Современная электронная библиотека ModernLib.Net

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)

ModernLib.Net / Физика и астрономия / Грин Брайан / Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Чтение (стр. 22)
Автор: Грин Брайан
Жанр: Физика и астрономия

 

 


Но это была пятница, и уже перевалило за 5 пополудни. Аспинуолл ушел домой, и не вернется до понедельника. Мы оказались в ситуации полного бессилия без его компьютерной программы. Но ни Моррисон, ни я и в мыслях не могли представить, что придется ждать все выходные: мы стояли на пороге решения вопроса о разрывах структуры пространства мироздания, мучившего нас столько времени, и бездействие было невыносимым. Мы позвонили Аспинуоллу домой и стали упрашивать его прийти в офис завтра утром. Сначала он решительно отказался. Но после долгого ворчания в трубку он все же согласился присоединиться к нам, если мы ему принесем блок из шести банок пива. Мы согласились.

Момент истины

Как и планировалось, мы встретились в Институте в субботу утром. Ярко светило Солнце, и настроение у всех было шутливо-расслабленным. Я был наполовину уверен, что Аспинуолл так и не появится, а когда он все же пришел, минут пятнадцать пел ему дифирамбы по поводу первого в его жизни прихода в офис в выходной день. Он заверил меня, что это больше не повторится.

Мы все сгрудились вокруг компьютера Моррисона, стоявшего в нашем кабинете. Аспинуолл объяснил Моррисону, как запустить программу и какой точный вид должны иметь вводимые в нее данные. Моррисон привел полученные ночью результаты к нужному виду, и теперь все было готово.

Расчет, который нужно было провести, грубо говоря, сводился к определению массы конкретной частицы, являющейся колебательной модой струны при ее движении во вселенной, компоненту Калаби-Яу которой мы изучали всю осень. Мы надеялись, что в соответствии с выбранной нами стратегией масса окажется точно такой же, что и масса в случае многообразия Калаби-Яу, возникшего после флоп-перестройки с разрывом пространства. Последнюю массу вычислить было легко, и мы сделали это несколькими неделями раньше. Ответ оказался равным 3 в определенной системе единиц, которой мы пользовались. А так как сейчас проводился численный расчет на компьютере, то ожидаемый результат должен был быть близким к числу 3, что-то вроде 3,000001 или 2,999999; отличие от точного ответа объяснялось бы ошибками округления.

Моррисон сел за компьютер. Его палец завис над клавишей «Enter». Напряжение нарастало. Моррисон выдохнул «поехали» и запустил программу. Через пару секунд компьютер выдал ответ: 8,999999. Мое сердце упало. Неужели действительно флоп-перестройки с разрывом пространства нарушают зеркальную симметрию, а значит, вряд ли существуют в реальности? Но в следующее же мгновение мы сообразили, что здесь какая-то глупая ошибка. Если в массах частиц на двух многообразиях действительно есть отличие, почти невероятно, что компьютер выдал бы результат, столь близкий к целому числу. Если наши идеи неверны, то с тем же самым успехом компьютер мог бы выдать ответ, состоящий из совершенно случайных цифр. Мы получили неправильный ответ, но неправильность его была такого вида, из которого напрашивался вывод о том, что где-то мы допустили банальную ошибку. Аспинуолл и я подошли к доске, и моментально ошибка была найдена: мы забыли множитель 3 в «простом» вычислении несколько недель назад, так что правильный результат должен был равняться 9. Поэтому ответ компьютера — это как раз то, на что мы надеялись.

Конечно, совпадение результата после того, как найдена ошибка, является лишь наполовину убедительным. Если известен желаемый результат, очень легко найти способ его получить. Нам срочно требовался другой пример. Имея все необходимые программы, придумать его не представляло сложности. Мы вычислили массу еще одной частицы на верхнем многообразии Калаби-Яу, на этот раз с особой тщательностью, чтобы избежать еще одной ошибки. Ответом было число 12. Мы снова окружили компьютер и запустили программу. Через несколько секунд был получен ответ 11,999999. Согласие. Мы доказали, что предполагаемое зеркальное пространство является зеркальным пространством, и флоп-перестройки с разрывами пространства являются частью теории струн.

Я вскочил со стула и, опьяненный победой, сделал круг по комнате. Моррисон, сияя, сидел за компьютером. И только реакция Аспинуолла была нестандартной. «Здорово. Я и не сомневался, что все так и будет, — спокойно сказал Аспинуолл. — А где мое пиво?»

Подход Виттена

В понедельник мы с победоносным видом направились к Виттену, чтобы сообщить ему о нашем успехе. Он был очень рад нашему результату. Оказалось, что он тоже только что нашел способ доказательства существования флоп-перестроек в теории струн. Его аргументация была совершенно иной и значительно проясняла понимание того, почему пространственные разрывы на микроскопических масштабах не приводят к катастрофическим последствиям.

Подход Виттена акцентирует различие между теорией точечных частиц и теорией струн в случае таких разрывов. Суть различия в том, что вблизи разрыва возможны два типа движения струны и только один тип движения точечной частицы. А именно, струна может двигаться, примыкая к разрыву, как и точечная частица, но, кроме того, она может опоясывать разрыв при движении, — что недоступно для точечной частицы, — как показано на рис. 11.6.

Рис. 11.6. Мировая поверхность, заметаемая струной, служит экраном, который гасит потенциально катастрофические эффекты при разрыве структуры пространства.

В результате опоясывания области разрыва струна экранирует окружающую ее Вселенную от катастрофических последствий, которые имели бы место в противном случае. В теории струн все происходит так, как будто мировая поверхность струны (двумерная поверхность, которую заметает струна при ее движении в пространстве, см. главу 6) эффективно играет роль барьера, на котором все пагубные воздействия геометрического вырождения пространства в точности сокращаются.

Здесь читатель вправе задать вопрос. Что будет, если разрыв действительно произойдет, но поблизости не окажется струн, которые экранировали бы его? Насколько эффективную защиту от этой кластерной бомбы, взрывающейся в момент разрыва пространства, может дать бесконечно тонкая «броня» струны? Ответ на оба вопроса основан на важнейшем квантово-механическом эффекте, рассмотренном в главе 4. Там было показано, что в фейнмановской формулировке квантовой механики объект, будь то струна или частица, движется от одной точки к другой, «разведывая» все возможные траектории. Наблюдаемое в результате движение есть объединение всех возможностей, и отдельные вклады каждой возможной траектории в движение точно определяются формулами квантовой механики. Если структура пространства внезапно разорвется, то среди всех возможных траекторий движущихся струн окажутся и те, которые опоясывают место разрыва (см. рис. 11.6). И хотя кажется, что около разрыва может не оказаться струн, в квантовой механике учитываются все возможные их траектории, и среди таких траекторий многие (в действительности, бесконечное число) будут опоясывать место разрыва. Виттен показал, что вклады именно этих траекторий сокращают эффект космической катастрофы, к которой привел бы разрыв пространства.

В январе 1993 г. Виттен и мы втроем одновременно послали наши работы в электронный архив статей в Интернете, из которого статьи моментально становятся доступными во всем мире. В наших статьях, основанных на двух совершенно различных точках зрения, приводились первые примеры переходов с изменением топологии — такое название мы дали процедуре с разрывом пространства. Давний вопрос о том, могут ли происходить разрывы пространства, был разрешен теорией струн и подтверждался количественными расчетами.

Следствия

Мы добились большого успеха в понимании того, как могут происходить разрывы пространства без катастрофических физических последствий. Но что на самом деле происходит при таких разрывах? Какие следствия разрыва могут быть наблюдаемыми? Мы видели, что многие свойства окружающего нас мира зависят от конкретной структуры свернутых измерений. Поэтому естественно предположить, что радикальное изменение пространства Калаби-Яу при преобразовании, показанном на рис. 11.5, будет иметь серьезные физические последствия. Однако на самом деле на двумерных иллюстрациях, которыми мы пользуемся для того, чтобы представить себе пространства, картина происходящего в действительности преобразования несколько усложнена. Если бы нам удалось наглядно изобразить шестимерную геометрию, мы бы увидели, что структура пространства действительно рвется, но не так уж сильно. Повреждения больше похожи на изящные следы, оставляемые молью на пальто, чем на результат резкого приседания в брюках, из которых вы давно выросли.

В нашей работе, как и в работе Виттена, показано, что физические характеристики (например, число семейств струнных мод и типы частиц каждого семейства) не изменяются в ходе этих процессов. То, что может действительно меняться при преобразованиях пространства Калаби-Яу, на промежуточном этапе которых происходит разрыв, это массы отдельных частиц, т. е. энергии возможных мод колебаний струны. В наших работах было показано, что эти массы будут непрерывно изменяться в ответ на изменение геометрического вида компоненты Калаби-Яу, причем некоторые будут увеличиваться, а некоторые — уменьшаться. Важно, однако, то, что при разрыве не возникнет катастрофических скачков или других резких изменений значений меняющихся масс. С точки зрения физики момент разрыва пространства ничем не примечателен.

Здесь возникают два вопроса. Во-первых, мы рассматривали разрывы структуры пространства в дополнительном шестимерном пространстве Калаби-Яу. Могут ли эти разрывы возникать в трех наблюдаемых нами измерениях Вселенной? Почти наверняка могут. Пространство есть пространство, независимо от того, является оно туго скрученным в многообразие Калаби-Яу или развернутым до вселенских просторов, обширность которых мы понимаем, глядя лунной ночью на звездное небо. На самом деле, как мы видели, привычные нам пространственные измерения могут сами быть свернуты в гигантскую фигуру, замыкающуюся саму на себя в направлении другого конца Вселенной, и поэтому само деление измерений на свернутые и развернутые несколько искусственно. Хотя наш анализ, как и анализ Виттена, опирался на определенные математические свойства многообразий Калаби-Яу, тот результат, что структура пространства может разрываться, несомненно, имеет более широкие рамки применимости.

Во-вторых, может ли разрыв с изменением топологии произойти сегодня или завтра? Мог ли он иметь место в прошлом? Да. Экспериментальные исследования показывают, что массы элементарных частиц довольно стабильны во времени. Но на ранних стадиях после Большого взрыва даже в теориях, отличных от теории струн, рассматриваются важные периоды, в течение которых массы элементарных частиц менялись. С точки зрения теории струн в эти периоды, несомненно, происходили переходы с изменением топологии, рассмотренные в этой главе. Говоря о временах более близких к настоящему моменту, наблюдаемая стабильность масс элементарных частиц означает, что если сейчас Вселенная находится на стадии перехода с изменением топологии, то он происходит настолько медленно, что влияние на массы элементарных частиц невозможно зарегистрировать на современных экспериментальных установках. Примечательно, что пока выполняется это условие, наша Вселенная может находиться в данный момент в кульминации пространственного разрыва. Если разрыв происходит достаточно медленно, мы даже не поймем, что он происходит. Это один из редких примеров в физике, когда отсутствие поразительного экспериментально наблюдаемого феномена есть повод для сильного возбуждения. Отсутствие наблюдаемых катастрофических последствий при таком экзотическом изменении геометрии демонстрирует, как далеко продвинулась теория струн по сравнению с ожиданиями Эйнштейна.

Глава 12. За рамками струн: в поисках М-теории

В долгих поисках единой теории Эйнштейн размышлял о том, «мог ли Бог сотворить мир другим, оставляет ли какую-то свободу требование логической простоты»1). Это замечание Эйнштейна предвосхищает точку зрения, которой сегодня придерживаются многие физики: если у нас есть окончательная теория природы, то одним из самых убедительных аргументов в пользу ее конкретной структуры является то, что теория не могла бы быть другой. Окончательная теория должна иметь тот вид, который она имеет, потому что она дает уникальную формулировку, в рамках которой можно объяснить Вселенную, не натыкаясь на внутренние или логические противоречия. В подобной теории должно постулироваться, что все вокруг устроено именно так потому, что оно должно быть устроено именно так. Любое сколь угодно малое расхождение приводит к теории, которая, подобно фразе «это предложение является ложным», содержит в себе семена своей собственной несостоятельности.

Установление такой неизбежности в структуре Вселенной потребует долгого пути и вплотную приведет нас к разрешению глубочайших вопросов мироздания. Эти вопросы подчеркивают загадку: кто или что сделал выбор среди бессчетного числа вариантов? Неизбежность упраздняет эти вопросы путем отметания других возможностей. Неизбежность означает, что в действительности другого выбора нет. Неизбежность постулирует, что Вселенная не может быть иной. Как мы увидим в главе 14, нет причин, по которым Вселенная должна иметь такую жесткую конструкцию. Тем не менее, поиск этой жесткости законов природы лежит в основе программы объединения в современной физике.

К концу 1980-х гг. теория струн, по мнению физиков, хотя и приблизилась к построению единой картины Вселенной, но не выдержала экзамен на «отлично». На то были две причины. Во-первых, как вскользь отмечено в главе 7, физики обнаружили, что существует пять различных вариантов теории струн. Напомним, что их называют теориями типа I, типа IIА, типа IIВ, а также теориями гетеротических струн на основе групп О(32) (О-гетеротические струны) и Е8хЕ8 (Е-гетеротические струны). Многие основные свойства этих теорий совпадают: колебательные моды определяют возможные массы и заряды, общее число требуемых пространственных измерений равно 10, их свернутые измерения должны быть многообразиями Калаби-Яу и т.д. Мы не говорили об их различиях в предыдущих главах, однако, как выяснилось в конце 1980-х гг., эти теории действительно отличаются друг от друга. В примечаниях в конце книги можно прочесть о свойствах этих теорий, но здесь для нас важно то, что в них по-разному реализуется суперсимметрия и есть существенные различия между допустимыми колебательными модами2). (Например, в теории струн типа I кроме обсуждаемых нами замкнутых струн имеются открытые струны.) Теоретики, занимавшиеся струнами, чувствовали себя неуютно: хоть и впечатляет иметь на руках серьезную кандидатуру на окончательную единую теорию, но если таких кандидатур пять, непонятно, как распределить время на исследование каждой из них.

Вторая причина отклонения от неизбежности более тонкая. Чтобы понять ее в полной мере, нужно признать, что все физические теории состоят из двух частей. Первая часть — это набор основных идей теории, выраженных, как правило, в виде математических уравнений. Вторая часть состоит из решений этих уравнений. Вообще говоря, одни уравнения допускают только единственное решение, а другие — более одного решения (возможно, много более). (Например, уравнение «2 умножить на некоторое число равно 10» имеет одно решение: 5. Однако уравнение «0 умножить на некоторое число равно 0» имеет бесконечно много решений, так как любое умноженное на 0 число дает 0.) Тем самым, даже если получается строго определенная теория со строго определенными уравнениями, искомая неизбежность еще под вопросом, ибо уравнения могут иметь множество различных решений. В конце 1980-х гг. казалось, что ситуация в теории струн обстоит именно так. Когда физики начинали исследовать уравнения любой из пяти теорий, выяснялось, что у этих уравнений действительно много решений, например много возможных способов свертывания дополнительных измерений, и каждое решение соответствует вселенной со своими свойствами. И хотя все эти вселенные возникали в качестве полноправных решений уравнений теории струн, большинство из них, казалось, не имеет никакого отношения к наблюдаемому нами миру.

Эти отклонения от неизбежности могли бы считаться досадным фундаментальным недостатком теории струн. Но исследования, начавшиеся в середине 1990-х гг., дали надежду на то, что этот недостаток есть просто следствие того, как физики теоретики подходят к анализу теории струн. В двух словах, дело в том, что уравнения теории струн настолько сложны, что никто даже не знает их точного вида. Физикам удалось найти лишь приближенный вид этих уравнений. Именно эти приближенные уравнения сильно отличаются для разных теорий струн. И именно они в любом из пяти подходов приводят к избытку решений, рогу изобилия лишних вселенных.

С 1995 г. (начало второй революции в теории суперструн) растет число свидетельств в пользу того, что точные уравнения, вид которых до сих пор находится за пределами наших познаний, могут разрешить эти проблемы и, тем самым, придадут теории струн статус неизбежности. К удовлетворению большинства занимающихся теорией струн физиков уже доказано, что точные уравнения, когда их вид будет ясен, вскроют связь между всеми пятью теориями струн.

Как лучи морской звезды, все они являются частями одного организма, который в настоящее время пристально исследуется теоретиками. Физики уверены, что вместо пяти различных теорий должна существовать одна, объединяющая все пять в рамках общего теоретического формализма. Эта теория приведет к ясности, всегда возникающей при выявлении скрытых зависимостей между различными областями исследования, и даст новый мощный подход к пониманию структуры Вселенной в рамках теории струн.

Чтобы объяснить эти идеи, нам придется воспользоваться рядом самых сложных и самых современных результатов теории струн. Необходимо понять суть приближений, используемых в теории струн, а также присущие им ограничения. Нам нужно ближе познакомиться с искусными методами, известными под собирательным названием дуальностей, которые физики применяют для выхода за рамки некоторых приближений. Затем мы должны по шагам разобраться в каждом этапе аргументации, опирающейся на эти методы, и прийти к указанным выше замечательным выводам. Но не нужно пугаться: вся действительно сложная работа уже выполнена теоретиками, а нам остается лишь проиллюстрировать их результаты.

Тем не менее есть множество, казалось бы, не связанных элементов, которые нам придется исследовать и соединить воедино, поэтому в данной главе особенно просто не разглядеть за деревьями леса. Поэтому, если обсуждение в этой главе начнет казаться слишком запутанным и возникнет желание пропустить ее и перейти к черным дырам (главе 13) или космологии (главе 14), мы вам рекомендуем все-таки вернуться к следующему параграфу, где сведены вместе ключевые идеи второй революции в теории суперструн.

Краткое изложение результатов второй революции в теории суперструн

Важнейший результат, полученный в ходе второй революции в теории суперструн, показан на рис. 12.1 и 12.2. На рис. 12.1 изображена ситуация до того, как стало возможным (частично) выйти за рамки приближенных методов, традиционно используемых физиками для исследований в теории струн. Однако, как показано на рис. 12.2, в свете последних результатов видно, что подобно лучикам морской звезды все теории струн рассматриваются сейчас как части единого целого. (К концу этой главы, на самом деле, станет ясно, что даже и шестая теория — шестой лучик звезды — будет вписана в это объединение.)

Рис. 12.1. Многие годы физики, работавшие с пятью теориями струн, думали, что они исследукп совершенно различные теории.

Рис. 12.2. Результаты, полученные в ходе второй революции в теории суперструн, показали, что все пять теорий в действительности являются частью единого формализма, условно названного М-теорией.

Этот единый формализм по причинам, которые станут ясными в дальнейшем, условно назвали М-теорией. Рис. 12.2 иллюстрирует эпохальное достижение в поисках окончательной теории. Тропы исследований в теории струн, которые, казалось, ведут в разные стороны, слились в одну широкую дорогу — единую и всеохватывающую теорию, которая вполне может оказаться искомой «теорией всего».

Хотя предстоит проделать еще много работы, две основные характеристики М-теории уже установлены физиками. Во-первых, М-теория рассматривает одиннадцать измерений (десять пространственных и одно временное). Подобно тому, как Калуца внезапно обнаружил, что одно дополнительное пространственное измерение можно использовать для объединения гравитации с электромагнетизмом, теоретики осознали, что одно дополнительное пространственное измерение в теории струн (помимо оставшихся девяти пространственных и одного временного, обсуждавшихся в предыдущих главах) позволяет осуществить более чем удовлетворительный синтез всех пяти вариантов теории струн. Кроме того, это дополнительное измерение возникает не из воздуха: теоретики обнаружили, что выводы о существовании одного временного и девяти пространственных измерений, сделанные в 1970-х и 1980-х гг., являются приближенными, а точные вычисления показывают, что одно пространственное измерение в те годы осталось незамеченным.

Второе установленное свойство М-теории состоит в том, что она, кроме колеблющихся струн, включает и другие объекты: колеблющиеся двумерные мембраны и трехмерные капли (последние называют 3-бранами), а также и многие другие составляющие. Это свойство, как и одиннадцатое измерение, возникает вследствие отказа от приближений, использовавшихся до середины 1990-х гг. Если не считать этих и ряда других результатов, полученных в последние годы, М-теория остается мистической (этим объясняется одно из предложенных толкований буквы «М» в ее названии). Физики всего мира с большим энтузиазмом работают над тем, чтобы добиться полного понимания М-теории, и эта задача вполне может стать центральной проблемой физики XXI в.

Приближенный метод

Ограничения методов, с помощью которых физики пытались анализировать теорию струн, связаны с использованием теории возмущений. Теория возмущений — меткое название приближенной процедуры, в которой сначала пытаются найти грубый ответ, а затем поэтапно уточняют его с учетом все большего числа подробностей, опущенных на предыдущих этапах. Теория возмущений играет важную роль во многих областях науки; она являлась существенным элементом в понимания теории струн, и, как мы сейчас покажем, прочно входит в круг житейских явлений.

Предположим, что в один прекрасный день машина вашего знакомого начинает барахлить, и он обращается в мастерскую, чтобы ее проверить. Осмотрев машину, механик говорит, что дело плохо. Нужен новый блок двигателя, и обычно ремонт в таких случаях обходится примерно в $900 (включая стоимость деталей). Это примерная оценка, а более точная стоимость выяснится в ходе ремонта. Проходит несколько дней, и, проведя дополнительные проверки, механик сообщает более точную стоимость $950. Он объясняет, что необходим еще и новый регулятор: это увеличит общую стоимость ремонта примерно на $50. Наконец, когда машина отремонтирована, вашему знакомому выставляется счет на $987,93. В мастерской объясняют, что в него входят $950 за блок двигателя и регулятор, $27 за ремень вентилятора, $10 за кабель аккумулятора и $0,93 за изолированный болт. Примерная первоначальная стоимость $900 уточнялась с учетом все более мелких деталей. На языке физики эти детали рассматриваются как возмущения исходной оценки.

При правильном использовании теории возмущений первоначальная оценка будет достаточно близка к окончательному ответу, и после учета мелких подробностей, опущенных в исходной оценке, поправка будет невелика. Но иногда при оплате счета выясняется, что конечная сумма ужасающе расходится с начальной оценкой. И хотя в этот момент в голову, возможно, приходят совсем другие слова, в математике это называется неприменимостью теории возмущений. Это означает, что исходное приближение было плохим прогнозом окончательного ответа, потому что поправки привели не к относительно малым отклонениям, а к сильным изменениям приближенной оценки. Как указывалось в предыдущих главах, наше обсуждение теории струн до этого места опиралось на теорию возмущений, в определенном смысле аналогичную той, которую использовал механик. Упоминавшееся время от времени «недостаточное понимание» теории струн так или иначе связано с применением этого приближенного метода. Чтобы лучше понять смысл последнего утверждения, рассмотрим теорию возмущений в контексте, менее абстрактном, чем в теории струн, но все же более близком к этой теории, чем пример с механиком.

Классический пример теории возмущений

Классический пример использования теории возмущений дает изучение движения Земли в Солнечной системе. На таких больших пространственных масштабах можно учитывать только гравитационное взаимодействие, однако, если не делать дополнительных приближений, возникающие уравнения будут крайне сложны. Вспомним, что и по Ньютону, и по Эйнштейну все тела оказывают гравитационное воздействие на все другие тела, так что попытка точной формулировки сразу приводит к математически неразрешимой задаче о «гравитационном перетягивании каната» Землей, Солнцем, другими планетами и, если по-честному, всеми другими небесными телами. Как нетрудно сообразить, определить точное движение Земли с учетом всех влияний невозможно. На самом деле, уже в случае трех небесных тел уравнения становятся настолько сложными, что никто не сумел полностью решить их3'.

Тем не менее в рамках теории возмущений можно предсказать движение Земли в Солнечной системе с высочайшей точностью. Огромная масса Солнца по сравнению с массами всех других тел Солнечной системы, как и близость Солнца к Земле по сравнению с расстояниями от Земли до других звезд, свидетельствуют о том, что Солнце оказывает доминирующее воздействие на движение Земли. Таким образом, в первом приближении можно учитывать только гравитационное воздействие Солнца. Для многих приложений этого вполне достаточно. Если окажется необходимым, можно уточнить это приближение, последовательно учитывая гравитационное воздействие следующих по степени влияния тел, например, Луны или тех планет, которые в данный момент проходят ближе всего к Земле. По мере того как паутина гравитационных взаимодействий будет становиться более запутанной, вычисления могут стать сложными, но это не должно затемнять смысл философии теории возмущений: гравитационное взаимодействие между Землей и Солнцем дает нам приближенное понимание движения Земли, а совокупность остальных гравитационных взаимодействий последовательно учитывается все уменьшающимися поправками. В этом примере подход в рамках теории возмущений применим, так как существует доминирующее физическое воздействие, допускающее сравнительно простое теоретическое описание. Это не всегда так. Например, если нужно рассчитать движение трех сравнимых по массе звезд, вращающихся в тройной системе одна вокруг другой, нельзя указать, взаимодействие каких звезд будет доминирующим. Поэтому нельзя дать грубую оценку, к которой затем можно было бы делать малые поправки, обусловленные другими эффектами. Если попытаться использовать теорию возмущений и выбрать для грубой оценки, например, взаимодействие между двумя звездами, быстро выяснится, что подход неприменим. Вычисленные «поправки» за счет влияния третьей звезды будут не малыми, а столь же существенными, что и первое грубое приближение. Ситуация знакомая: движения трех человек, танцующих танец «хора» мало напоминают движения пары, танцующей танго. Большие поправки означают, что исходное приближение было выстрелом мимо цели, а вся схема была карточным домиком. Важно понимать, что дело не просто в учете большой поправки третьей звезды. Здесь действует эффект домино: большая поправка сильно влияет на движение двух звезд, что, в свою очередь, сильно влияет на движение третьей звезды, которое опять-таки влияет на движение двух звезд, и т. д. Все нити гравитационной паутины одинаково важны, и должны рассматриваться одновременно. Единственным спасением в таких случаях часто бывает метод грубой силы — компьютерное моделирование совместного движения.

Этот пример демонстрирует, насколько при использовании теории возмущений важно определить, является ли предполагаемое первое приближение действительно приближением, и, если оно им является, сколько и каких более точных деталей следует учитывать, для достижения требуемой точности. Как мы сейчас обсудим, эти вопросы особенно важны при применении теории возмущений к изучению физических процессов в микромире.

Использование теории возмущений в теории струн

Физические процессы в теории струн порождаются фундаментальными взаимодействиями между колеблющимися струнами. Как обсуждалось в главе 6 (читателям, пропустившим раздел «Более точный ответ» в главе 6, рекомендуется пролистать его начало.), в эти взаимодействия входят распады и слияния струнных петель, подобные тем, которые изображены на рис. 6.7 и продублированы для удобства читателя на рис. 12.3. Занимающиеся струнами теоретики показали, как схематическому изображению на рис. 12.3 поставить в соответствие точную математическую формулу, описывающую влияние каждой из сталкивающихся струн на движение другой. (Эта формула имеет разный вид в пяти теориях струн, но мы на время будем пренебрегать такими тонкостями.)

Рис. 12.3. Струны взаимодействуют, соединяясь и разделяясь.

Если бы не было квантовой теории, на этой формуле и заканчивалось бы изучение взаимодействия струн. Но в силу соотношения неопределенностей возникает микроскопический хаос, в котором происходит непрерывное рождение пар струна/антиструна (двух струн с противоположными колебательными модами) за счет одолженной у Вселенной энергии, и быстрая аннигиляция этих пар, в результате которой одолженная энергия возвращается Вселенной. Такие пары струн, рожденные из квантового хаоса, живущие за счет одолженной энергии и, следовательно, обязанные быстро слиться в одну петлю, называют парами виртуальных струн. И хотя их жизнь скоротечна, присутствие этих дополнительных пар виртуальных струн влияет на детальную структуру взаимодействия.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33