как сочетание основных вкусов, которых не то четыре, не то пять, не то двадцать пять. Самый простой и традиционный вариант – это четыре вкуса: сладкое, соленое, горькое, кислое. Причем любопытно, что эти, да и все другие возможные вкусы обнаруживаются нашим языком только если вещество вкуса растворено в воде. Если положить на сухой язык кристаллы сахара, то человек ничего не почувствует.

Известно, какие зоны языка, на которых находятся так называемые вкусовые сосочки, отвечают за определенные вкусы. К сладкому наиболее чувствителен кончик, к соленому – тот же кончик и края языка, к кислому – тоже края и, наконец, к горькому – корень языка. Связь между строением химического вещества и его вкусом установлена только в одном случае – для кислого вкуса. Этот вкус всегда вызывают вещества, имеющие в своем составе отщепляемый ион водорода, а это почти все кислоты и другие соединения, дающие в растворе кислую реакцию. Ион водорода – это ведь “голый” протон, элементарная частица. На одной из школьных олимпиад по химии был поставлен такой вопрос: какого вкуса протон? И далеко не все сумели найти ответ – кислый. Любопытно было бы узнать, а какого вкуса, например, электрон?

Соленый вкус в своем чистейшем виде проявляется во вкусе обычной поваренной соли – хлорида натрия NaCl. Поскольку другие соли с анионом хлора такого вкуса, как правило, не вызывают, считается, что соленость – это свойство катиона натрия. Хотя при увеличении молекулярной массы соли вкус постепенно изменяется в сторону горького. Сульфат натрия Na2SO4 уже довольно заметно горчит. Присутствие серы чаще всего придает веществу горький вкус, хотя тут уже все гораздо сложнее, такой вкус имеют очень многие вещества. Удивительно, что самыми сладкими или самыми горькими являются растворы соответствующих веществ не самой высокой, а средней концентрации. Максимально сладок 20 %-ный раствор сахара, максимально горько-солённый 10 %-ный раствор поваренной соли.

Существует несколько теорий вкуса, лучше других “поведение” куска торта на языке описывает гипотеза Шалленбергера, связывающая строение вещества и строение вкусовых центров на языке. Однако гипотеза гипотезой, а почти все сладкие вещества люди обнаружили случайно и именно “по вкусу”. Дисахарид сахарозу, то есть попросту наш обычный сахар, и моносахариды фруктозу и глюкозу человечество раскусило еще в незапамятные времена, попробовав сладкий тростник, дикие фрукты и виноград, а другие подсластители были обнаружены лишь в позапрошлом и прошлом веках.

Борьба феминисток за равноправие женщин и мужчин привела к некоторым неожиданным результатам. Например, в западных странах теперь не принято уступать дамам место в автобусе, и настояли на этом вовсе не мужчины, а женщины. А ведь различия между полами все же есть, и не только те, о которых сразу можно подумать. Оказывается, чувствительность женских вкусовых сосочков заметно отличается от чувствительности мужских. Прежде всего вкус к сладкому у женщин развит больше, чем у мужчин. Вот о сладости, точнее, о подслащивающих веществах, и поговорим.

То, что сахар вреден и от него кариес, а также что от сахара полнеют и сахар провоцирует диабет, – это всем известно. Доказано также, что сластены чаще становятся алкоголиками и вообще сахар – это белая смерть. Ну что возразить на все эти обвинения? Только вот это: во-первых, сахар вкусный, а во-вторых, другие подсластители напитков, мороженого и кондитерских изделий не лучше. Подсластителями называют все вещества, добавляемые для придания продукту сладкого вкуса. Таких подсластителей – натуральных и искусственных – множество, и общее у них только одно – они сладкие.

Сладкая спекуляция

Про случайные открытия в химии более подробно рассказывается в главе 15, но и здесь нам придется пользоваться словом “случайно”, поскольку большинство подсластителей было открыто именно так. Сахарин случайно был открыт в Америке в 1879 году русским эмигрантом К. Фальбергом, работавшим в лаборатории известного химика А. Ремсена. К 1884 году было уже налажено промышленное производство сахарина. Занимались им немногие – бизнес этот не приносил особенных доходов. Но с началом Второй мировой войны и блокадой морских коммуникаций о сахарине вспомнили, поскольку основным поставщиком тростникового сахара к тому времени стала Америка. В СССР сахарная свекла росла только на оккупированной Украине, поэтому сахарин во время войны мгновенно стал предметом спекуляции наряду с американскими сигаретами, пенициллином и нейлоновыми чулками. Успеху сахарина способствовала его чудовищная сладость – он слаще сахара в 500 раз!

Кстати, о том, как определили величину сладости сахарина. Современные теории не дают возможности количественно определить степень сладости (а также горечи или солености), не существует и приборов-сладкомеров. Поэтому сравнивают так называемые пороговые концентрации веществ, при которых обычный человек уже начинает чувствовать сладость. Установлено, что сладкий вкус ощущается при содержании сахара в стакане воды около 700 миллиграммов, а сахарина – всего 1,4 миллиграмма. Вот отсюда и получается, что сахарин слаще сахара в 500 раз.

Не закончилась еще битва союзников с Третьим рейхом, как на сахарин набросились сахарные монополии. Были проведены сотни опытов с целью доказать вредность этого подсластителя, но в результате было показано только, что не стоит есть сахарин каждый день и помногу. Установлено и это “много” – разрешенной дозой является 5 миллиграммов сахарина на 1 килограмм веса в день. Для человека массой 90 килограммов это означает 0,45 грамма. Такое количество сладости содержится в 0,45 х 500 = 225 граммах сахарозы, то есть в полном стакане сахара. Столько есть в день, конечно, не следует.

Обычно сахарин выпускают в таблеточках, в которых он содержится в виде своей натриевой соли. Для лучшей растворимости к ней добавлена лимонная кислота и сода, которая еще и уменьшает горьковатый привкус, свойственный сахарину. Неожиданным примером применения сахарина может служить так называемый сладкий сахар. Производители этой муры, просто добавив к обычному белому сахару немного сахарина, уверяют, что 1 килограмм полученной смеси заменяет 3 килограмма обычного сахара при варке варенья. Однако сахароза в варенье добавляется вовсе не только для сладости, а в первую очередь в качестве бактерицидного вещества: осмотическое давление сахарного сиропа разрывает клетки вредных микробов. Кстати, по той же причине болят зубы от сладкого: сироп внедряется в микротрещины эмали и пытается их раздвинуть. Это так называемый эффект Ребиндера, советского ученого, работавшего в области коллоидной химии. А сахарин бактерицидными свойствами не обладает, так что варенье с резко пониженным содержанием сахарозы скорее всего скиснет. Хотя с точки зрения сладости “сладкий сахар” действительно втрое слаще.

Так же случайно было открыто и другое популярное подслащивающее вещество. В 1937 году химик Сведа после опыта по синтезу аминосульфоновой кислоты решил закурить, не помыв руки, и поразился сладкому вкусу сигареты. Производные этой кислоты были тщательно исследованы. Их назвали цикламатами. Удивительное дело – они оказались в 50 раз слаще сахара! Цикламат считается безвредным веществом, хотя очень большие его количества вызывали рак мочевого пузыря, но не у человека, а у крыс. Изучение возможной вредности цикламата продолжается, однако эти работы сейчас малоактуальны, поскольку самым распространенным подсластителем стал аспартам.

Аспартам – это так называемый дипептид фенилаланин, вполне природное вещество. Оно входит в состав многих белковых продуктов, например любого мяса. Аспартам не вызывает кариеса, практически безвреден для большинства людей, за исключением больных фенилкетонурией, страшной и редкой болезнью мозга. Поэтому на товарах с аспартамом производители обязаны писать: “содержит фенилаланин” или “не для больных фенилкетонурией”. На этикетках, например, жевательных резинок меленькими буквами так и написано. Сладкий вкус аспартама (в 200 раз слаще сахара) был открыт опять же случайно, химик снова не помыл руки после опыта. Это вещество, по структуре представляющее собой как бы кусочек молекулы белка, добавляют сейчас во многие пищевые продукты и лекарства, чтобы “подсластить пилюлю”, особенно детскую. Он очень нравится производителям напитков. В аптеке аспартам продается в виде таблеток.

Примечания

1

Иатрохимия – направление в науке XVI–XVIII веков, представители которого стремились поставить химию на службу медицине. (Здесь и далее прим. ред.)

Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3