Современная электронная библиотека ModernLib.Net

Антимозг: цифровые технологии и мозг

ModernLib.Net / Медицина / Манфред Шпитцер / Антимозг: цифровые технологии и мозг - Чтение (Ознакомительный отрывок) (стр. 2)
Автор: Манфред Шпитцер
Жанр: Медицина

 

 


Этого следовало ожидать. Печально и, с моей точки зрения, еще более опасно то, что даже представители церкви, известные политики, руководители министерства здравоохранения и министерства образования и науки охотно вплетают свои голоса в общую хвалебную песнь о цифровых СМИиК. Они не только не принимают во внимание результаты научных исследований, но и сознательно распространяют ложные высказывания; в конечном счете они сами становятся лоббистами, и я готов доказать это на основании достоверных фактов.

1. Такси в Лондоне

Приходилось ли вам пользоваться такси в США? Тогда вы, возможно, пережили то же самое, что случилось со мной несколько лет назад в Сан-Франциско.

Прилетев в международный аэропорт в Сан-Франциско, я решил в первую очередь посетить моих друзей, которые живут севернее Беркли. Я взял такси, потому что после почти двенадцатичасового перелета не хотел толкаться в метро и автобусах. В течение следующих двух часов мне пришлось узнать, что таксист не говорит по-английски и не ориентируется в городе; в довершение ко всему он как раз учился водить автомобиль. Обучал его второй водитель такси, который сидел впереди рядом с водителем; «инструктор» тоже не знал ни местности, ни английского языка. В Лондоне с вами такого случиться не может. Там все водители не только говорят по-английски и водят автомобиль, они очень хорошо ориентируются в городе. Но об этом позже…

Умение ориентироваться – мысленно и на практике

В начале 1990-х гг. становилось все яснее, что многие дорожно-транспортные происшествия в нашей стране происходили по вине водителей, которые не умели ориентироваться: они ехали слишком медленно, задерживали поток движения, неожиданно тормозили и провоцировали наезды. Очевидно, школьные уроки географии мало чему их научили, ведь многие водители не умели читать карту; в чужих городах они чувствовали себя неуверенно и потому представляли опасность и для себя, и для других. Это стало предметом широкого обсуждения: представители министерства транспорта, министерства культуры и автомобильной промышленности обсуждали пути решения этой проблемы. Технические улучшения, внесенные в 2000 г. американским министерством обороны в глобальную спутниковую систему навигации GPS, позволили повсеместно устанавливать во всех новых автомобилях цифровые навигационные системы. Так же как ремень безопасности и надувные подушки безопасности, навигационный прибор с 2001 г. стал обязательным. Логика проста: если у каждого в автомобиле установлен экран с дорожными картами, то люди снова научатся ориентироваться, так как теперь в их распоряжении – заботливый цифровой наставник – «навигатор». Больше не должно случаться такого, чтобы кто-то не смог сориентироваться.

Конечно же, вы заметили, что это выдуманная история, хотя в городах действительно случалось все больше несчастных случаев из-за наездов, совершенных автомобилистами, пытающимися найти дорогу, а Пентагон действительно в 2000 г. открыл свободный доступ к точным сигналам положения, исходящим от спутниковой системы глобального позиционирования (GPS). Но вот иметь навигационные приборы в автомобилях пока никто никого не обязывал; «навигаторами» пользуются на добровольной основе, и у многих они имеются. Абсолютно ошибочно, однако, предположение, что благодаря этим приборам люди научатся лучше ориентироваться. Как раз наоборот! Автомобилист, у которого в машине есть спутниковая навигационная система, позволяет руководить собой и не ориентируется более самостоятельно. Его способность ориентироваться на местности заметно ухудшается.

Эта способность основана на деятельности одной вполне определенной части головного мозга – гиппокампа. Именно здесь находятся клетки, которые помогают нам построить в голове стройную картину окружающего пространства и перемещаться в нем. Это значит, что сеть навигационных нейронов помогает нам найти дорогу как к нужному воспоминанию, так и к нужному месту в городе. Клетки гиппокампа обучаются, запоминают единожды осуществленное действие, единожды пройденный путь. За этим процессом можно наблюдать, то есть можно проследить, как клетки, в которых пока ничего не закодировано, в процессе научения становятся так называемыми клетками ориентации.

1.1. Гиппокамп – парный орган, расположенный в медиальных височных отделах полушарий головного мозга. Слева показан гиппокамп в разрезе (секущая плоскость изображена на рисунке посередине). Справа – продольный разрез.


С конца XX столетия мы знаем, что люди, которые должны ориентироваться на незнакомой местности, осуществляют это с помощью гиппокампа. Это было доказано с помощью эксперимента, при котором испытуемые должны были найти выход из лабиринта. Двумя годами позже ученые выяснили, что у лондонских таксистов гиппокамп имеет более крупные размеры, чем у представителей включенной в эксперимент контрольной группы, состоящей из представителей других профессий. И это неудивительно, ведь для того чтобы получить разрешение на работу таксистом в Лондоне, они должны на «отлично» знать все улицы и достопримечательности одной из крупнейших столиц мира. На приобретение этих знаний уходит от трех до четырех лет. Только тогда кандидат подвергается целому ряду экзаменов, и лишь сдав их, он получает лицензию. Такой сложной процедуры «посвящения в таксисты» нет нигде в мире, а для пассажиров она имеет огромное значение: водитель точно знает дорогу.

1.2. Часть карты, которую лондонские таксисты должны знать наизусть, чтобы получить разрешение на работу по профессии.

Как учится наш мозг?

Лондонские таксисты учатся безошибочно ориентироваться в городе. Поэтому ученые смогли одновременно проследить, что происходит в мозге человека во время обучения и как в нем протекают процессы, ответственные за ориентирование. При этом было обнаружено: чем больше лет таксист ездит по Лондону, тем крупнее его гиппокамп! Вывод: память и способности к ориентированию в пространстве можно тренировать и развивать, значительно повышая работоспособность своего мозга.

Этот принцип действителен для любых зон мозга. У того, кто учится жонглировать, увеличивается объем отделов головного мозга, которые отвечают за зрительное восприятие движения, и это тоже поддается измерению (рис. 1.3). И конечно, когда речь идет о процессах обучения, идеальными объектами исследования являются музыканты. Тот, кто учится играть на скрипке или гитаре, увеличивает участок мозга, ответственный за двигательную активность пальцев левой руки (рис. 1.4). У всех артистов оркестра участок мозга, отвечающий за слух, больше, чем у немузыкантов; более того, размер его зависит и от конкретного места, занимаемого артистом в оркестре (см. ил. 1.5). Для того чтобы сдать физикум – сложный экзамен, который в конце пятого семестра ожидает каждого студента-медика в Германии, будущим врачам нужно запомнить огромное количество информации: память редко подвергается столь сильному напряжению, и это интенсивное запоминание многих фактов воздействует, как было экспериментально доказано, на объем гиппокампа. К тому же оказалось, что объем гиппокампа, увеличившийся в процессе обучения, сохраняется и в дальнейшем (рис. 1.6).

1.3. Рост головного мозга у профессионального жонглера.


1.4. Рост головного мозга в зоне, ответственной за двигательную активность пальцев левой руки, в процессе регулярной игры на музыкальных инструментах (обследованию подверглись шесть скрипачей, один альтист и два гитариста).


1.5. Рост головного мозга в зоне, ответственной за обработку звука, в процессе регулярной игры на музыкальных инструментах (у артистов оркестра).


1.6. Рост головного мозга у студентов-медиков в процессе подготовки к экзамену.


Лондонские нейробиологи исследовали рост гиппокампа у 79 таксистов мужского пола перед началом профессионального обучения и спустя 3–4 года после окончания обучения. Одновременно они обследовали контрольную группу из 31 испытуемого мужчины, ни один их которых не являлся таксистом. Из 79 обучавшихся профессии таксиста 39 человек выдержали заключительные экзамены, благодаря чему они смогли получить лицензию на работу по соответствующей специальности. Ученые имели возможность сравнить рост гиппокампа у трех групп испытуемых: члены первой группы завершили обучение; участники второй группы учились, но не выдержали экзаменов; участники третьей, контрольной, группы обучения не проходили. Значимых различий среди испытуемых с точки зрения возраста, школьного образования, интеллекта, а также общего времени обучения, выраженного в месяцах, не наблюдалось, но были различия в продолжительности еженедельных занятий. Те, кто успешно сдал экзамен, занимался в среднем 34,5 часа в неделю, те, кто экзамен провалил, – только 16,7 часа. Как отчетливо показывает график на рис. 1.7, у таксистов, выдержавших экзамен, – и только у них! – отмечено существенное увеличение количества серого вещества (то есть нервных клеток) в гиппокампе.

1.7. Уровень интенсивности роста серого вещества в гиппокампе у лондонских таксистов до обучения (белые столбцы) и 3–4 года спустя (черные столбцы) у 39 лиц, успешно завершивших обучение (слева), у 20 из 40 испытуемых, не выдержавших экзамен (остальные 20 не явились на второе измерение), и у представителей контрольной группы, не проходивших обучения, в количестве 31 испытуемого.


Конечно, можно было бы заявить, что каждый, кто водит автомобиль, постоянно находится в движении, и что именно эти постоянные впечатления от движения способствуют увеличению гиппокампа. Такой аргумент нельзя заранее отвергнуть, поскольку ряд нейробиологических исследований действительно связал собственное движение человека с активностью его гиппокампа. Чтобы доказать, что увеличение объема гиппокампа у лондонских таксистов действительно связано с их чрезвычайно развитой и приобретаемой годами способностью ориентироваться на улицах города, следовало сравнить их, например, с лондонскими водителями автобуса. С одной стороны, они участвуют в уличном движении так же, как таксисты; с другой стороны, они ездят по определенным маршрутам, для чего им не требуется особенное знание местности. Водителям автобусов не нужен продолжительный тренинг в ориентировании – в остальном же условия похожи.

Ученые обследовали 18 профессиональных лондонских таксистов и 17 лондонских водителей автобусов; они не имели заметных различий с точки зрения возраста, школьного образования, опыта вождения и интеллекта. В результате этого эксперимента рост гиппокампа был выявлен только у таксистов!

Хотя гиппокамп – сравнительно небольшая часть головного мозга, он очень важен для всей его работы (см. рис. 1.8). Гиппокамп запоминает не только происходящие с нами конкретные события, но и места («адреса») в коре больших полушарий головного мозга, где в закодированном виде хранятся все детали каждого события и связанные с ними свойства и признаки. Именно благодаря гиппокампу мы можем собрать эти детали воедино и подробно рассказать о случившемся: «Вчера в половине третьего я на кухне уронил на пол зеленую чашку, и она разбилась на тысячу осколков». В отличие от коры больших полушарий головного мозга, которая в результате длительного обучения создает в своих многочисленных модулях упорядоченные карты различных свойств и признаков, гиппокамп постоянно занимается тем, что связывает друг с другом поступающие к нему импульсы из активизированных участков в коре больших полушарий головного мозга и таким образом формирует нашу долговременную память о событиях нашей жизни и связанных с ними переживаниях.

1.8. Моя маленькая дочь Анна приходит ко мне после того, как ее искупали. Она улыбается мне, она теплая, пахнет ванильной пеной для ванны и говорит: «Привет!» Кора моего головного мозга обрабатывает впечатления, активизируя соответствующие участки (верхний левый рисунок). Сопутствующие положительные эмоции одновременно активизируют гиппокамп; клетки гиппокампа запоминают взаимосвязи активизации благодаря тому, что они очень быстро выстраивают между собой соответствующие аналогичные связи (верхний правый рисунок). После этого они могут в свою очередь активизировать ответные участки в коре головного мозга и тем самым повторно воспроизвести мое первоначальное переживание (нижний левый рисунок); и когда между участками коры головного мозга, в которых закодированы признаки «теплый», «ванильный», «улыбка» и «приветствие», будет установлено надежное соединение, а целостное воспоминание отложится в коре, гиппокамп наконец-то позволит себе его забыть (нижний правый рисунок).


Ученые выдвинули предположение, что нервным клеткам гиппокампа, испытывающим постоянную большую нагрузку, в случае дополнительной нагрузки, например, из-за стресса, грозит отмирание. Получается, что стресс не только увеличивает риск получить высокое давление, инфаркт миокарда, язву желудка, проблемы с гормональной системой (нарушения роста и сексуальные расстройства), атрофию мышц (из-за расщепления белков для получения дополнительной энергии) и подавление иммунной системы (с увеличением числа инфекционных и раковых заболеваний); он также ведет к отмиранию нервных клеток в головном мозге, как наглядно демонстрирует рис. 1.9.

1.9. Нервные клетки в гиппокампе животного без признаков стресса (слева) и с явным их наличием (справа). Даже неспециалист четко распознает нормальные нервные клетки слева и «клеточный мусор», оставшийся после их отмирания, справа.


К тому же исследования, проведенные франкфуртским анатомом Хайко Брааком, давно доказали, что болезнь Альцгеймера (см. следующую главу) начинается в области гиппокампа и распространяется далее вдоль многочисленных соединений с другими участками коры головного мозга (см. рис. 1.10).

1.10. Распространение болезни Альцгеймера. На ранних стадиях (вверху) затронута только область гиппокампа, в средних стадиях (в середине) – те участки коры головного мозга, которые связаны с гиппокампом, а в поздней стадии (внизу) – практически весь головной мозг.

Выводы

Как было показано на различных примерах, наш мозг функционирует подобно мускулам: когда он активно работает, он растет; когда его не используют, он хиреет. И если его не тренировать, нейрональная аппаратная часть головного мозга будет неуклонно сокращаться. Какое это имеет значение, мы подробно рассмотрим в следующей главе.

2. Где я?

Вы часто путешествуете на автомобиле и полагаетесь на ваш навигационный прибор? Тогда однажды с вами случится то, что я недавно пережил после того, как у меня из машины украли это чудо информационной техники: мне стало трудно ориентироваться. Даже о маршруте к местам, где я уже бывал неоднократно, у меня было лишь смутное представление. Пребывая в расстройстве из-за неспособности ориентироваться на местности, я сбивался с пути снова и снова.

Раньше все было иначе: побывав где-то хотя бы один раз, я всегда находил туда дорогу. В моем автомобиле лежал атлас дорог, и я – по крайней мере приблизительно – знал, где я нахожусь и в каком направлении двигаюсь. Я обращал на это внимание, ведь только зная, где находишься, можно попасть туда, куда хочешь, как имел обыкновение говорить мой инструктор летного мастерства. Управляя маленьким самолетом, нельзя быстренько свернуть на обочину и свериться с картой. Необходимо в любое время точно знать, где находишься, иначе может получиться, как с тем пилотом, который летел из Мангейма в Нюрнберг и в какой-то момент должен был совершить посадку, к которой его принудили чешские истребители-перехватчики. И это еще не самое страшное. Опасности подвергается и сама жизнь, так как существуют запретные воздушные пространства, а горючего должно хватить до аэропорта назначения: быстренько заехать на заправку в воздухе тоже не получится. Поэтому умение ориентироваться – это самый важный из всех навыков, которыми обладает пилот.

Деменция – приобретенное слабоумие

Итак, почему я без моего навигационного прибора вдруг не смог ориентироваться? Как психиатр я слишком хорошо знаю, что и в 53 года может наступить деменция – приобретенное слабоумие. Когда невропатолог Алоис Альцгеймер (1864–1915) впервые описал это заболевание, представив результаты обследования своей пациентки Августы Детер, ей был 51 год. Что же, и у меня постепенно начинается? А ведь я плохо запоминаю фамилии людей, хотя сразу узнаю их в лицо, и по утрам я уже не раз искал ключи от квартиры.

2.1. Августа Детер из Франкфурта-на-Майне стала первой пациенткой, которой Алоис Альцгеймер поставил диагноз деменция.


К счастью, благодаря тому что я хорошо знаком с научной литературой, я с определенной уверенностью могу сказать, что мои дела не так уж плохи. Моя легкая забывчивость абсолютно нормальна: тот, кто после длинного рабочего дня приходит усталый домой и куда-то забрасывает ключи (а мысленно он все еще на работе или думает вовсе не о ключах), тот вовсе не забыл место, куда он положил ключи. Он его даже и не пробовал запомнить! И если вам на вечеринке представили нескольких человек, не следует пугаться, что чуть позже, у фуршетного стола, вы не можете вспомнить, как зовут стоящего рядом с вами, – это абсолютно нормально явление.

Американские ученые исследовали способность к запоминанию фамилий у 30 пациентов, имевших одностороннее поражение головного мозга (половина из них имела поражения с левой стороны, половина – с правой), и у 15 здоровых, контрольных испытуемых. Всем испытуемым на экране компьютера последовательно предъявляли десять лиц (каждое демонстрировали в течение двух секунд) и называли соответствующие фамилии людей. Затем показывали только лица, одно за другим, а испытуемые должны были называть фамилии. После первого цикла пациенты с левосторонним поражением головного мозга не могли вспомнить ни одной фамилии, пациенты с правосторонним поражением мозга тоже. Но и испытуемые из контрольной группы тоже! При повторении процедуры все испытуемые постепенно улучшали показатели, но и после семи повторений никто – даже здоровые люди – не показал стопроцентной способности к запоминанию, что можно видеть на иллюстрации 2.2. Итак, если вы стоите у фуршетного стола и не можете вспомнить фамилию соседа, честно скажите: «Извините, если бы нас представили друг другу семь раз, у меня была бы лишь восьмидесятипроцентная гарантия вспомнить, как вас зовут…»

2.2. Процент правильно запоминаемых фамилий людей, чьи лица были показаны испытуемым на экране компьютера, в зависимости от количества показов: у здоровых испытуемых и пациентов с поражением головного мозга в области левого либо правого полушария.

Ориентация в пространстве

Итак, поиски связки ключей и забытые фамилии вы можете спокойно отнести к разряду нормальных явлений: никаких причин для беспокойства, и в первую очередь никаких оснований предполагать начинающуюся деменцию. Но как обстоит дело с умением ориентироваться? Незнание того, где находишься, – один из классических симптомов, относящихся к отрасли медицины, в которой я практикую, примерно так же, как учащенный пульс относится к сфере деятельности врача-терапевта. Обследуя пациента, психиатр задает ему простые вопросы, составляющие обычную врачебную рутину, например: «Который сейчас час и какое сегодня число?», «Где вы находитесь?» или «Кто вы?»

Каждый студент-медик знает: у того, кто не может ответить на последний вопрос, дела с головой обстоят неважно. Если кто-то знает, кто он, но при этом не знает, где именно находится, – с тем тоже далеко не все в порядке. А вот если человек не знает, какое сегодня число, то, конечно, мы можем сказать, что сегодня он далеко не на пике своих умственных возможностей. Но может быть, он просто-напросто в отпуске!

Ориентация во времени, пространстве и личностная ориентация относятся к нашим основным умственным навыкам; у пациентов, страдающих деменцией, способности к ориентации снижаются именно в таком порядке – время, место, личность.

Разумеется, даже человек, страдающий серьезным психическим расстройством, может посмотреть на свои часы (если у него есть часы и при этом он знает, где они находятся) и сообщить мне время суток. Но это не является решающим критерием: в гораздо большей степени речь идет о том, что при нарастающем умственном распаде снижается стремление контролировать себя и свою жизнь, а также осознание того, в какой взаимосвязи находятся понятия здесь и сейчас (страдающего слабоумием мало заботит дата и время суток). Такой человек редко выходит из дома, все хуже понимает окружающий мир (свое непосредственное окружение, не говоря уже о большом широком мире), а со временем перестает понимать и себя самого, потому что все меньше способен что-либо воспринимать. В конце концов остается только оболочка человека, тогда как его дух, его неповторимая личность, его особенности и отличительные черты полностью утрачены.

Теряется не только личность, но и все связанные с ней факты. Страдающий деменцией более не знает ничего; он забывает, чем только что хотел заняться, делает по нескольку раз одно и то же и ничего из этого не запоминает. Отношение к другим людям тоже постепенно растворяется: сначала больные перестают узнавать знакомых из недавнего прошлого, а под конец – супругов и даже собственных детей.

Одновременно угасает восприятие прошлого и будущего: у пациентов, страдающих деменцией, наблюдается не только дезориентация во времени (ранний симптом), более того – они полностью утрачивают представление о времени как таковом. Они живут сиюминутно – тем, что касается только настоящего момента, а сознание никак не проявляется даже в периоды бодрствования.

Насколько сильно способность ориентироваться в пространстве зависит от обучения, показывают не только лондонские таксисты. На примере обычных детей различного происхождения можно убедительно продемонстрировать, что уровень ориентации в пространстве зависит от того, как именно ее тренировали. Дети и подростки, воспитанные в школах с углубленным преподаванием санскрита, показывают в тестах по ориентации в пространстве особенно хорошие результаты. Почему? Подобно латыни, санскрит – это мертвый язык из индогерманской языковой семьи, но он все еще входит в официальный список из 22 языков, которые могут использоваться правительствами индийских штатов для различных административных целей. В большинстве индийских школ его преподают как третий язык, после хинди и английского. Санскриту более 3000 лет, он имеет несколько видов письменности и был систематизирован за много столетий до рождения Христа. Индусы считают его священным языком, он и в наши дни используется при отправлении религиозных обрядов, потому что все важнейшие священные писания индуизма (Веды и Упанишады) написаны на санскрите. Самая древняя из четырех Вед – Ригведа, священное писание о богах, власти, силах и природе. В ней, как и в остальной литературе, написанной на санскрите, пространство разделено на 10 направлений, то есть наряду с верхом и низом существуют восемь сторон света; кроме севера, юга, востока и запада есть еще и северо-восток, северо-запад, юго-восток и юго-запад. Мысленное кодирование пространства у людей, изучавших санскрит, сформировано под влиянием схемы с восемью сторонами света. Она в известной степени определяет качество когнитивной карты[7] личности, то есть играет важную роль в определении собственного места в пространстве. Люди, обладающие подобным «мировоззрением», рассматривают пространство, свой мир вполне определенным образом – примерно как шахматист воспринимает фигуры на доске совершенно особым образом или как музыкант особым образом связан со своими инструментами. Геоцентрическое понимание пространства на базе санскрита пронизывает всю повседневную жизнь, чему также способствует погружение в религиозные практики индуизма.

2.3. Цветки лотоса (слева) далеко не всегда имеют восемь лепестков. Однако стилизованный лотос часто является деталью мандалы – сакрального схематического изображения, которое в религиозных практиках индуизма символизирует модель Вселенной. Это, как правило, цветок с восемью лепестками – по числу сторон (примеры – в середине и справа).


В школах с интенсивным обучением санскриту характерна передача знаний через парадигму восьми сторон света. Детям не только сообщают направления в пространстве и их культурное значение; от них требуют использовать эти представления в своих повседневных упражнениях, например во время утренней и вечерней молитвы; при этом учащиеся получают конкретные наставления либо от учителей, либо от старших учеников. Если ученик допускает ошибку, его поправляют и объясняют, каким образом в дальнейшем можно будет избежать неправильного определения стороны света.

Если попросить учеников санскритской школы в возрасте 10–14 лет показать сторону света под открытым небом или даже в закрытом помещении, то выяснится, что 87% из них могут указать точно, тогда как среди учеников школ с интенсивным преподаванием хинди правильный ответ дают лишь 43%. Другое исследование подтвердило этот феномен впечатляющим способом: 51 индийского школьника в возрасте 11–15 лет спросили о сторонах света – сначала под открытым небом, а затем в помещении, – и они все дали правильные ответы. Аналогичное исследование было проведено в Женеве в специальном помещении. Результат: ни один ребенок не смог указать стороны света. После этого эксперимент усложнили: детям завязали глаза и попросили их несколько раз обернуться на месте. И в этом случае 80% учеников санскритских школ были в состоянии правильно назвать стороны света. Тогда детей с все еще завязанными глазами отвели в другое помещение, по пути несколько раз сворачивая, и снова попросили обернуться на месте, и вновь спросили про стороны света. Во время теста ученые следили за тем, чтобы после вращения дети стояли лицом в другом направлении, чем до того. Кроме того, руководитель эксперимента, который поворачивал детей, разговаривая с ними и спрашивая про стороны света, не стоял в одном и том же месте, а постоянно перемещался. И после этого 56% детей, обучавшихся санскриту, могли выполнить задание! Тот, кто обучался в санскритской школе, как будто всегда носит в голове гироскоп и благодаря этому обладает феноменальной способностью ориентироваться в пространстве.

Эти эксперименты подтверждают то, что давно известно современным нейробиологам и на что обратил внимание еще римский император Марк Аврелий. Как-то раз он заметил: «Со временем душа принимает цвет твоих мыслей». Конечно, Марк Аврелий понятия не имел о нейропластичности мозга, но он был полностью прав!

Тренировка: нейроны и мускулы

Вернемся к украденному из моего автомобиля навигационному прибору. Я был вынужден на собственном опыте узнать, какие последствия для водителя имеет ситуация, когда он в течение длительного времени мог совершенно не заботиться о том, где он, собственно, находится. Я возложил эту задачу на машину, которая приятным (чтобы не сказать убаюкивающим) женским голосом сообщала, как мне ехать. Эту умственную работу по ориентированию и навигации, которую я раньше выполнял сам, я доверил электронному устройству, примерно так, как можно избежать самостоятельного подъема по лестнице, воспользовавшись эскалатором или лифтом. Тот, кто часто это делает, добирается на четвертый этаж удобно и без одышки. Однако ему не стоит удивляться, что, если эскалатор или лифт выйдет из строя, он будет изрядно потеть, поднимаясь по лестнице (или – если он живет на двадцатом этаже – при перебоях в электроснабжении вынужден будет просить приюта у соседа, живущего на первом).

Известно, что растут только те мышцы, которые мы тренируем. Как мы знаем, так же обстоит дело и с головным мозгом. И хотя при интенсивном его использовании увеличивается размер не всего головного мозга, а его отдельных участков, происходящие процессы очень похожи: нейроны – клетки серого вещества в нашем головном мозге – обрабатывают информацию в форме электрических импульсов. Через нервные волокна, на концах которых находятся так называемые синапсы, импульсы передаются от одной нервной клетки к другой (рис. 2.6).

2.4. Нервная клетка под электронным микроскопом. Отростки, которые вы видите, проводят к телу нервной клетки электрический импульс химическим путем.


2.5. Фотография нейрона, сделанная с помощью оптического микроскопа. Однако этот снимок не показывает, как нервная ткань выглядит в действительности. Почему? Попытку сфотографировать отдельный нейрон можно сравнить с желанием фотографа запечатлеть в густых непроходимых джунглях одно-единственное дерево. Он отступает на пару шагов, чтобы взять его в кадр… но перед лицом фотографа тут же смыкаются ветви и листья других деревьев. Нужное дерево исчезло, скрытое буйно разросшимися соседними растениями. То же самое происходит и в головном мозге. Там нет единичных нейронов, как на этой иллюстрации. Здесь в нейрон ввели флуоресцентный краситель, а затем подсветили специальной лампой. Поэтому все остальные соседние нейроны (и прежде всего 10 000 соединенных с ним волокон) на этом снимке не видны и не перекрывают изображение.

2.6. Перенос нервных импульсов через синапс происходит за счет того, что при поступлении импульса (слева) маленькие пузырьки в утолщении на конце нервного волокна, содержащие медиаторы, соединяются со стенкой волокон (в середине), за счет чего медиатор высвобождается и, в свою очередь, причаливает к рецепторам клетки, готовой принять импульс (справа).


Сегодня каждый школьник знает, как через синапс посредством особых химических веществ (медиаторов) электрический импульс (так называемый потенциал действия) передается от одной нервной клетки к другой. Для того чтобы воспринять химический сигнал медиатора от клетки, передающей нервный импульс, «принимающая» клетка имеет специальные рецепторы.


  • Страницы:
    1, 2, 3, 4, 5