Современная электронная библиотека ModernLib.Net

Достучаться до небес. Научный взгляд на устройство Вселенной

ModernLib.Net / Лиза Рэндалл / Достучаться до небес. Научный взгляд на устройство Вселенной - Чтение (Ознакомительный отрывок) (стр. 3)
Автор: Лиза Рэндалл
Жанр:

 

 


Одна из важнейших черт любой эффективной теории: она, описывая то, что мы можем увидеть, одновременно систематизирует то, что мы увидеть не можем – как на малых, так и на больших масштабах. Имея эффективную теорию, мы можем определить, насколько серьезно способен повлиять на каждое конкретное измерение неизвестный (или известный) фундаментальный закон. Даже не дожидаясь новых открытий в других масштабах, мы можем математически вычислить максимальную степень влияния, которое произведет любая новая структура на эффективную теорию в том масштабе, в котором мы работаем. В главе 12 мы подробнее рассмотрим еще одну особенность эффективной теории: ее подлинные ограничения можно понять только после того, как будут открыты физические законы следующего масштабного уровня.

Еще одним примером эффективной теории может служить термодинамика. Эта наука, появившаяся задолго до атомной или квантовой теории, объясняет нам, как работают холодильники и автомобильные двигатели. Термодинамическое состояние системы достаточно хорошо характеризуется ее давлением, температурой и объемом. Конечно, сегодня мы знаем, что система состоит из газа, а тот – из атомов и молекул, в которых скрыта гораздо более тонкая структура, чем все, что можно описать при помощи трех упомянутых параметров; тем не менее во многих случаях для характеристики наблюдаемого поведения системы мы можем ограничиться ими тремя.

Температура, давление и объем – реальные величины, которые можно измерить. Теория зависимостей между ними полностью разработана и может быть использована для успешных предсказаний. В эффективной теории газа не упоминается молекулярная структура вещества (рис. 4). И хотя температура и давление газа в действительности определяются поведением образующих его элементов, ученые свободно использовали эти величины в расчетах задолго до того, как атомы и молекулы были открыты.



Если фундаментальная теория разработана, мы можем соотнести температуру и давление со свойствами составляющих газ атомов и понять, в какой момент термодинамическое описание перестанет соответствовать действительности. Мы по-прежнему можем использовать термодинамику для широкого круга предсказаний. Более того, многие явления можно понять только с термодинамической точки зрения, поскольку без громадных вычислительных мощностей и объемов памяти, намного превосходящих все, чем мы на данный момент располагаем, невозможно проследить траектории движения всех отдельно взятых атомов. Так что эффективная теория – единственный способ разобраться в некоторых важных физических явлениях, имеющих место в твердых и жидких конденсированных средах.

На этом примере можно продемонстрировать еще один принципиально важный аспект эффективной теории. Иногда физики используют термин «фундаментальный» как относительное понятие. С точки зрения термодинамики атомное и молекулярное описания фундаментальны. Но если говорить о физике элементарных частиц, которая рассматривает кварки и электроны внутри атомов, то сам атом тоже имеет сложную структуру и состоит из более мелких элементов. Таким образом, с точки зрения физики элементарных частиц разговор на уровне атомов возможен только в рамках эффективной теории.

Описание науки как строгой последовательности развития от полностью понятных областей к пределу человеческих знаний лучше всего подходит для таких наук, как физика и космология, где мы хорошо понимаем функциональные единицы и соотношения между ними. Вполне может быть, что в более новых областях науки, таких как системная биология, эффективные теории работать не будут. Здесь отношения между происходящим на молекулярном уровне и на более крупных макроскопических уровнях, а также релевантные механизмы обратных связей еще только предстоит понять до конца.

Тем не менее концепция эффективной теории применима к широкому кругу научных тем. Математические уравнения, в соответствии с которыми происходит эволюция биологического вида, не изменятся с появлением новых физических результатов; эту тему мы обсуждали с математическим биологом Мартином Новаком. Он и его коллеги могут определить параметры этих уравнений независимо от любых более глубоких описаний. Вполне возможно, что на самом деле эти параметры определяются более базовыми величинами – физическими или какими-нибудь другими, – но сами по себе уравнения, по которым биологи отслеживают развитие популяций со временем, ни от чего не зависят.

В физике элементарных частиц без эффективных теорий не обойтись. Мы выделяем простые системы на разных масштабах и рассматриваем их взаимоотношения. Следует отметить, что пресловутая невидимость внутренней структуры частицы, из-за которой мы сосредоточиваемся на «видимых» величинах и не обращаем внимания на более фундаментальные эффекты, так замечательно скрывает внутренние взаимодействия, что для их обнаружения нам приходится тратить огромные деньги и прикладывать громадные усилия. Именно тот факт, что наиболее фундаментальные теории на доступных масштабах проявляются чрезвычайно слабо, делает современную физику такой сложной и затратной. Чтобы заметить проявления фундаментальной природы вещества и взаимодействия на этом уровне, мы должны либо непосредственно исследовать все более мелкие масштабы, либо проводить все более точные измерения. Только при помощи передовых технологий мы можем получить доступ к самым мелким и самым крупным линейным масштабам. Поэтому, чтобы хоть немного продвинуться вперед, нам приходится проводить сложнейшие эксперименты и строить гигантские сооружения, такие как Большой адронный коллайдер.

Глава 2

Раскрывая секреты

Многие принципиальные открытия, сформировавшие науку, были сделаны в XVII в. в Италии, и одним из ключевых участников этого процесса был Галилео Галилей. Именно он одним из первых в полной мере оценил и начал развивать так называемые непрямые измерения, при которых используется некий промежуточный этап[10]; он же одним из первых начал для установления научной истины разрабатывать и проводить эксперименты. Более того, он изобрел абстрактные мысленные эксперименты, которые помогали ему формулировать научные гипотезы.

Я многое узнала об изобретениях и открытиях, сделанных Галилеем и самым серьезным образом изменивших науку, когда весной 2009 г. побывала в Падуе. Поводом к поездке послужила конференция по физике, организованная профессором физики Фабио Цвирнером. Был, правда, и еще один повод – получить почетное гражданство этого города. Было очень приятно встретиться как с коллегами – участниками конференции, так и с другими уважаемыми «гражданами», в числе которых – физики Стивен Вайнберг, Стивен Хокинг и Эд Виттен. Неожиданным бонусом оказалась возможность узнать кое-что из истории науки.

Мой визит пришелся на удачное время: в 2009 г. исполнялось 400 лет первым наблюдениям звездного неба, проведенным Галилеем. Граждане Падуи с особым энтузиазмом отмечали эту годовщину, поскольку во время проведения главных своих исследований Галилей читал лекции в Падуанском университете. В честь ученого Падуя (так же, как Пиза, Флоренция и Венеция – другие города, тесно связанные с научной жизнью Галилея) организовала выставки и различные церемонии. Конференция по физике проходила в зале Культурного центра Альтинате (или Сан-Гаэтано) – того самого здания, где располагалась выставка, знакомившая посетителей с открытиями Галилея и подчеркивавшая его роль в развитии науки и формировании ее современного облика.

Большинство людей, с которыми я тогда встречалась, высоко оценивали достижения Галилея и с энтузиазмом говорили об успехах современной науки. Интерес к физике и познания, проявленные мэром Падуи Флавио Дзанонато, произвели впечатление даже на местных физиков. Глава города не только участвовал в научном разговоре за торжественным обедом после прочитанной мной публичной лекции, но и на самой лекции удивил аудиторию коварным вопросом о движении заряженных частиц в Большом адронном коллайдере.

В ходе церемонии присвоения звания почетного гражданина мэр вручил мне ключ от города. Это был фантастический ключ – он вполне соответствовал моим киношным представлениям о том, каким должен быть подобный предмет. Он был такой большой, резной и серебряный, что один из моих коллег даже спросил, не ключ ли это из сказки о Гарри Поттере. Это, конечно, церемониальный ключ – им невозможно ничего открыть. Но чудесный символ входа в город в моем воображении стал символом входа в необъятное царство знаний.

Кроме ключа, профессор Падуанского университета Массимилла Бальдо-Чолин подарила мне венецианскую памятную медаль. На ней выгравирована цитата из Галилея, размещенная также над входом в здание физического факультета университета: «Io stimo piu il trovar un vero, benche di cosa leggiera, che ’ldisputar lungamente delle massime questioni senza conseguir verita nissuna». Это переводится так: «Я предпочитаю найти истину в малом, нежели долго спорить о величайших вопросах, не обретая никакой истины».

Я процитировала эти слова коллегам на конференции, потому что в них и сегодня заключается ведущий принцип науки. Научные прорывы нередко вырастают из стремления решить несложные на первый взгляд проблемы (к этому утверждению мы вернемся позже). Не все вопросы, на которые мы ищем и находим ответы, порождают радикальные перемены. И все же продвижение вперед, даже постепенное, периодически кардинально меняет восприятие человеком мира.

В этой главе рассказывается о том, что современные наблюдения, которым, собственно, посвящена эта книга, корнями уходят в научные открытия XVII в. и что фундаментальные достижения того времени в значительной мере определили природу теоретических и экспериментальных методов, используемых нами сегодня. Главные, принципиальные вопросы перед учеными и сегодня стоят в определенном смысле те же, что стояли 400 лет назад; однако физическая теория да и техника сегодня совсем не те, что тогда, поэтому мелкие конкретные вопросы изменились необыкновенно.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8