Современная электронная библиотека ModernLib.Net

Пуговицы Наполеона. Семнадцать молекул, которые изменили мир

ModernLib.Net / Химия / Джей Берресон / Пуговицы Наполеона. Семнадцать молекул, которые изменили мир - Чтение (Ознакомительный отрывок) (Весь текст)
Автор: Джей Берресон
Жанр: Химия

 

 


Пенни Лекутер, Джей Берресон

Пуговицы Наполеона

Семнадцать молекул, которые изменили мир

Посвящается нашим родным

Не было гвоздя – подкова пропала.

Не было подковы – лошадь захромала.

Лошадь захромала – командир убит.

Конница разбита – армия бежит.

Враг вступает в город, пленных не щадя,

Оттого, что в кузнице не было гвоздя.

Старинные английские детские стихи (в переложении С. Маршака)

Предисловие

В июне 1812 года Великая армия Наполеона насчитывала шестьсот тысяч человек. Уже в начале декабря того же года она уменьшилась всего до десяти тысяч. После отступления из Москвы измученным французам удалось переправиться через реку Березина вблизи Борисова. Тех, кто остался в живых, преследовали голод, болезни и мороз: они стали причиной поражения Наполеона в неменьшей степени, чем штыки и пули русских. Множество солдат погибли, поскольку были недостаточно хорошо одеты и экипированы, чтобы пережить ледяную зиму.

Отступление Наполеона из России имело серьезные последствия для всей Европы. В 1812 году 90 % населения России составляли крепостные крестьяне, которые находились в полной собственности помещиков и не имели никаких прав. Их продавали и покупали. Эта ситуация больше напоминала рабовладельческий строй, чем крепостное право в Западной Европе. Победоносное шествие наполеоновской армии по Европе сопровождалось распространением принципов и идеалов Французской революции (1789–1799), которые разрушали средневековые устои, изменяли политические границы и способствовали становлению национального сознания. Нововведения Наполеона также оказались полезными. Реформированный государственный аппарат и общие для всех кодексы пришли на смену запутанным местным законам и правилам, появились представления о правах человека, семье, частной собственности. Вместо сотен местных систем мер и весов систем была принята единая, десятичная.

Но что явилось причиной поражения величайшей армии, которую вел Наполеон? Почему солдаты Наполеона, прежде непобедимые, дрогнули? На этот счет есть одна странная догадка, сформулировать которую можно, перефразируя слова детского стишка: потому что не было пуговиц! Это кажется невероятным, но гибель армии Наполеона можно связать с такой незначительной вещью, как пуговицы. Точнее, с оловянными пуговицами, на которых держалась одежда всей армии, начиная с шинелей офицеров и заканчивая штанами и мундирами пехотинцев. При низкой температуре блестящее металлическое олово превращается в хрупкий серый порошок, все еще оловянный, но имеющий совершенно другую структуру. Неужели именно это произошло с пуговицами наполеоновских солдат? Один свидетель в Борисове описывал войска французов как “толпу привидений, завернутых в женские платки, куски ковров и прожженные шинели”. Неужели исчезновение пуговиц привело к тому, что солдаты так замерзли, что больше не могли воевать? И вместо того, чтобы держать оружие, они вынуждены были буквально придерживать штаны?

Впрочем, в этой гипотезе есть несколько узких мест. Так называемая оловянная чума (“болезнь олова”) была известна на севере Европы уже несколько столетий. Как мог Наполеон, уверенный в готовности своих войск к победоносным битвам, разрешить изготавливать элементы обмундирования из олова? Кроме того, распад олова представляет собой достаточно длительный процесс, даже при такой низкой температуре, как зимой 1812 года в России. Однако это занимательная история, и химикам она очень нравится в качестве объяснения поражения французской армии. Но если в этой гипотезе есть доля правды, то возникает вопрос: что было бы, если бы пуговицы не рассыпались от холода и французы продолжили движение на восток? Не привело бы это к тому, что крепостное право в России пало на полвека раньше? Сохранилась бы граница между Западной и Восточной Европой, которая приблизительно соответствует границе наполеоновской империи?

Во всей истории человечества металлы играли очень важную роль. Кроме случая с оловянными пуговицами наполеоновских солдат, были и другие. Известно, например, что оловянные рудники Корнуолла привлекали внимание древних римлян и стали одной из причин захвата ими территории современной Великобритании. К 1650 году около шестнадцати тысяч тонн серебра из рудников Нового Света перекочевали в сундуки богатых испанцев и португальцев, и большая часть этих средств была израсходована на войны в Европе. Поиски золота и серебра оказали чрезвычайно сильное влияние на открытие, колонизацию и заселение многих регионов мира. Например, золотые прииски в Калифорнии, Австралии, Южной Африке, Новой Зеландии и на реке Клондайк в Канаде в значительной степени способствовали освоению этих мест в XIX веке. В нашем языке закрепилось множество выражений, в которых упоминается золото: золотой стандарт, золотой человек, золотое время, черное золото. Название целых эпох отдает дань металлам. На смену бронзовому веку, когда бронза – сплав или смесь олова и меди – использовалась для изготовления оружия и орудий труда, пришел железный век, когда люди начали плавить и ковать железо.

Но только ли олово, золото и железо повлияли на ход истории? Металлы – это элементы, то есть вещества, которые с помощью химических реакций нельзя разложить на более простые составляющие. В природе существует девяносто элементов. Кроме того, человек создал еще около девяноста элементов в очень небольшом количестве. Но химических соединений (веществ, образованных в результате химических взаимодействий двух или нескольких элементов) известно около семи миллионов. Без преувеличения можно сказать, что некоторые соединения также сыграли поворотную роль в истории человечества. Эта любопытная идея и легла в основу книги.

Если рассматривать некоторые обычные или не совсем обычные вещества в таком аспекте, обнаруживаются удивительные истории. В результате подписания соглашения в Бреде в 1667 году голландцы уступили англичанам свои владения в Северной Америке в обмен на маленький островок Ран в архипелаге Банда (современная Индонезия). Англия, потерявшая свои права на остров Ран (притягательность которого заключалась исключительно в том, что там выращивали мускатный орех), взамен получила права на небольшой кусочек суши на другом краю света – остров Манхэттен.

Голландцы стали претендовать на Манхэттен вскоре после прибытия туда Генри Гудзона, искавшего путь в Ост-Индию, к легендарным Островам пряностей (Молуккские острова). В 1664 году губернатор Нового Амстердама Питер Стейвесант был вынужден уступить колонию англичанам. Недовольство голландцев этой уступкой и другие территориальные разногласия привели к войне между двумя странами, длившейся около трех лет. Английское присутствие на острове Ран раздражало голландцев, поскольку только оно нарушало монополию Голландии на торговлю мускатным орехом. Голландцы, известные в этом регионе своей жестокостью, совершенно не желали, чтобы англичане имели долю в прибыльной торговле пряностями. После четырехлетней блокады и кровавых боев голландцы наконец захватили остров Ран. Англичане отомстили тем, что стали нападать на корабли голландской Ост-Индской компании.

Голландцы требовали компенсации за пиратство и добивались возврата Нового Амстердама. Англичане хотели, чтобы голландцы заплатили за свои преступления в Ост-Индии и вернули Ран. Так как ни одна из сторон не хотела идти на уступки и не могла одержать победу на море, в Бреде было подписано соглашение, позволившее обоим государствам сохранить лицо. Англичане забирали Манхэттен и отказывались от притязаний на остров Ран. Голландцы становились хозяевами острова Ран и больше не претендовали на Манхэттен. Когда англичане подняли свой флаг над Новым Амстердамом (позже переименованным в Нью-Йорк), казалось, что голландцам в этом споре повезло больше. Разве можно сравнить маленькое поселение в Новом Свете (около тысячи человек) с монополией на торговлю мускатным орехом?

Почему мускатный орех ценился так высоко? Подобно другим пряностям, таким как гвоздика, перец и корица, мускатный орех широко использовался в Европе для сохранения продуктов, его употребляли в пищу и применяли в медицине. Но мускатный орех имел и другую, гораздо более важную функцию. Считалось, что мускатный орех защищает от “черной смерти”, которая с XIV века опустошала Европу на протяжении четырехсот лет.

Конечно, теперь нам известно, что “черная смерть” (чума) – это бактериальное заболевание, которое переносят крысы и которое передается через укусы блох. Поэтому можно сказать, что носить на шее маленький мешочек с мускатным орехом в качестве средства от чумы – просто суеверие. Да, так можно было бы сказать, если не разбираться в химическом составе мускатного ореха. Характерный запах этого ореха объясняется присутствием в нем изоэвгенола. Растения вырабатывают подобные вещества в качестве природных пестицидов – для защиты от жвачных животных, насекомых и микробов. Вполне вероятно, что изоэвгенол из мускатного ореха действовал как природный инсектицид, отгонявший блох. Конечно, правда и другое: состоятельные люди, имевшие возможность купить мускатный орех, жили в относительно более благоприятных условиях, то есть в окружении меньшего количества крыс и блох, что снижало вероятность заражения чумой.

Помогал ли мускатный орех от чумы, сказать трудно, но летучие ароматические вещества в его составе способствовали росту его цены и популярности. Открытие и завоевание новых земель, подписанное в Бреде соглашение, а также тот факт, что главный город Америки называют Нью-Йорком, а не Новым Амстердамом, – все это имеет отношение к веществу изоэвгенол.

Вслед за историей об изоэвгеноле можно рассказать истории о множестве других соединений, изменивших наш мир. Некоторые из этих соединений широко известны и по-прежнему имеют большое значение для мировой экономики или медицины, другие давно забыты. Но все эти вещества сыграли роль в одном или даже в нескольких поворотных событиях, повлиявших на ход истории.

Мы решили написать эту книгу, чтобы рассказать об удивительной связи между химическими соединениями и историей человечества и показать, что иногда не связанные между собой на первый взгляд события имеют отношение к химическим молекулам, а путь развития общества порой определяется химической структурой некоторых веществ. Мысль о том, что те или иные события в истории могут зависеть от чего-либо столь незначительного, как молекулы (то есть группы из двух или нескольких атомов, определенным образом связанных между собой), заставляет нас по-новому взглянуть на развитие цивилизации. Такие незначительные изменения, как положение связи между атомами в молекуле, могут приводить к чрезвычайно сильным различиям в свойствах соединений и влиять на ход событий. Таким образом, эта книга не об истории химии, а скорее о роли химии в истории.

Выбор молекул, о которых мы решили рассказать, в некотором смысле произвольный и ни в коей мере не исчерпывающий. Мы выбрали те соединения, которые показались нам наиболее интересными как в историческом, так и в химическом отношении. Мы не утверждаем, что именно эти молекулы оказали наиболее сильное влияние на цивилизацию. Без сомнения, наши коллеги-химики могли бы добавить в список некоторые другие молекулы, изъяв некоторые из наших. Мы расскажем о молекулах, которые положили начало Великим географическим открытиям и освоению новых земель. Мы поговорим о молекулах, которые сыграли важную роль в развитии торговли, привели к переселению народов и колонизации отдельных территорий, а также способствовали работорговле и подневольному труду. Мы попытаемся объяснить, как химическая структура некоторых молекул повлияла на то, что мы едим, что пьем и во что одеваемся. Мы познакомимся с молекулами, стимулировавшими развитие медицины и гигиены, а также с молекулами, способствовавшими промышленному прогрессу. Мы поговорим о “молекулах войны”, которые унесли жизнь миллионов людей, и о “молекулах мира”, спасших миллионы жизней. Мы увидим, как много изменений в отношениях между мужчинами и женщинами, в человеческой культуре, в законодательстве и в окружающей среде можно связать с химической структурой нескольких молекул. Впрочем, выбранные нами семнадцать веществ – это не всегда отдельные молекулы. В некоторых главах рассмотрены группы молекул с очень похожей структурой, свойствами и исторической ролью.

События рассматриваются нами не в хронологическом порядке. В расположении глав мы хотели отразить связь между сходными молекулами, группами сходных молекул, а также между разными по химической структуре молекулами, которые, однако, имеют похожие свойства или могут быть связаны с аналогичными событиями. Например, начало Промышленной революции связывают с выращиванием на плантациях в Северной и Южной Америке сахарного тростника и производством сахара, а в Англии экономические и социальные изменения были связаны с другим веществом – хлопком, причем по химической структуре второе вещество приходится старшим или, может быть, двоюродным братом первому. Быстрое развитие химической промышленности в Германии в конце XIX века в определенной степени обусловлено получением новых красителей из каменноугольной смолы – побочного продукта, образующегося при получении газа из каменного угля. Те же немецкие химические компании первыми синтезировали искусственные антибиотики, по структуре напоминающие новые красители. Кроме того, из дегтя был получен и первый антисептик – фенол, который впоследствии стал использоваться для производства пластмасс и который по химической структуре родственен изоэвгенолу из мускатного ореха. В истории можно найти массу подобных химических взаимосвязей.

Нас также интересовал вопрос о роли интуитивного предвидения в многочисленных открытиях в химии. Часто говорят, что многие важные открытия были сделаны лишь благодаря счастливому случаю. Однако нам кажется, что гораздо более важную роль играет способность ученого осознать важность сделанного открытия и понять его суть. Много раз в истории химии странные, но потенциально важные результаты оставались без внимания. Нам кажется, что следует отдать должное способности ученых распознавать ценность неожиданных результатов, а не объяснять все простым везением. Некоторые изобретатели и первооткрыватели, о которых мы рассказываем в данной книге, были химиками, другие вообще не имели никакого научного образования. Многие из этих людей обладали необычным характером. Их истории удивительны.

Органическое – разве это не то, что растет в огороде?

Чтобы помочь читателю уяснить химическую сторону описываемых событий, мы предлагаем сначала вкратце ознакомиться с химическими терминами. Многие из соединений, о которых пойдет речь, называют органическими. В последние двадцать-тридцать лет это слово использовалось в смысле, весьма далеком от исходного значения. “Органическими” все чаще называют продукты сельского хозяйства, для производства которых не применяются искусственные пестициды, гербициды или синтетическое удобрения[1]. Исходно термин “органический” был предложен около двухсот лет назад шведским химиком Йенсом Якобом Берцелиусом, который в 1807 году назвал органическими те вещества, которые происходят из живых организмов. Напротив, неорганическими веществами Берцелиус назвал те, которые происходят из неживых источников.

В XVIII веке в научном мире распространилась идея, что химические вещества, происходящие из природных источников, чем-то отличаются от остальных, и что они содержат в себе некую жизненную сущность, даже если ее не удается обнаружить и измерить. Эту особую сущность называли жизненной энергией. Научное течение, утверждавшее, что в веществах из растительных или животных источников содержится некая мистическая сила, называлось витализмом. Считалось невозможным создать органическое соединение в лабораторных условиях, но по иронии судьбы это сделал один из студентов самого Берцелиуса. В 1828 году Фридрих Велер, в будущем профессор химии в университете Геттингена в Германии, нагрел смесь двух неорганических веществ – аммиака и циановой кислоты – и получил кристаллы мочевины, которые ничем не отличались от кристаллов мочевины, выделенной из мочи животных.

Сторонники витализма считали, что циановая кислота является органическим веществом, поскольку ее получали из высушенной крови. Тем не менее идея витализма начала угасать. Спустя еще несколько десятилетий она рассыпалась окончательно, поскольку другим химикам также удавалось синтезировать органические вещества из неорганических. Последние сторонники витализма вынуждены были смириться с тем, что до тех пор считали ересью, и смерть витализма стала общепризнанным фактом. Возникла необходимость дать новое химическое определение органическим веществам.

Теперь органическими стали называть такие вещества, которые содержат углерод. Таким образом, органическая химия – это наука, изучающая соединения углерода. Безусловно, это определение несовершенно, поскольку существуют соединения углерода, которые химики никогда не рассматривали в качестве органических. Причина этого лежит главным образом в традиции. Например, задолго до экспериментов Велера было известно, что карбонаты, содержащие кислород и углерод, входят в состав минеральных веществ, а не только живых организмов. Таким образом, мрамор (карбонат кальция) и питьевую соду (бикарбонат натрия) никогда не относили к органическим соединениям. Аналогично углерод в форме алмаза или графита (оба вещества исходно добывали в земле, а теперь их можно получить искусственным путем) всегда воспринимали в качестве неорганического вещества. Диоксид углерода, состоящий из одного атома углерода, соединенного с двумя атомами кислорода, был известен ученым на протяжении многих столетий и никогда не рассматривался в качестве органического соединения. Таким образом, данное выше определение небезупречно. Но, в общем, органические вещества действительно содержат углерод, а неорганические вещества состоят из других элементов.

Углерод отличается от других элементов невероятным разнообразием образуемых им связей, а также широким диапазоном элементов, с которыми он может образовывать связи. Таким образом, количество соединений углерода, как природных, так и синтетических, многократно превосходит количество соединений всех остальных элементов вместе взятых. Это отчасти объясняет то, что в книге мы уделяем больше внимания органическим веществам, чем неорганическим. Но наш выбор объясняется также и тем, что оба автора книги являются химиками-органиками.

Структурные формулы: нужны ли они?

Для нас самой большой проблемой в работе над книгой было определение разумных пределов ее химического содержания. Некоторые коллеги советовали нам меньше говорить о химии и больше – об истории. И уж разумеется, говорили нам, не стоит рисовать никаких химических структур. Но нам показалось наиболее интересным как раз отразить связь между химической структурой и свойствами вещества, а также связь между его структурой и историческими событиями. Конечно, можно прочесть книгу, не глядя на формулы, но нам кажется, что понимание химических структур оживляет связь между химией и историей.

Органические вещества состоят всего из нескольких видов атомов: углерода (C), водорода (H), кислорода (O) и азота (N). Кроме того, в них могут встречаться и другие элементы: бром (Br), хлор (Cl), фтор (F), йод (I), фосфор (P) и сера (S). В книге мы изображали структуры химических соединений главным образом для сравнения, поэтому, чтобы понять объяснение, требуется просто взглянуть на рисунок. Различия в структурах обычно помечены стрелками, обведены окружностью или выделены каким-либо иным образом. Например, единственным различием между двумя изображенными ниже веществами является положение OH-группы. В каждом случае это положение отмечено стрелкой. В первой молекуле OH-группа располагается у второго атома углерода слева, а во второй молекуле – у первого атома углерода.

Молекула, синтезируемая пчелиной маткой


Молекула, синтезируемая рабочей пчелой


Это, казалось бы, незначительное различие имеет для пчел чрезвычайно важное значение. Первую молекулу синтезирует пчелиная матка, а вторую – рабочие пчелы, и все пчелы умеют отличать первую молекулу от второй. Мы можем увидеть различие между пчелиной маткой и рабочей пчелой, если посмотрим на картинку.

Пчелиная матка


Рабочая пчела

Рисунки любезно предоставлены Раймондом и Сильвией Чемберлен


Сами пчелы для распознавания пользуются химическими сигналами. Можно сказать, они обладают химическим “зрением”.

Чтобы показать порядок соединения атомов в молекулах, химики пользуются структурными формулами. Атомы изображают с помощью химических символов, а связи между ними рисуют в виде черточек. Иногда между двумя атомами может быть не одна, а несколько черточек. Если черточек две, то это двойная связь (=), если их три, то связь тройная (?).

В одной из самых простых органических молекул – в молекуле метана (болотного газа) – углерод окружен четырьмя простыми (одинарными) связями, каждая из которых соединяет его с атомом водорода. Химическая формула метана CH4, а структурная формула выглядит так:

Метан


Самая простая органическая молекула с двойной связью – этилен (C2H2). Его структурная формула такова:

Этилен


В данном случае углерод по-прежнему имеет четыре связи, поскольку двойная связь рассматривается как две одинарные. Этилен – очень простое и очень важное вещество. Это растительный гормон, способствующий созреванию плодов. Например, если яблоки хранить в непроветриваемом помещении, они быстро перезреют под действием собственного этилена. (Можно ускорить созревание неспелых авокадо или киви, положив их в пакет со спелым яблоком.)

Органическое соединение метанол, или метиловый спирт, имеет химическую формулу CH4O. Структура этого кислородсодержащего соединения представлена на рисунке:

Метанол


В данном случае атом кислорода имеет две простые связи, одна из которых связывает его с атомом углерода, а другая – с атомом водорода. И, как всегда, углерод окружен четырьмя связями.

В соединениях, в которых существует двойная связь между атомами углерода и кислорода, как в уксусной кислоте (уксусе), формула C2H4O2 не показывает однозначно, где расположена двойная связь. Именно по этой причине нам нужны структурные формулы: чтобы показать, в каком порядке соединяются атомы и где расположены двойные связи.

Уксусная кислота


Подобные структурные формулы можно изобразить и в сжатом виде. Тогда структурная формула уксусной кислоты примет следующий вид:

или даже

Здесь показаны не все химические связи, существующие в этой молекуле. Такая форма записи позволяет упростить рисунок и демонстрирует только взаимное расположение атомов.

Эта система записи хорошо подходит для небольших молекул, но для более крупных молекул даже такая запись отнимает много времени и сложна для восприятия. Например, обратимся вновь к молекуле, синтезируемой пчелиной маткой, и сравним две формы записи – сжатую и развернутую, отражающую расположение всех связей:

Развернутая структурная формула молекулы, синтезируемой пчелиной маткой


Такая формула слишком громоздка и плохо воспринимается. По этой причине молекулы часто изображают с некоторыми упрощениями. Самым распространенным из них является отсутствие в формулах большинства атомов водорода. (Но это не означает, что атомов водорода в этих молекулах нет.) Атом углерода всегда имеет четыре связи. Поэтому если вы видите, что в какой-либо формуле атом углерода имеет меньше связей, знайте: на самом деле, связей четыре, просто те, которых нет на рисунке, связывают углерод с атомом водорода.

Молекула, синтезируемая пчелиной маткой


Кроме того, атомы углерода в формулах часто изображают связанными не по прямой линии, а под углом. На самом деле такая запись точнее отражает реальную структуру молекул. Изобразим молекулу, синтезируемую пчелиной маткой.

А в еще более сжатом виде можно опустить большинство атомов углерода:

Здесь конец линии и все пересечения обозначают место расположения атома углерода. Все остальные атомы, за исключением большинства атомов водорода и углерода, изображены. Если использовать данное упрощение, то разница между молекулами, синтезируемыми пчелиной маткой и рабочей пчелой, видна гораздо отчетливее.

Молекула, синтезируемая пчелиной маткой


Молекула, синтезируемая рабочей пчелой


Кроме того, в таком виде проще сравнить эти молекулы с молекулами, которые синтезируют другие насекомые. Например, бомбикол – это феромон, или половой аттрактант, который синтезируют самцы тутового шелкопряда. В отличие от молекулы, синтезируемой пчелиной маткой (которая также является феромоном), эта молекула состоит из шестнадцати атомов углерода, имеет две двойные связи вместо одной и не содержит группы COOH.

Молекула, синтезируемая пчелиной маткой


Молекула бомбикола


Особенно выгодно опускать изображение атомов углерода и водорода в формулах циклических соединений – достаточно распространенных структур, в которых атомы углерода образуют кольцо. Ниже приведена структурная формула молекулы циклогексана C6H6.

Сжатая форма изображения химической структуры циклогексана. Пересечение любых двух линий указывает место расположения атома углерода. Атомы водорода не показаны.


В развернутом виде структурная формула циклогексана выглядит так:

Развернутая форма изображения химической структуры циклогексана. Указаны все атомы и связи.


Как видно, если изобразить все атомы углерода и водорода, а также все связи, то формула получается перегруженной и трудной для восприятия. А если речь идет о более сложных молекулах, таких как антидепрессант прозак, то развернутая формула (показана ниже) значительно усложняет понимание.

Развернутая форма изображения структуры прозака

А вот сжатую форму воспринимать гораздо легче:

Прозак


Еще один термин, который широко используется для описания химических веществ, – ароматическое соединение. В словарях ароматное или ароматическое вещество определяется как вещество, имеющее аромат, то есть пикантный или острый вкус и приятный запах. В химии употребляется слово “ароматический”, и многие ароматические соединения имеют запах, хотя далеко не всегда приятный. В химическом смысле ароматическое соединение – это соединение, имеющее в составе бензольное кольцо (см. ниже), которое чаще всего изображают в сжатом виде.

Структура бензола


Сжатая форма изображения молекулы бензола


Глядя на структурную формулу прозака, можно сказать, что в этой молекуле есть два ароматических (бензольных) кольца. Таким образом, прозак относится к ароматическим соединениям.

Два ароматических кольца в молекуле прозака


Мы совершили очень краткий экскурс в мир органических структур, но этого вполне достаточно, чтобы понять содержание данной книги. Мы будем сравнивать химические молекулы, чтобы показать их сходство и различие, и увидим, что чрезвычайно малые изменения в структуре молекул иногда могут привести к очень серьезному изменению свойств вещества. И именно через свои уникальные свойства некоторые молекулы оказали значительное влияние на цивилизацию.

Глава 1

Перец, мускатный орех и гвоздика

“За Христа и пряности!” – таким был торжествующий клич португальских моряков в мае 1498 года, когда корабли под командованием Васко да Гамы достигли берегов Индии. Целью экспедиции было нарушение монополии венецианских купцов на торговлю пряностями. В средневековой Европе перец ценился так высоко, что за фунт [менее полукилограмма] его сушеных горошин можно было купить освобождение от феодальной зависимости вместе с дворянским титулом. Сегодня перец есть на обеденном столе в каждом доме, и трудно себе представить, что несколько столетий назад потребность в нем, а также в таких специях, как корица, гвоздика, мускатный орех и имбирь, привела к Великим географическим открытиям.

Краткая история перца

Перец – плод тропического вьющегося растения Pipernigrum, происходящего из Индии, – до сих пор самая популярная пряность. Сейчас этот продукт в основном производят в экваториальных районах Индии, в Бразилии, Индонезии и Малайзии. Это сильное растение с древовидным стволом может достигать шести метров в высоту. В возрасте от двух до пяти лет растение начинает приносить круглые красные плоды и при оптимальных условиях живет до сорока лет. Каждая лиана в год может принести до десяти килограммов перца.

Примерно три четверти урожая перерабатывают в черный перец, который получают из незрелых плодов путем ферментации под действием микроскопических грибов. Из оставшихся 25 % большую часть составляет белый перец, который получают путем удаления шелухи со зрелых и высушенных плодов. Совсем небольшое количество поступает в продажу в виде зеленого перца: зеленые плоды, которые только-только начинают созревать, собирают и помещают в рассол. Зернышки другого цвета, которые иногда можно найти в специализированных магазинах, получены путем искусственного окрашивания, либо это вообще плоды другого растения.

Считается, что перец в Европу привезли арабские купцы, доставлявшие его по древнему торговому пути, проходившему через Дамаск и Красное море. В Греции перец был известен уже в V веке до н. э. В те времена его чаще использовали в медицинских, чем в кулинарных целях (он служил, например, антидотом при отравлениях). В Древнем Риме перец и другие специи начали активно употреблять в пищу.

В I веке на долю специй, среди которых важное место занимал индийский перец, приходилась примерно половина стоимости всего товара, прибывавшего в Средиземноморье из Азии и с восточного побережья Африки. Специи использовали в кулинарии по двум причинам: во-первых, для предотвращения порчи продуктов, во-вторых, для придания остроты готовым блюдам. Рим был огромным городом. Транспортировка товаров осуществлялась медленно, замораживание продуктов питания еще не практиковалось, так что проблема их доставки и сохранения стояла очень остро. При определении качества продуктов потребители могли рассчитывать только на собственный нюх (этикетки с надписью “годен до такого-то числа” появились много позже). Специи приглушали запах протухшего товара и, возможно, помогали замедлить дальнейшее разложение. Кроме того, щедрое использование пряностей могло улучшить вкус сушеных, копченых и соленых продуктов.

В средневековье значительная часть торговых сделок между Европой и странами Востока осуществлялась в Багдаде (Ирак) и Константинополе (теперь Стамбул), путь к которым шел вдоль южного берега Черного моря. Из Константинополя специи морем доставляли в Венецию, которая почти полностью контролировала этот рынок на протяжении последних четырех столетий средневековья.

Расцвет Венеции относится примерно к VI веку, когда она стала торговать солью, добываемой в расположенных поблизости лагунах. Город-государство процветал много столетий, поскольку вел осторожную внешнюю политику, благодаря которой сохранял независимость и торговал со многими народами. Во времена крестовых походов, начавшихся в XI веке, венецианские купцы упрочили свое положение в качестве королей пряностей. Венецианские купцы снабжали крестоносцев транспортом, военными кораблями, оружием и деньгами, что приносило Венеции огромную прибыль. При возвращении домой с Ближнего Востока крестоносцы хотели увезти с собой экзотические специи, к которым пристрастились во время похода. Сначала перец казался непривычной роскошью, однако его способность приглушить привкус подпорченного мяса или рыбы, придать остроту безвкусной сушеной пище и ослабить соленость засоленных продуктов способствовала быстрому росту его популярности. Венецианские купцы завоевали новый рынок, и торговцы со всей Европы стекались в Венецию за пряностями – в первую очередь за перцем.

К XV веку монопольное положение венецианцев на рынке пряностей было настолько прочным, а прибыли такими значительными, что другие страны начали серьезно подумывать о том, как найти другой путь в Индию, например по морю вокруг Африки. По указанию Генриха (Энрике) Мореплавателя, сына короля Португалии Жуана I, была построена мощная торговая флотилия, способная выдержать океанский переход. Так началась эпоха Великих географических открытий, а ее стимулом в значительной степени стал спрос на черный перец.

В середине XV века португальским мореплавателям удалось достичь островов Зеленого Мыса у северо-западного побережья Африки. В 1483 году португалец Диего Кан дошел до устья реки Конго. Через четыре года еще один португалец, Бартоломео Диаш, обогнул мыс Доброй Надежды, что позволило его земляку Васко да Гаме в 1498 году добраться до Индии.

Правитель Каликута, города на юго-западном побережье Индии, был согласен обменивать перец на золото, но португальцев, собиравшихся монополизировать мировой рынок перца, это никак не устраивало. Поэтому через пять лет да Гама вернулся в Индию с пушками и солдатами и разрушил Каликут. В результате торговля перцем перешла под контроль Португалии. С этого началась Португальская колониальная империя, которая в лучшие времена простиралась от Африки до Индонезии на востоке и Бразилии на западе.

Испанию тоже интересовала торговля пряностями, особенно перцем. Уроженец Генуи Христофор Колумб, считавший, что более короткий путь к восточным берегам Индии можно найти, двигаясь на запад, в 1492 году убедил короля Испании Фердинанда и королеву Изабеллу профинансировать его поход. Колумб был прав лишь отчасти. Можно достичь Индии, двигаясь из Европы на запад, но это не самый короткий путь. На этом пути лежат такие препятствия, как неизвестные тогда европейцам Северная и Южная Америки, а также огромный Тихий океан.

Что же такое есть в перце, который сделал Венецию одним из богатейших городов мира, инициировал Великие географические открытия и вынудил Колумба отправиться на поиски Нового Света? Активным компонентом черного и белого перцев является пиперин (C17H19O3N):

Пиперин


Ощущение жжения во рту связано не со вкусом этого вещества, а скорее с реакцией нервных окончаний языка на химический стимул. До сих пор не очень понятно, как это происходит, но считается, что все дело в структуре молекулы пиперина, которая связывается с белком на окончаниях чувствительных нервов у нас во рту и в других частях тела. В результате этот белок изменяет свою форму и по нервам посылает сигнал в головной мозг, сообщая что-то вроде: “Ой, жжется”.

История, связывающая жгучую молекулу пиперина и Христофора Колумба, не заканчивается тем, что Колумб не нашел западного пути в Индию. Колумб, в октябре 1492 года достигший суши, считал (по крайней мере, надеялся), что находится в какой-либо части Индии. Он не нашел ни больших городов, ни процветающих царств, но все же он назвал открытую им землю Вест-Индией, а ее жителей – индейцами. В ходе своего второго плавания в Вест-Индию Колумб нашел на Гаити другую жгучую пряность. Она совсем не была похожа на известный Колумбу перец, но все же он прихватил этот новый плод, красный перец (чили), с собой в Испанию.

Потом новая пряность совершила путешествие с португальцами вокруг Африки и достигла Индии и других далеких земель. Всего за пятьдесят лет чили распространился по всему миру и пришелся ко двору многим народам, особенно в Африке и в Юго-Восточной Азии. Для многих миллионов людей, любящих обжигающий пламень красного перца, он, без сомнения, является одним из самых важных открытий Колумба.

Жгучая химия

В отличие от черного перца, который представляет собой плод растения одного-единственного вида, красный острый перец, или чили, – плод нескольких видов растений, относящихся к роду Capsicum. Растения этого рода, происходящие из тропической Америки (возможно, из Мексики), известны людям не менее девяти тысяч лет. Внутри каждого вида растений этого рода существует множество вариаций. Например, Capsicum annuum – вид однолетнего растения, к которому относятся паприка, кайенский перец, колокольчиковый овощной перец и многие другие. А перец табаско – плод многолетнего древесного растения Capsicum frutescens.

Перец чили бывает самых разных цветов, размеров и форм, но в любом случае его пикантный вкус и жжение объясняются присутствием в нем капсаицина (C18H27O3N) – вещества со структурой, напоминающей структуру пиперина:

Капсаицин


Пиперин


В обеих молекулах атом азота (N) связан с атомом углерода (C), который, в свою очередь, связан двойной связью с атомом кислорода (O). Кроме того, обе молекулы имеют в своем составе единственное ароматическое кольцо и цепочку атомов углерода. Неудивительно, что обе молекулы вызывают ощущение жжения на языке.

Третьей “жгучей” молекулой, которая также укладывается в теорию о связи формы молекулы с ее свойствами, является цингерон (C11H14O3), содержащийся в подземной части стебля имбиря (Zingiberofficinale). Эта молекула меньше, чем молекулы пиперина и капсаицина (и, как согласятся многие, менее жгучая), и в ней также есть одно ароматическое кольцо с боковыми группами OH и H3CO, как в капсаицине, но нет атома азота.

Капсаицин


Цингерон


Пиперин


Почему мы едим эти вещества, если они причиняют боль? Возможно, по некоторым причинам химического толка. Капсаицин, пиперин и цингерон усиливают выработку слюны, помогая пищеварению. Кроме того, по-видимому, они стимулируют продвижение пищи через кишечник. У человека, как и у других млекопитающих, во рту есть вкусовые сосочки, но, кроме того, у человека в других участках организма еще есть чувствительные нервы, распознающие химические сигналы этих молекул. Не случалось ли вам тереть глаза при разделке жгучего перца? Люди, занимающиеся сбором жгучего перца, вынуждены носить резиновые перчатки и защитные очки, предохраняющие от брызг перечного масла, содержащего капсаицин.

В случае черного перца интенсивность жжения у нас во рту прямо пропорциональна количеству перца в еде. Однако в случае перца чили ощущения могут быть обманчивыми. Жгучесть этого продукта зависит от цвета, размера и места произрастания плодов. И ни один из этих факторов не является определяющим. Мелкие перцы часто бывают очень жгучими, но это не означает, что более крупные всегда щиплются слабее. География также не всегда является решающим фактором, хотя и считается, что самый жгучий перец чили растет в некоторых областях Восточной Африки. При высушивании плодов “характер” перца проявляется еще ярче.

После приема острой пищи у нас часто возникает ощущение удовлетворения, что может быть связано с выработкой в головном мозге эндорфинов (соединений, напоминающих опиаты) в ответ на вызванное жжением ощущение боли. Именно этим можно объяснить пристрастие многих людей к острому. Чем острее чили, тем сильнее боль, тем больше вырабатывается эндорфинов и тем, в итоге, сильнее удовольствие.

За исключением паприки, которая нашла свое место в блюдах венгерской кухни, например гуляше, красный перец не используется в европейской кухне так же широко, как в кухне африканских или азиатских народов. Для европейцев главной специей по-прежнему является черный перец. Португальское владычество в Каликуте и контроль над рынком сбыта перца продолжались около ста пятидесяти лет. К началу XVII века верх взяли голландцы и англичане. Главными портами, через которые перец теперь поступал в Европу, стали Амстердам и Лондон.

В 1600 году была учреждена Ост-Индская компания (изначально – “Компания купцов Лондона, торгующих в Ост-Индиях”), в задачи которой входило упрочение позиций Англии на рынке пряностей. Финансирование плавания в Индию за перцем было делом рискованным, поэтому сначала торговцы снаряжали суда в складчину, тем самым снижая возможные потери каждого вкладчика. Позднее торговцы стали выкупать части компании, что можно рассматривать как начало капитализма. Поэтому не будет слишком сильным преувеличением, если мы скажем, что такое малозначащее сейчас химическое вещество, как пиперин, в свое время стало стимулом для формирования сложных структур фондового рынка.

Зов пряностей

Черный перец был не единственной пряностью, которая ценилась так высоко. Мускатный орех и гвоздика ценились не меньше, но встречались гораздо реже. Родиной этих двух продуктов являются Молуккские острова – легендарные Острова пряностей (ныне индонезийская провинция Молукку). Мускатное дерево Myristicafragrans растет исключительно на островах Банда – небольшом архипелаге в море Банда, примерно в двух с половиной тысячах километров восточнее столицы Индонезии Джакарты. Это крошечные острова: крупнейший не превышает в длину десяти километров, а длина самого маленького составляет всего пару километров. К северу от Молуккских островов расположены тоже очень маленькие острова Тернате и Тидоре – единственное место на планете, где росло гвоздичное дерево Eugeniaaromatica.

Столетиями островитяне собирали пахучие плоды этих редких деревьев и продавали их арабским, малайским и китайским купцам для отправки в Азию и Европу. Торговые пути были хорошо известны, но вне зависимости от того, проходили ли они через Индию, Аравию, Персию или Египет, прежде чем попасть к покупателям в Западной Европе, товар переходил из рук в руки не менее двенадцати раз, и при каждой сделке стоимость товара увеличивалась вдвое. Поэтому нет ничего удивительного в том, что вице-король португальских владений в Индии Афонсу де Албукерки снарядил экспедиции сначала на Цейлон, а после на полуостров Малакка, который был в те времена центром торговли пряностями в Восточной Индии. В 1512 году Албукерки достиг источника гвоздики и мускатного ореха и установил португальскую монополию на эти товары, торгуя напрямую с островитянами, так что вскоре Португалия обошла Венецию.

Испанию тоже интересовал рынок пряностей. В 1518 году португальский мореплаватель Фернан Магеллан, чей план отвергла собственная страна, убедил испанского монарха не только в том, что к Островам пряностей можно добраться, двигаясь в западном направлении, но и в том, что этот путь может оказаться короче. У Испании были причины поддержать Магеллана. Новый путь в Ост-Индию позволил бы испанским кораблям избежать захода в португальские порты. Кроме того, за несколько лет до этого папа римский Александр VI издал буллу о разделе нехристианского мира между Испанией и Португалией. Португалии отводились все вновь открытые земли к востоку от воображаемой вертикальной линии, проходившей на расстоянии ста лиг (около пятисот километров) к западу от островов Зеленого Мыса. Испания могла владеть всеми нехристианскими землями к западу от этой линии. Многие ученые и мореплаватели того времени прекрасно знали, что Земля круглая, однако Ватикану, по-видимому, это известно не было. Таким образом, продвижение на запад давало Испании законное основание претендовать на Острова пряностей.

Магеллан убедил короля Испании в том, что ему известен путь через американский континент, и, должно быть, он убедил в этом и самого себя. В сентябре 1519 года Магеллан покинул Испанию и направился в юго-западном направлении, чтобы пересечь Атлантику, а затем стал спускаться вниз вдоль берегов, являющихся ныне территорией Бразилии, Уругвая и Аргентины. Когда он достиг эстуария Ла-Плата шириной более двухсот километров (в глубине которого сегодня расположен город Буэнос-Айрес), его, должно быть, постигло чудовищное разочарование, поскольку это еще не было окончанием материка. Однако Магеллан продолжил движение на юг, уверенный в том, что проход между Атлантическим и Тихим океанами где-то близко. Положение его пяти небольших кораблей и 265 членов экипажа становилось все тяжелее. Чем дальше на юг плыл Магеллан, тем короче становились дни и тем сильнее свирепствовал шторм. Опасный берег с внезапными приливами и отливами, жуткая погода, гигантские волны, бесконечный град, снег и весьма реальная опасность обледенения кораблей – все это дополнительно усложняло путешествие. На 50° южной широты, не видя пролива и уже подавив один мятеж, Магеллан решил переждать остаток зимы и лишь потом тронуться дальше, в коварные воды, которые теперь носят его имя.

К октябрю 1520 года четыре из пяти кораблей прошли по проливу, который называется Магеллановым. Запасы продовольствия истощились, и команда считала, что следует повернуть домой. Однако желание получить мускатный орех и гвоздику, а также надежда на славу и почести, которые могли ожидать его в том случае, если испанцам удастся отнять у португальцев рынок пряностей, заставили Магеллана продолжить путь на запад на трех кораблях. Путь в двадцать тысяч километров через Тихий океан, который оказался непредвиденно огромным, без карт, с примитивными навигационными инструментами, малым запасом еды и почти без воды, был намного страшнее путешествия вокруг оконечности Южной Америки. Прибытие 6 марта 1521 года на Гуам, один из Марианских островов, позволило команде сделать передышку. Многие моряки умерли во время путешествия от голода или цинги.

Спустя десять дней Магеллан высадился на берег на маленьком острове Мактан (Филиппинские острова) – и был убит там местными жителями. Он так и не достиг Островов пряностей, а вот его корабли и остатки команды добрались до Тернате – родины гвоздики. Три года спустя после отплытия из Испании восемнадцать выживших членов экипажа вернулись в Севилью на борту сильно потрепанной “Виктории” – единственного уцелевшего корабля экспедиции – и привезли с собой двадцать шесть тонн пряностей.

Ароматные молекулы гвоздики и мускатного ореха

Хотя гвоздика и мускатный орех относятся к разным видам и произрастают на разных островах, разделенных сотнями километров открытого моря, их непохожий запах объясняется присутствием в них удивительно похожих молекул. Основным компонентом гвоздичного масла является эвгенол, а пахучим компонентом мускатного масла – изоэвгенол. Эти ароматные и ароматические молекулы различаются только положением двойной связи:

Единственное различие между этими двумя соединениями заключается в положении двойной связи (показано стрелками)


Совершенно очевидно также родство этих молекул с молекулой цингерона (из имбиря). При этом запах имбиря совсем не похож на запах гвоздики или мускатного ореха.

Цингерон


Растения производят эти пахучие молекулы не для того, чтобы порадовать нас. Растения не могут убежать от жвачных животных, от насекомых, которые высасывают сок и поедают листья, а также от грибковых инфекций, поэтому они защищают себя с помощью химического оружия, используя такие молекулы, как эвгенол и изоэвгенол, а также пиперин, капсаицин и цин-герон. Это мощные природные пестициды. Мы можем употреблять в пищу небольшое количество этих веществ, поскольку у нас в печени они активно расщепляются. Теоретически большая доза этих веществ может нарушить один из многих метаболических процессов, происходящих в печени, однако не следует волноваться, поскольку ни один человек не в состоянии съесть столько специй.

Чудесный запах эвгенола чувствуется на значительном расстоянии от гвоздичных деревьев. Это вещество содержится в разных частях растения, а не только в его высушенных бутонах, которые знакомы всем нам. Еще в 200-х годах до н. э., во время правления династии Хань, придворные императора использовали гвоздику для устранения неприятного запаха изо рта. Гвоздичное масло ценилось как мощный антисептик и лекарственное средство, применявшееся при зубной боли. Оно до сих пор иногда применяется в качестве местного анестетика в зубоврачебной практике.

Сушка гвоздики на улицах Северного Сулавеси, Индонезия. Фото Пенни Лекутер


Мускатный орех – один из двух продуктов мускатного дерева: вторым является мускатный цвет, или мацис. Мускатный орех (в виде порошка) получают измельчением блестящего коричневого семени (ореха) из напоминающей абрикос ягоды, а мацис получают из присемянника (ариллуса) – окружающей орех ярко-красной оболочки. Мускатный орех издавна использовали в медицинских целях: в Китае им лечили от ревматизма и боли в желудке, а в Юго-Восточной Азии – от дизентерии и колик. В Европе его использовали как снотворное и как средство для повышения сексуального влечения. Кроме того, мускатный орех клали в маленький мешочек и носили на шее для защиты от чумы – “черной смерти”, которая, впервые проявив себя в 1347 году, регулярно опустошала Европу. Случались эпидемии и других болезней (сыпного тифа, оспы), но самой страшной, конечно, была чума. Существуют три формы этого заболевания. Бубонная чума проявляется в виде болезненных набуханий лимфатических узлов в паху и в подмышках. В 50–60 % случаев внутреннее кровотечение и неврологические нарушения приводят к смерти. Менее распространенной, но более вирулентной является легочная форма чумы. Наконец, септическая форма, при которой происходит микробное заражение крови, практически всегда летальна, причем часто человек погибает буквально за один день.

Вполне возможно, что молекулы изоэвгенола из свежего мускатного ореха отпугивают блох, переносящих возбудителя чумы. Другие молекулы в составе мускатного ореха также могут оказывать инсектицидное действие. В частности, как в орехе, так и в мацисе в большом количестве присутствуют такие вещества, как миристицин и элемицин. Структуры этих молекул имеют между собой много общего и также напоминают структуру всех других молекул, о которых мы говорили в этой главе.

Миристицин


Элемицин


Мускатный орех считался не только талисманом, защищающим от чумы, но и “пряностью безумия”. Много столетий известны галлюциногенные свойства мускатного ореха, связанные, скорее всего, с миристицином и элемицином. История гласит, что в 1576 году “беременная английская леди, съевшая десять или двенадцать мускатных орехов, впала в пьяное безумие”. Этот рассказ сомнителен. Современные данные говорят, что всего одного ореха достаточно, чтобы вызвать тошноту, усиленное потоотделение, учащенное сердцебиение, повышение артериального давления и галлюцинации, длящиеся несколько суток. Это посильнее “пьяного безумия”: к смерти может привести употребление гораздо меньшего количества орехов, чем двенадцать. Известно, что миристицин в больших количествах вызывает нарушение работы печени.

Следовые количества миристицина и элемицина содержатся в моркови, сельдерее, укропе, петрушке и черном перце. Мы редко употребляем эти продукты в количестве, достаточном, чтобы испытать на себе их галлюциногенные свойства. Кроме того, не существует доказательств, что сами по себе миристицин и элемицин являются психотропными веществами. Возможно, в организме они по какому-то пока неизвестному метаболическому пути превращаются в следовые количества соединений, являющихся аналогами амфетаминов.

Химическая причина подобного эффекта становится ясна, если учесть следующий факт: молекула сафрола, отличающаяся от молекулы миристицина только отсутствием группы OCH3, является отправным пунктом для подпольного синтеза вещества с названием 3,4-метилендиокси-N-метиламфетамин (MDMA), более известного как экстази.

Миристицин


Сафрол. Стрелкой показано положение отсутствующей группы OCH3


Превращение сафрола в экстази можно изобразить так:

Сафрол получают из корней сассафраса – одного из видов лаврового дерева. Кроме того, следовые количества этого вещества обнаружены в какао, черном перце, мускатном цвете, мускатном орехе и диком имбире. Сассафрасовое масло, экстрагируемое из корней дерева, примерно на 85 % состоит из сафрола. Когда-то его использовали в качестве вкусовой добавки при приготовлении рутбира[2]. Теперь считается, что сафрол является канцерогенным веществом, поэтому его, а также сассафрасовое масло, запрещено включать в состав пищевых продуктов.

Нью-Йорк и мускатный орех

Торговля гвоздикой в XVI веке почти полностью находилась под контролем Португалии, однако полной монополии ей достичь не удалось. Португальцы заключили соглашение с султанами островов Тернате и Тидоре о торговле и строительстве фортов. Однако эти соглашения оказались недолговечными. Островитяне продолжали продавать гвоздику своим традиционным торговым партнерам с Явы и других островов Малайского архипелага.

В следующем столетии хозяевами рынка пряностей стали голландцы, у которых было больше кораблей и людей, совершеннее оружие, жестче колониальная политика. Важнейшую роль в этом сыграла могущественная голландская Ост-Индская компания, образованная в 1602 году. Добиться монополии и удерживать ее было нелегко. Полный контроль над Молуккскими островами компания получила только в 1667 году, когда голландцы смогли полностью вытеснить португальцев и испанцев из оставшихся отдаленных поселений на островах и безжалостно подавить сопротивление местных жителей.

Чтобы окончательно упрочить свои позиции на рынке, голландцам требовалось подчинить себе торговлю мускатным орехом на островах Банда. В 1602 году было подписано соглашение, в соответствии с которым компания получала эксклюзивное право на покупку мускатного ореха, выращиваемого там. Местные вожди скрепили договор, однако островитяне то ли не поняли, то ли сделали вид, что не поняли, значение слова “эксклюзивный”. Во всяком случае, они продолжали продавать мускатный орех всем желающим по самой высокой предложенной цене (эту идею они поняли хорошо).

Ответ голландцев был жестоким. На Острова пряностей прибыли корабли с сотнями солдат, началось строительство крупных фортов, призванных контролировать торговлю мускатным орехом. После многократных нападений, резни, вновь подписанных и нарушенных договоренностей голландцы стали действовать еще решительнее. Были уничтожены все мускатные деревья, кроме тех, которые росли вблизи голландских фортов. Деревни были выжжены, вожди казнены, а оставшиеся в живых островитяне были обращены в рабов и работали на плантациях мускатных деревьев.

Единственной преградой на пути голландцев к полной монополии было присутствие англичан на самом удаленном из всех островов, острове Ран: местные вожди ранее заключили с ними торговое соглашение. Атолл, на котором росло столько мускатных деревьев, что они карабкались даже по отвесным скалам, стал местом кровавой битвы. После тяжелой осады, закончившейся победой голландцев и вырубкой многих деревьев, в Бреде (Голландия) в 1667 году было подписано соглашение, в соответствии с которым англичане отказывались от притязаний на остров Ран в обмен на отказ голландцев от владения островом Манхэттен. Так Новый Амстердам стал Нью-Йорком, а голландцы получили мускатный орех.

Несмотря на все усилия, монополия голландцев на торговлю мускатным орехом и гвоздикой длилась недолго. В 1770 году французский дипломат тайно вывез с Молуккских островов сеянцы гвоздики и переправил их на французский остров Маврикий. С Маврикия гвоздика распространилась по всему побережью Восточной Африки. Например, она стала основным экспортным товаром Занзибара.

А вот мускатный орех, оказалось, плохо растет вдали от родных мест. Деревьям нужна богатая, влажная и хорошо дренированная почва, а также жаркий и влажный климат без прямого солнца и сильного ветра. Все попытки выращивать мускатные деревья в других местах заканчивались неудачей, но, несмотря на это, перед продажей голландцы погружали все орехи в гашеную известь (гидроксид кальция), чтобы предотвратить возможность прорастания. В конце концов британцам удалось вырастить мускатные деревья в Сингапуре и Вест-Индии. Гренада в Карибском море стала известна как Мускатный остров и теперь является главным производителем мускатного ореха.


Если бы не изобретение холодильника, мировой рынок пряностей, без сомнения, продолжал бы расширяться. Но когда черный перец, мускатный орех и гвоздика перестали использоваться для защиты продуктов питания от порчи, отпала надобность в большом количестве пиперина, эвгенола, изоэвгенола и других ароматических молекул. На сегодняшний день перец и другие специи по-прежнему выращивают в Индии, но они перестали быть основным экспортным товаром. Острова Тернате, Тидоре и Молуккские, сейчас входящие в состав Индонезии, лежат вдали от большинства торговых путей. В поисках мускатного ореха и гвоздики сюда больше не заходят большие корабли. Эти маленькие острова спят под горячим солнцем, посещаемые редкими туристами, которые карабкаются по уцелевшим стенам голландских фортов или ныряют с аквалангом, чтобы рассмотреть удивительные коралловые рифы.

Погоня за пряностями осталась в далеком прошлом. Мы по-прежнему ценим богатый аромат, который они придают нашей пище, но редко задумываемся о том, какое богатство они приносили, какие войны провоцировали и на какие подвиги и открытия вдохновляли людей.

Глава 2

Аскорбиновая кислота

Эпоху Великих географических открытий можно связать с погоней за молекулами пряностей, однако она едва не закончилась из-за нехватки другого вещества. Более 90 % моряков, участвовавших в кругосветном плавании Магеллана в 1519–1522 годах, умерли во время путешествия. Большинство из них погибло от цинги – изнуряющей болезни, вызванной нехваткой в организме аскорбиновой кислоты, или витамина С.

Усталость, слабость, отечность рук и ног, кровоточивость десен, синяки, носовые кровотечения, кишечные расстройства, неприятный запах изо рта, мышечные боли, выпадение зубов, нарушение работы легких и почек – вот длинный и страшный список симптомов цинги. Смерть обычно наступает в результате острой инфекции, такой как воспаление легких, или от сердечной недостаточности, даже у молодых людей. Одним из ранних симптомов болезни является депрессия, однако неизвестно, является ли это проявлением болезни или реакцией на другие симптомы. Вообще говоря, если ваши силы истощены, раны не заживают, десны болят и кровоточат, вас мучает диарея и худшее, кажется, только впереди, есть от чего впасть в депрессию.

Цинга – древняя болезнь. Определенные изменения скелетов людей, живших в эпоху неолита, могут быть связаны с цингой, и в некоторых древнеегипетских источниках ученые находят описание похожей болезни. Считается, что название болезни – цинга, или скорбут (от лат. scorbutus) – происходит из норвежского языка – языка воинственных викингов, которые с IX века бороздили воды Атлантики. В плавании, а также во время долгой северной зимы люди не могли получить богатые витаминами свежие овощи и фрукты. Возможно, в путешествие в Америку через Гренландию викинги брали с собой цинготную траву (ложечницу). Первое достоверное описание цинги относится к XIII веку – эпохе крестовых походов.

Цинга в море

Цинга стала постоянным спутником моряков в XIV и XV веках, когда благодаря усовершенствованию парусного вооружения и такелажа стали возможными дальние морские походы. Галеры, приводившиеся в движение веслами, как у греков и римлян, и небольшие парусные суда арабских торговцев ходили главным образом в виду берега. Эти корабли не могли выдержать сильное волнение, редко выходили в открытое море и поэтому могли пополнить запасы продовольствия раз в несколько дней или недель. Наличие свежей пищи устраняло угрозу цинги. В XV веке долгие морские путешествия на больших парусных кораблях способствовали не только грандиозным открытиям, но и широкому распространению консервов.

Большие суда должны были нести груз и оружие, многочисленную команду, чтобы справляться со снастями и парусами, а также провиант и воду на несколько месяцев плавания. Увеличение количества палуб, людей и груза неизбежно приводило к тому, что условия жизни команды ухудшались, доступ свежего воздуха затруднялся и появлялась возможность для распространения инфекции. Частыми спутниками моряков стали чахотка и дизентерия, вши и чесотка, многие другие заразные заболевания кожи.

Обычная еда моряков парусного флота никак не могла исправить положение. Во-первых, на борту было очень трудно сохранить что-либо, включая пищу, в сухости и защитить от плесени. Деревянный корпус корабля пропускал воду, поскольку единственным водонепроницаемым материалом в те времена был деготь – черная липкая смола, которую получали при производстве древесного угля. Дегтем покрывали внешнюю сторону обшивки. Внутри корпуса, особенно в местах с плохой вентиляцией, было чрезвычайно сыро. В описаниях путешествий часто упоминается ужасная влажность, из-за которой на одежде, кожаной обуви и ремнях, в постелях и на книгах появлялась плесень. Стандартным морским пайком в те времена была солонина (засоленная говядина или свинина) и галеты – сухари из смеси муки и воды без соли, которые уже при выпекании были твердыми, как камень (они заменяли хлеб). Достоинством сухарей было то, что они сравнительно долго не плесневели. Они были настолько твердыми, что оставались съедобными много месяцев, однако их было очень трудно разгрызть, особенно тем, чьи десны были поражены цингой. В конце концов в галетах поселялись долгоносики. Это даже радовало моряков: источенные личинками сухари было легче ломать и жевать.

Во-вторых, на деревянном корабле, обмазанном легко воспламеняющимся дегтем, приходилось чрезвычайно осторожно обращаться с огнем. Поэтому огонь можно было разводить только в камбузе и только в хорошую погоду. При первом признаке непогоды огонь тушили до прекращения шторма, и приготовить пищу нередко не удавалось несколько дней подряд. Солонину невозможно было как следует вымочить в воде, чтобы сделать мясо менее соленым, а галеты не удавалось размягчить, окунув их в похлебку или бульон.

Перед путешествием на борт загружали продовольствие: сливочное масло, сыр, уксус, хлеб, сухой горох, пиво и ром. Масло быстро портилось, хлеб плесневел, горох портили долгоносики, сыр каменел, а пиво прокисало. И ни в одном из этих продуктов не было витамина С, так что признаки цинги начинали проявляться уже через шесть недель плавания. Стоит ли удивляться, что в Европе на флот вербовали силой?

В корабельных журналах можно найти записи о том, как моряки болели и умирали от цинги в первых дальних плаваниях. К 1497 году, когда португальский мореплаватель Васко да Гама достиг южной оконечности Африканского континента, 100 из 160 его людей скончались от цинги. Известны описания дрейфовавших в море кораблей, экипаж которых умер от этой болезни. По оценкам историков, за несколько столетий от цинги погибло больше моряков, чем в кораблекрушениях и военных баталиях, а также по всем иным вместе взятым причинам (другие болезни, зверства пиратов и так далее).

Удивительно, но все это время было известно, как предотвращать цингу и как ее лечить – но никто этого не делал. Еще в V веке китайцы на кораблях выращивали в горшках имбирь. Благодаря китайским купцам другие народы Юго-Восточной Азии наверняка узнали, что свежие овощи и фрукты могут облегчить участь цинготных больных. Должно быть, эта информация дошла в конце концов до голландцев и была передана ими другим европейцам, поскольку в 1601 году впервые в истории корабли английской Ост-Индской компании, плывя на восток, запаслись на Мадагаскаре апельсинами и лимонами. Этой маленькой эскадрой из четырех судов командовал капитан Джеймс Ланкастер, который вез с собой на флагманском корабле “Красный дракон” лимонный сок. Каждый, у кого появлялись признаки цинги, получал по утрам три чайных ложки лимонного сока. При прибытии к мысу Доброй Надежды ни один человек на борту “Дракона” не болел цингой, в то время как экипажи остальных трех кораблей понесли потери. Несмотря на инструкции и пример Ланкастера, около четверти членов экспедиции умерло от цинги, хотя на флагманском корабле не погиб ни один человек.

Приблизительно за 65 лет до этих событий от цинги погибла значительная часть команды французского путешественника Жака Картье, совершавшего свое второе плавание к Ньюфаундленду и Квебеку. Индейцы посоветовали европейцам попробовать настой хвои, и результат оказался потрясающим: буквально на следующее утро симптомы болезни значительно ослабевали, и болезнь быстро ушла. В 1593 году адмирал британского флота сэр Ричард Хокинс заявил, что на его веку в море от цинги умерло не менее десяти тысяч человек и что лимонный сок является чудодейственным лекарством от этой болезни.

Были даже опубликованы отчеты об успешном излечении от цинги. В 1617 году в “Помощнике корабельного врача” Джон Вудалл рекомендовал применять лимонный сок как для лечения, так и для профилактики цинги. Восемью годами позже врач Уильям Кокберн в труде “Морские болезни, или Трактат об их природе, причинах и лечении” рекомендовал морякам свежие фрукты и овощи. Другие предлагавшиеся средства, такие как уксус, соленая вода, корица и сыворотка, были, в общем-то, бесполезны и только сбивали с толку.

Лишь в середине следующего столетия эффективность сока цитрусовых в борьбе с цингой была доказана в первых в истории контролируемых клинических испытаниях. Число пациентов было невелико, но результат оказался однозначным. В 1747 году шотландский корабельный врач Джеймс Линд отобрал двенадцать человек из команды корабля “Солсбери”, страдавших цингой. Он подобрал людей с наиболее похожими симптомами и перевел их на одинаковую диету. Это была не стандартная корабельная еда, состоявшая из солонины и сухарей, есть которые пациентам было не под силу, а подслащенная овсяная каша, бараний бульон, печенье, ячмень, саго, изюм, смородина и вино. К этому рациону Линд прибавил еще кое-что. Двоим морякам он назначил ежедневно кварту сидра, двоим – уксус, еще двоим несчастным – разбавленный эликсир витриола (серную кислоту). Двое должны были ежедневно выпивать полпинты морской воды, и еще двое получали варево из мускатного ореха, чеснока, горчичного семени, ароматической смолы, винного камня и ячменного отвара. Каждому больному из последней пары посчастливилось ежедневно съедать два лимона и апельсин.

Результаты определились быстро и оказались совершенно очевидными (и предсказуемыми в свете наших современных знаний). Спустя шесть дней моряки, получавшие цитрусовые, смогли вернуться к работе. К счастью, десятерым оставшимся тут же отменили морскую воду, мускатный орех и серную кислоту и тоже назначили апельсины и лимоны. Результаты эксперимента Линд опубликовал в виде “Трактата о цинге”, но лишь через сорок лет в рацион британских моряков был введен лимонный сок.

Если было известно средство от цинги, почему же его не использовали повсеместно? К сожалению, в него не очень-то верили. Считалось, что причиной цинги является переизбыток соленого мяса либо недостаток свежего, а вовсе не нехватка овощей и фруктов. Кроме того, в то время было невозможно долго хранить свежие фрукты или сок. Предпринимались попытки сконцентрировать и законсервировать лимонный сок, но это занимало много времени, обходилось недешево и, вероятно, не гарантировало результат, поскольку, как мы теперь знаем, витамин С достаточно легко распадается под действием тепла и света, а при длительном хранении его содержание в овощах и фруктах снижается.

Морские офицеры, врачи, английское военно-морское министерство и судовладельцы не считали возможным выращивать зелень или фрукты прямо на кораблях, поскольку все свободное место должен был занимать груз. Свежие или консервированные цитрусовые были дороги, особенно если их нужно было есть ежедневно, для профилактики. Начальством управляло желание сэкономить, хотя, как выясняется, никакой экономии на деле не получалось. При гибели 30, 40, а иногда и 50 % людей команду приходилось набирать заново, иначе корабли не могли продолжать путь. Даже если смертность оказывалась не такой высокой, эффективность работы больной команды была чрезвычайно низкой. Кроме того, казалось бы, следовало просто пожалеть больных, но в те времена гуманность была не в почете.

Дополнительную трудность представляли привычки моряков. Эти люди всю жизнь ели одну и ту же пищу, и хотя в море они жаловались на опостылевшую солонину и твердокаменные сухари, в порту они требовали много свежего мяса, свежего хлеба, сыра, масла и пива. И даже если в поле зрения моряков оказывались свежие овощи и фрукты, большинство не интересовалось поджаренными овощами. Моряки хотели мяса, много мяса: вареного, тушеного или жареного. Офицеры – обычно представители высшего сословия, привычные к более разнообразной пище, – охотнее покупали в порту свежие овощи или фрукты. Им был не чужд интерес к экзотической кухне. Они, в отличие от своих подчиненных, вполне могли пробовать местные блюда, для приготовления которых использовались тамаринд[3], лайм и другие фрукты, богатые витамином С. Поэтому офицеры реже болели цингой.

Кук против цинги

Джеймс Кук, офицер британского ВМФ, стал первым капитаном, следившим за тем, чтобы у его команды не было цинги. С именем Кука связывают открытие противоцинготных средств, однако на самом деле его заслуга заключается в том, что он поддерживал на всех своих кораблях чистоту и обеспечивал нормальное питание всего экипажа. В результате члены его команды отличались завидным здоровьем и редко умирали от болезней. Кук поступил на военную службу довольно поздно, в возрасте 27 лет, однако девятилетний опыт плаваний на торговых судах по Северному и Балтийскому морям, острый ум и качества прирожденного моряка способствовали его быстрому продвижению в чинах. Впервые Кук столкнулся с цингой в 1758 году в период службы на “Пемброке”, во время перехода через Атлантический океан в Канаду. Целью похода было изгнание французов с берегов реки Святого Лаврентия. Кука ужасало то, что потери от цинги, снижение эффективности работы экипажа и даже потеря кораблей воспринимались всеми как нечто неизбежное.

Составленные Куком карты Новой Шотландии, залива Святого Лаврентия и Ньюфаундленда, а также его точные описания солнечного затмения поразили Лондонское королевское общество, основанное в 1645 году для “развития знаний о природе”. Кука назначили командовать барком “Индевор” и поручили исследовать южные моря и нанести их на карту, изучить новые растения и животных, а также провести наблюдения за прохождением Венеры по диску Солнца.

Менее известны политические мотивы этого и других путешествий Кука. Адмиралтейство было озабочено установлением британского господства на вновь открываемых территориях и заявлением прав на еще не открытые земли, такие как Неведомая южная земля[4], а также проблемой поиска Северо-Западного прохода[5]. Куку удалось решить поставленные перед ним задачи, и успехом он в значительной степени обязан аскорбиновой кислоте.

Вот, например, как развивались события 10 июня 1770 года, когда “Индевор” наскочил на коралловый риф у берегов Австралии, южнее современного Куктауна в Квинсленде. Корабль сел на мель в высшей точке прилива, к тому же получил серьезную пробоину, которую необходимо было срочно заделать. Чтобы облегчить корабль, за борт отправились пятьдесят тонн балласта. Двадцать три часа экипаж работал на помпах, выкачивая воду, стремительно поступавшую в пробоину. Кук приказал отбуксировать якоря и бросить их в некотором отдалении от судна, чтобы можно было цепями и тросами тянуть корабль на глубокую воду. Моряки пытались подвести парус под днище, чтобы заткнуть течь. Невероятный труд, великолепное руководство и удача сделали свое дело. Корабль сошел с рифа и приблизился к берегу, где был отремонтирован. Заметим, что измученная цингой команда не смогла бы справиться с настолько тяжелой задачей.

Это признало и Лондонское королевское общество, позднее наградившее Кука золотой медалью Копли[6] – но не за его открытия и подвиги, а за доказательство того, что цинга не является обязательным спутником в длительных морских плаваниях. Методы Кука были простыми. Он настаивал на поддержании чистоты во всех уголках корабля, особенно в тесном матросском кубрике. Все моряки обязаны были регулярно стирать одежду, проветривать и просушивать гамаки (если позволяла погода), мыть и окуривать палубы сжиганием пороха (в общем, требовалось соблюдать порядок). Когда не было возможности раздобыть свежие овощи и фрукты, которые, как считал Кук, необходимы для сбалансированного питания, он требовал, чтобы экипаж ел квашеную капусту, которую он включил в рацион. При любой возможности Кук подходил к берегу, чтобы пополнить запасы и собрать местные травы (сельдерей, ложечницу) или растения, из которых готовили отвар.

Такая диета была совершенно непопулярна у команды, привыкшей к обычной корабельной еде и не готовой воспринимать новое. Но Кук был непреклонен. Он и офицеры сами придерживались новой диеты, и именно благодаря их примеру и настойчивости вся команда стала делать то же самое. Не сохранилось записей о том, что Кук приказал выпороть кого-либо за отказ есть квашеную капусту или сельдерей, однако команда знала, что капитан не колеблясь накажет плетьми того, кто не подчинится приказу. Кук, кроме того, пошел на хитрость: сначала квашеную капусту давали только офицерам, и через неделю весь экипаж также начал требовать свою долю.

Хорошее состояние здоровья, безусловно, убедило моряков в том, что странные предписания капитана оправданны. Из-за цинги Кук не потерял ни одного человека. В первом путешествии, длившемся почти три года, треть экипажа погибла от малярии или дизентерии, которыми моряки заразились в голландской Батавии (теперь Джакарта, столица Индонезии). Во время второго путешествия (1772–1775) Кук потерял из-за болезни (но не из-за цинги) одного члена экипажа. Причем команда другого корабля, “Адвенчер”, участвовавшего в той же экспедиции, сильно пострадала от цинги. Кук сделал капитану “Адвенчера” Тобиасу Фюрно суровый выговор и вновь проинструктировал его относительно необходимости приготовления и раздачи противоцинготных средств. Благодаря витамину С (аскорбиновой кислоте) капитан Кук смог совершить массу замечательных открытий: он открыл Гавайские острова и Большой Барьерный риф, первым обошел вокруг Новой Зеландии, первым составил карту северо-западного побережья Северной Америки и первым пересек Южный полярный круг.

Важные функции маленькой молекулы

Что же это за вещество, которое столь сильно повлияло на устранение белых пятен с карты мира? Слово витамин образовано от вита (жизнь) и амин (азотсодержащее органическое соединение; раньше считалось, что в каждом витамине должен присутствовать атом азота). Латинская буква C в названии этого витамина означает, что витамин C был третьим идентифицированным витамином.

Структура аскорбиновой кислоты (витамина С)


Такая система обозначений имеет множество недостатков. На самом деле атомы азота содержатся только в молекулах витаминов B и H. Кроме того, то, что когда-то назвали витамином B, как выяснилось, не индивидуальное вещество, а целая группа веществ: витамин B1, B2 и так далее. А некоторые витамины, которые когда-то считались разными веществами, оказались одним и тем же, поэтому витаминов F и G не существует.

Среди млекопитающих только приматам, морским свинкам и индийским летучим лисицам нужна аскорбиновая кислота. Организм всех остальных позвоночных, в том числе собак и кошек, способен синтезировать ее из глюкозы в результате четырех последовательных реакций, каждую из которых катализирует отдельный фермент. Поэтому этим животным не нужно получать аскорбиновую кислоту с пищей. Вероятно, на каком-то этапе в процессе эволюции люди потеряли способность синтезировать аскорбиновую кислоту из глюкозы, скорее всего в связи с потерей генов, необходимых для синтеза фермента гулонолактоноксидазы, который катализирует последнюю стадию этого превращения.

Похожая серия реакций (выполняющихся в другом порядке) сейчас используется для промышленного синтеза аскорбиновой кислоты (также из глюкозы). Первая стадия процесса – реакция окисления, в которой происходит присоединение атома кислорода, удаление атома водорода или оба процесса одновременно. В обратной реакции (восстановления) происходит удаление атома кислорода, присоединение атома водорода (или и то, и другое разом).

На второй стадии происходит восстановление другого конца молекулы глюкозы, в результате чего образуется гулоновая кислота. На третьей стадии процесса в молекуле гулоновой кислоты образуется циклическая структура, называемая лактоном. Заключительная окислительная стадия приводит к образованию двойных связей в молекуле аскорбиновой кислоты. Именно этот фермент, катализирующий последнюю стадию процесса, как раз и отсутствует в организме человека.

Первые попытки выделить витамин С и определить его химическую структуру оказались безуспешными. Одна из основных проблем заключалась в том, что, хотя аскорбиновая кислота присутствует в соке цитрусовых в достаточно большом количестве, кроме нее там находится множество других сахаров и родственных им веществ, и это сильно затрудняет разделение. Поэтому неудивительно, что первый чистый образец аскорбиновой кислоты был выделен не из растительных, а из животных тканей.

В 1928 году Альберт Сент-Дьерди, американский врач и биохимик венгерского происхождения, который в то время работал в Кембриджском университете, выделил из коры надпочечников быка чуть меньше грамма кристаллического вещества. В этом веществе, которое составляло лишь около 0,03 % массы исходной ткани, сначала не узнали витамин C. Сент-Дьерди думал, что выделил новый гормон со структурой сахара, и предложил назвать его игнозой: суффикс “оза” используют для обозначения сахаров (вспомните глюкозу и фруктозу), а корень “игн” означал, что структура этого вещества неизвестна (англ. ignorant – незнающий). Второе название, предложенное Сент-Дьерди, годноза (от англ. God – бог), также не понравилось редактору “Биохимического журнала” (он, по-видимому, не любил подобных шуток), так что ученому пришлось выбрать для нового соединения нейтральное название: гексуроновая кислота. Выделенное вещество было достаточно чистым, чтобы химический анализ мог точно установить наличие в его молекуле шести атомов углерода (C6H8O6) (приставка гексо – означает шесть). Через четыре года было показано, что гексуроновая кислота и витамин С – одно и то же вещество (Сент-Дьерди, впрочем, это подозревал).

Следующим этапом изучения аскорбиновой кислоты было определение ее структуры. Сегодня эту процедуру выполнить достаточно просто, даже имея в руках немного материала, однако в 30-х годах XX века для этого требовалось много чистого вещества. Сент-Дьерди вновь повезло. Он обнаружил, что венгерский перец содержит очень много витамина С и (что очень важно) почти не содержит других сахаров, затрудняющих выделение. Всего за неделю работы он смог выделить более килограмма кристаллов чистого витамина С, так что его коллеге Норману Хоуорсу, профессору химии из Бирмингемского университета, этого количества вполне хватило для успешного определения структуры вещества, которое теперь они назвали аскорбиновой кислотой. В 1937 году важную роль этой молекулы признало научное сообщество. Сент-Дьерди был удостоен Нобелевской премии в области медицины, а Хоуорс – в области химии.

Несмотря на то, что исследования аскорбиновой кислоты продолжаются более шестидесяти лет, мы до сих пор не знаем всех ее функций в организме. Известно, что она необходима для синтеза коллагена – самого распространенного животного белка, который формирует соединительные ткани, поддерживающие и связывающие все другие ткани организма. Понятно, что недостаток коллагена объясняет некоторые ранние симптомы цинги: отеки конечностей, размягчение десен, потерю зубов. По-видимому, всего десять миллиграммов аскорбиновой кислоты в день устраняют симптомы цинги, по крайней мере, видимые симптомы (возможно, этой дозы недостаточно, чтобы восполнять дефицит аскорбиновой кислоты на клеточном уровне). Исследования в таких разных областях, как иммунология, онкология, неврология, эндокринология и диетология продолжают поставлять новые данные об участии аскорбиновой кислоты во многих биохимических процессах в организме.

Скандалы долго сопутствовали этой маленькой молекуле. Британский ВМФ целых сорок два года игнорировал рекомендации Джеймса Линда. Ост-Индская компания, по-видимому, намеренно воздерживалась от введения в рацион питания моряков противоцинготных средств, чтобы ослаблять людей и удерживать их под контролем. В настоящее время продолжаются дебаты относительно полезности высоких доз витамина С при различных заболеваниях. Американский химик Лайнус Карл Полинг получил Нобелевскую премию по химии в 1954 году за изучение природы химической связи и Нобелевскую премию мира в 1962 году за кампанию против проведения ядерных испытаний. В 1970 году этот дважды лауреат Нобелевской премии выпустил первую серию публикаций о роли витамина С в медицине, рекомендуя высокие дозы витамина С для лечения и предотвращения гриппа, простуды и рака. Несмотря на авторитет Полинга, медицинское сообщество не восприняло эту гипотезу всерьез.

Рекомендованная суточная норма (РСН) витамина С для взрослого человека обычно составляет 60 мг – примерно столько витамина С содержится в апельсине среднего размера. Однако в разные периоды времени и в разных странах значение РСН сильно варьировало, что, скорее всего, отражает отсутствие полного понимания роли этого не такого уж простого вещества. Общепризнано, что при беременности и грудном вскармливании РСН повышается. Еще более высокая РСН установлена для пожилых людей, поскольку в этом возрасте потребление витамина С с пищей сокращается из-за потери аппетита и нежелания готовить пищу. В наши дни у пожилых людей достаточно часто наблюдаются признаки цинги.

Суточная доза 150 мг обычно соответствует насыщению, так что прием более высоких доз не приводит к повышению содержания аскорбиновой кислоты в плазме крови. Поскольку избыток аскорбиновой кислоты выводится через почки, употребление больших количеств этого вещества выгодно только фармацевтическим компаниям. Однако в некоторых ситуациях, например, при инфекции, простуде, ранениях, диарее и многих хронических заболеваниях повышение дозы может оказаться полезным.

Продолжаются исследования роли витамина C при лечении сорока различных заболеваний (бурсит, подагра, болезнь Крона, рассеянный склероз, язва желудка, ожирение, остеоартрит, вирус простого герпеса, болезнь Паркинсона, анемия, поражение коронарных сосудов, аутоиммунные заболевания, невынашивание беременности, ревматическая лихорадка, катаракта, диабет, алкоголизм, шизофрения, депрессия, болезнь Альцгеймера, бесплодие, простуда, грипп, рак и другие). Когда смотришь на этот список, становится понятно, почему витамин C иногда называют “молодостью в бутылке”, хотя исследования не всегда подтверждают приписываемые ему чудодейственные свойства.

Ежегодно в мире производится свыше пятидесяти тысяч тонн аскорбиновой кислоты. Синтетический витамин C, производимый из глюкозы, ничем не отличается от природного вещества. Между природным и синтетическим веществом нет никакого физического или химического различия, поэтому нет причины покупать более дорогой “натуральный витамин C, бережно выделенный из очищенных лепестков розы редкого вида Rosa macrophylla, произрастающей на первозданных склонах Малых Гималаев”. Даже если продукт действительно происходит из этого источника, он содержит абсолютно такой же витамин C, который тоннами синтезируют из глюкозы.

При этом нельзя сказать, что витамины в таблетках заменяют витамины, получаемые с пищей. Прием 70 мг аскорбиновой кислоты в виде таблетки приносит меньше пользы, чем среднего размера апельсин. Вполне возможно, что другие вещества в составе овощей и фруктов, в частности, те, что ответственны за их яркую окраску, способствуют всасыванию витаминов или каким-либо образом усиливают их действие.

Основным применением витамина C на сегодняшний день является предохранение пищевых продуктов от порчи, поскольку это вещество действует как антиоксидант и антимикробный агент. В последние годы усилилось негативное отношение к использованию консервантов. На упаковках продуктов часто можно увидеть надпись: “Без добавления консервантов”. Заметим, однако, что без консервантов многие продукты имели бы неприятный вкус и запах, да и просто могли бы убить нас. Запрещение использования химических консервантов для сохранения пищевых продуктов стало бы таким же бедствием, как запрещение холодильников и морозильных камер.

Фрукты можно консервировать при температуре кипения воды, поскольку они обычно достаточно кислые, чтобы воспрепятствовать росту смертельно опасного микроба Clostridium botulinum. Менее кислые овощи и мясо необходимо подвергать обработке при более высокой температуре, чтобы добиться уничтожения этого патогена. При домашнем консервировании аскорбиновую кислоту иногда используют в качестве антиоксиданта, чтобы избежать потемнения продуктов. Кроме того, она повышает кислотность среды и предотвращает ботулизм – пищевое отравление, вызванное действием токсина этого микроба. Сам Clostridium botulinum не выживает в организме человека, опасность представляет употребление в пищу его токсина, образующегося в плохо законсервированных продуктах. (Инъекция минимального количества токсина под кожу прерывает нервный импульс и вызывает паралич мышц. В результате морщины временно разглаживаются. Да, именно так работает ботокс.)

Химики синтезировали множество токсичных соединений, но самые опасные создала сама природа. Ботулинический токсин A, синтезируемый Clostridiumbotulinum, является самым опасным из известных ядов: он в миллион раз ядовитее, чем диоксин – самый опасный яд, синтезированный человеком. Летальная доза ботулинического токсина A, убивающая 50 % испытуемых (показатель LD50), составляет 3х10-8 мг/кг. То есть летальная доза составляет 0,00000003 мг токсина на килограмм массы тела. Для диоксина LD50 составляет 3х10-2 мг/кг, то есть 0,03 мг на килограмм массы тела. По некоторым оценкам, одна унция [28,3 г] ботулинического токсина A может убить сто миллионов человек. Такие расчеты должны помочь изменить наше отношение к “вредным” консервантам.

Цинга во льдах

Даже в начале XX века некоторые исследователи Антарктики были уверены в том, что причиной цинги являются испорченные продукты, кислотная интоксикация и бактериальные инфекции. Несмотря на то, что применение лимонного сока фактически искоренило цингу на английском флоте уже в начале 1800-х годов, несмотря на то, что эскимосы употребляют в пищу свежее мясо (мозги, сердце и почки тюленей) и никогда не болеют цингой, несмотря на опыт многочисленных экспедиций, во время которых с цингой боролись с помощью свежих овощей и фруктов, офицер британского морского флота Роберт Фалкон Скотт был почему-то уверен в том, что цингу вызывает испорченное мясо. Напротив, норвежский полярник Руаль Амундсен прилагал все усилия, чтобы избежать цинги, и во время своей успешной экспедиции к Южному полюсу его команда питалась свежим мясом тюленей и собак. Во время путешествия к полюсу в 1911 году Амундсен и его товарищи преодолели более двух тысяч километров, и у них не было ни болезней, ни несчастных случаев. Людям Скотта повезло меньше. При возвращении с Южного полюса в январе 1912 года их задержали плохие погодные условия, которые, как считают, были самыми неблагоприятными за многие годы до и после того. Положение экспедиции ухудшилось из-за цинги, которая началась из-за отсутствия на протяжении нескольких месяцев свежей пищи и витамина C. До источников пищи и тепла людям оставалось пройти меньше двадцати километров, но они слишком ослабели, чтобы продолжать путь. Всего несколько миллиграммов аскорбиновой кислоты в день могли бы спасти Скотта и его товарищей.


Если бы о ценности аскорбиновой кислоты стало известно раньше, мир мог бы стать иным. Если бы команда Магеллана была здорова, ему не понадобилось бы останавливаться на Филиппинах. Он благополучно достиг бы Островов пряностей и обеспечил Испании прямой выход на рынок гвоздики, вернулся бы с триумфом в Севилью и по праву пользовался бы славой человека, совершившего первое кругосветное путешествие. Монополия испанцев на рынке мускатного ореха и гвоздики могла бы предотвратить учреждение голландской Ост-Индской компании и изменить судьбу Индонезии. Если бы португальцы, которые первыми из европейцев осмелились пускаться в дальние плавания, знали секрет аскорбиновой кислоты, они смогли бы пересечь Тихий океан задолго до Джеймса Кука. Возможно, теперь на португальском языке говорили бы на Фиджи и на Гавайях, которые (кто знает!) стали бы колониями Португалии. Возможно, если бы великий голландский мореплаватель Абел Янсзон Тасман во время своих путешествий в 1642 и 1644 годах знал о возможности избежать цинги, он смог бы дойти до Новой Голландии (Австралии) и Статен-ланд (Новой Зеландии), и Голландия могла бы заявить свои права на эти земли. А англичане, которые вышли в Тихий океан значительно позже, обзавелись бы империей гораздо меньшего размера и пользовались бы гораздо меньшим влиянием.

Глава 3

Глюкоза

В детской присказке говорится: “Сахар и пряности – и будет много радости”. Действительно, мы очень любим имбирные пряники и яблочные пироги с корицей. Некогда сахар, как и пряности, был доступен только богачам и использовался для приготовления соусов к мясным и рыбным блюдам, которые мы сегодня сочли бы совсем не сладкими. Подобно молекулам, содержащимся в пряностях, молекулы сахара повлияли на судьбу целых стран и континентов, став причиной Промышленной революции и изменив культуру всего мира.

Глюкоза – составная часть молекулы сахарозы, того самого вещества, которое мы называем сахаром. В зависимости от происхождения сахар бывает тростниковым, свекловичным или кукурузным. Кроме того, существуют коричневый сахар, белый сахар, фруктовый сахар, сахарная пудра, сахар-сырец, демерара (нерафинированный тростниковый сахар). Молекула глюкозы, присутствующая во всех этих видах сахара, является довольно маленькой. Она состоит всего из шести атомов углерода, шести атомов кислорода и двенадцати атомов водорода, – столько же атомов в молекулах, дающих запах мускатному ореху и гвоздике. Но, как и в случае молекул пряностей, пространственное расположение атомов определяет свойства глюкозы (а также других сахаров), в частности, ее сладкий вкус.

Сахар можно выделить из многих растений. В тропических регионах его обычно получают из сахарного тростника, в регионах с умеренным климатом – из сахарной свеклы. Некоторые считают родиной сахарного тростника (Saccharumofficinarum) южное побережье Тихого океана, другие полагают, что он произошел из южных областей Индии. Сахарный тростник выращивают в Азии, на Ближнем и Среднем Востоке, в Северной Африке и даже в Испании. Впервые кристаллический сахар из сахарного тростника в Европу привезли крестоносцы, возвращавшиеся из Святой земли в XIII веке. На протяжении следующих трехсот лет он оставался редкостью, причем центром торговли сахаром тогда была Венеция, контролировавшая и рынок пряностей. Сахар использовали для приготовления лекарственных средств (чтобы заглушить тошнотворный вкус других ингредиентов), для связывания лекарственных веществ, а также в качестве самостоятельного снадобья.

К XV веку сахар в Европе стал гораздо доступнее, оставаясь при этом очень дорогим продуктом. Рост потребности в сахаре и постепенное его удешевление привели к сокращению потребления меда, который прежде был основным сладким ингредиентом пищи жителей Европы и многих других частей света. К XVI веку сахар стал основным сладким продуктом для народа. Его популярность заметно выросла в XVII и XVIII веках, когда люди поняли, что с его помощью можно консервировать фрукты, превращая их в джем, варенье и мармелад. В Англии в начале XVIII века годовое потребление сахара на душу населения составляло около полутора килограммов, к 80-м годам этот показатель достиг пяти килограммов, а в 90-х годах превысил шесть килограммов (это было связано с ростом популярности чая, кофе и шоколада). Сахар стали использовать для приготовления сладостей: засахаренных орехов и семечек, марципанов, кексов и конфет. Он стал одним из основных продуктов питания, скорее уже предметом необходимости, чем роскошью, а потребление сахара продолжало расти даже в XX веке.

В 1900–1964 годах мировое производство сахара выросло на 700 %, и ежегодное потребление сахара на душу населения во многих развитых странах превысило пятьдесят килограммов. Этот показатель в последние годы начал несколько снижаться в связи с использованием заменителей сахара и популярностью низкокалорийной диеты.

Рабство и сахар

Если бы люди не ели сахар, мир был бы другим. Дело в том, что спрос на сахар стимулировал использование труда невольников и способствовал насильственному переселению миллионов чернокожих африканцев в Новый Свет. Кроме того, торговля сахаром в начале XVIII века ускорила экономический подъем в Европе. Первые европейцы, посетившие Новый Свет, возвращались с рассказами о землях, пригодных для выращивания сахарного тростника. Европейцы, стремившиеся нарушить сахарную монополию Ближнего и Среднего Востока, очень скоро начали выращивать тростник сначала в Бразилии, а затем в Вест-Индии. Культивирование сахарного тростника – трудоемкий процесс, но оба источника рабочей силы (во-первых, аборигенное население, сократившееся из-за таких европейских болезней, как оспа, корь и малярия, во-вторых, наемные рабочие из Европы) оказались практически исчерпанными. Колонисты обратили свои взоры к Африке.

Прежде рабами из Западной Африки торговали только в Португалии и Испании. Однако потребность в рабочей силе в Новом Свете значительно усилила до тех пор незначительную тенденцию. Возможная прибыль от производства сахара заставила Англию, Францию, Голландию, Пруссию, Данию и Швецию (позднее также Бразилию и США) заняться массовой перевозкой миллионов африканцев за пределы Африки. Сахар был не единственным продуктом, производство которого было связано с использованием невольничьего труда, но, наверное, главным. По некоторым оценкам, около двух третей африканских рабов в Новом Свете работали на сахарных плантациях.

Первый вест-индский сахар, выращенный рабами, был доставлен в Европу в 1515 году – всего двадцать два года спустя после того, как Христофор Колумб привез сахарный тростник на Эспаньолу (теперь Гаити). К середине XVI века сахар производили испанские и португальские колонии в Бразилии, Мексике и на многих островах Карибского моря. Ежегодно на эти плантации из Африки прибывало около десяти тысяч рабов. В XVII веке сахарный тростник начали выращивать в британских, французских и голландских колониях Вест-Индии. Быстро растущий спрос на сахар, развитие технологии его производства, а также появление нового алкогольного напитка, рома, который получали из отходов производства сахара, стимулировали работорговлю.

Невозможно точно оценить количество рабов, которых отправляли из Западной Африки в Новый Свет. Записи об этом неточны, а, возможно, и намеренно искажены, чтобы обойти законы, которые с опозданием пытались улучшить условия перевозки людей путем регулирования допустимого количества пассажиров на судне. Еще недавно, в 1820 году, бразильские суда перевозили более полутысячи человек в помещении площадью менее восьмидесяти квадратных метров и высотой менее метра. Некоторые историки считают, что за три с половиной столетия работорговли в Северную и Южную Америку было перевезено около пятидесяти миллионов африканцев. Здесь не учтены те, кто был убит при захвате, погиб во время пути из центральных районов Африки к побережью или не пережил ужасов морского путешествия.

Путь из Африки в Вест-Индию был второй стороной “золотого (черного) треугольника”. Европейские купцы отправлялись морем в Африку (в основном к западному берегу Гвинеи), где меняли промышленные товары на рабов, а после посещения Нового Света, где оставляли невольников, они возвращались в Европу с грузом какой-либо руды или колониальными товарами (в основном сахаром, хлопком, табаком или ромом). Каждая сторона “треугольника” приносила огромную прибыль. Эта торговля была выгодна в особенности Британии: к концу XVIII века ее доходы от операций в Вест-Индии превосходили прибыль от торговли со всем остальным миром. Сахар и продукты его переработки стали источником огромного капитала и быстрого экономического развития, стимулировавшего в конце XVIII и начале XIX века Промышленную революцию в Англии, а затем во Франции.

Сладкая химия

Глюкоза – самый распространенный из простых сахаров – моносахаридов (от лат. saccharum – сахар). Приставка “моно” означает, что молекула данного вещества состоит из одного структурного звена, в отличие от дисахаридов (состоящих из двух структурных звеньев) или полисахаридов (состоящих из многих звеньев). Структуру глюкозы можно изобразить в виде прямой цепочки:

Глюкоза


Эту формулу можно слегка упростить, убрав все атомы углерода, стоящие на месте пересечения вертикальных и горизонтальных линий. Существуют договоренности, в соответствии с которыми всем атомам углерода в подобных структурах присваиваются номера, причем атом № 1 всегда изображают сверху. Это так называемая проекционная формула Фишера, названная по имени немецкого химика Эмиля Фишера (в 1891 году он определил структуру глюкозы и некоторых родственных сахаров). Хотя научный инструментарий и техника в те времена были еще достаточно примитивными, полученные Фишером результаты до сих пор являются одним из самых элегантных примеров применения химической логики. За свою работу в области химии сахаров Фишер в 1902 году был удостоен Нобелевской премии.

Проекционная формула Фишера для глюкозы. Показана нумерация атомов углерода.


Иногда такие сахара, как глюкоза, по-прежнему изображают в линейном виде, однако теперь известно, что на самом деле глюкоза существует в другой форме: в виде циклической структуры. Циклические изображения называют формулами Хоуорса – в честь англичанина Нормана Хоуорса, получившего в 1937 году Нобелевскую премию по химии за определение структуры витамина С и некоторых углеводов (см. главу 2). Шестичленное кольцо молекулы глюкозы состоит из пяти атомов углерода и одного атома кислорода. Нумерация в формуле Хоуорса показывает, как атомы в кольцевой структуре соответствуют атомам в проекционной формуле Фишера.

Формула Хоуорса для глюкозы. Показаны все атомы водорода.


Формула Хоуорса для глюкозы. Атомы водорода в кольце не показаны, но показана нумерация атомов углерода.


В циклическом виде могут существовать две формы глюкозы, в зависимости от того, располагается ли группа OH у атома углерода C1 над плоскостью кольца или под ней. Может показаться, что это очень незначительное различие, однако это не так: это чрезвычайно важно для структуры более сложных молекул, в состав которых входят звенья глюкозы. Если группа OH у атома углерода 1 располагается под плоскостью кольца, то такую молекулу называют ?-глюкозой, а если над плоскостью кольца, то ?-глюкозой.

?-глюкоза


?-глюкоза


То, что мы привыкли в быту называть сахаром, представляет собой сахарозу. Сахароза – это дисахарид, построенный из двух простых моносахаридных звеньев: одного звена глюкозы и одного звена фруктозы. Фруктоза, или фруктовый сахар, имеет ту же формулу, что и глюкоза (C6H12O6), и, соответственно, содержит точно такое же количество атомов углерода, кислорода и водорода, что и глюкоза. Однако структура молекул этих двух веществ заметно различается. Атомы в их молекулах расположены по-разному. Химики называют такие соединения изомерами. Это вещества, которые имеют одинаковую химическую формулу (то есть одинаковое количество атомов каждого конкретного вида), однако различаются расположением атомов.

Проекционные формулы Фишера для изомеров глюкозы и фруктозы, показывающие разное расположение атомов водорода и кислорода у атомов углерода С1 и С2. В молекуле фруктозы атомы водорода у С2 отсутствуют.


Фруктоза существует главным образом в циклической форме, однако ее структура несколько отличается от циклической структуры глюкозы: фруктоза образует пятичленное кольцо, а не шестичленное, как глюкоза. Фруктоза, как и глюкоза, может существовать в виде ?– или ?-формы. Однако с кислородом в кольце соединен углерод С2, поэтому ?– и ?-формы фруктозы различаются положением OH-группы именно у этого атома углерода. В ?-форме OH-группа располагается под кольцом, в ?-форме – над кольцом.

Формула Хоуорса для ?-глюкозы


Формула Хоуорса для ?-фруктозы


Сахароза содержит равные количества глюкозы и фруктозы, но это не комбинация двух молекул. В молекуле сахарозы одно звено глюкозы и одно звено фруктозы связаны через OH-группу у атома С1 из молекулы ?-глюкозы и OH-группу у атома С2 из молекулы ?-фруктозы. При образовании этой связи происходит удаление молекулы воды.

Удаление молекулы воды при образовании сахарозы из глюкозы и фруктозы. На данном рисунке молекула фруктозы повернута на 180° и перевернута.


Структура молекулы сахарозы


Фруктоза содержится во фруктах, а также в меде, который на 38 % состоит из фруктозы, на 31 % из глюкозы, на 10 % – из разных сахаров, включая сахарозу (остальное – вода). Фруктоза слаще глюкозы и сахарозы, так что именно благодаря высокому содержанию фруктозы мед слаще сахара. Кленовый сироп содержит примерно 62 % сахарозы и по 1 % фруктозы и глюкозы.

Молочный сахар, или лактоза, представляет собой дисахарид, образованный из одного звена глюкозы и одного звена другого моносахарида – галактозы. Галактоза также является изомером глюкозы. Единственным различием между этими веществами является то, что в молекуле галактозы OH-группа у атома С4 расположена над кольцом, а не под ним, как в молекуле глюкозы.

?-галактоза


?-глюкоза


Стрелки указывают положение OH-групп у атома С4 в молекулах ?-галактозы (над поверхностью кольца) и ?-глюкозы (под поверхностью кольца). Эти молекулы соединяются, образуя молекулу лактозы.


Структура молекулы лактозы

Звено галактозы (слева) через атом С1 соединено с атомом С4 звена глюкозы (справа)


Может показаться, что расположение OH-группы над или под кольцом не способно сильно влиять на свойства молекулы, однако люди с врожденной непереносимостью лактозы хорошо чувствуют различие. Для расщепления лактозы и других дисахаридов или полисахаридов людям нужны специфические ферменты, которые расщепляют эти молекулы на простые моносахариды. Фермент, расщепляющий лактозу, называется лактазой. В небольшом количестве он присутствует в организме некоторых взрослых людей. У детей лактаза обычно вырабатывается в большем количестве. Недостаточность лактазы затрудняет расщепление молока и молочных продуктов и является причиной симптомов непереносимости лактозы – вздутия живота, судорог и диареи. Непереносимость лактозы – наследственное состояние, которое легко контролировать путем приема ферментных препаратов. В организме взрослых и даже детей из некоторых этнических групп, в частности, некоторых африканских народов, лактазы нет вообще. Для этих людей порошковое молоко и другие молочные продукты, которые часто поставляют в Африку в рамках гуманитарной помощи, могут оказаться даже опасными.

В норме головной мозг здоровых млекопитающих использует в качестве источника энергии только глюкозу. Клетки мозга зависят от постоянной поставки глюкозы с током крови, поскольку в самом мозге нет запасов глюкозы. Если уровень глюкозы в крови падает ниже 50 % нормального уровня, появляются некоторые симптомы нарушения мозговой деятельности. При падении уровня глюкозы в крови ниже 25 % нормы, например, в результате передозировки инсулина (гормона, поддерживающего необходимый уровень глюкозы в крови), может наступить кома.

Сладкий вкус

Все перечисленные выше сахара имеют сладкий вкус, а люди любят сладкое. Сладкий – это один из четырех основных вкусов, различаемых человеком (три других – кислый, горький и соленый). Появление способности распознавать вкус было важным эволюционным приобретением. Сладкий вкус обычно говорит о том, что данный продукт съедобен. Спелый фрукт чаще всего сладкий. Если он кислый, то, возможно, он еще не созрел и в нем много кислот, а они могут вызвать боли в желудке. Горький вкус растений обычно указывает на присутствие в них веществ, называемых алкалоидами. Нередко они ядовиты (некоторые даже в очень малых дозах), так что способность распознавать следы алкалоидов является очевидным эволюционным преимуществом. Согласно одной из гипотез (впрочем, не являющейся общепринятой), исчезновение динозавров могло быть связано с их неспособностью распознавать токсичные алкалоиды, присутствующие в некоторых цветковых растениях, появившихся в конце мелового периода, то есть именно тогда, когда исчезли динозавры.

У людей нет врожденного пристрастия к горечи, скорее наоборот: нас привлекает сладкое. Горький вкус вызывает в организме ответ, сопряженный с выделением избыточного количества слюны. Это полезная реакция на попадание в рот ядовитого вещества, поскольку слюна помогает его расщеплять. Однако с возрастом многие люди привыкают к горькому вкусу и даже начинают его ценить. Вспомните о кофеине в чае и кофе, а также хинине в тонике (хотя многие все-таки предпочитают добавлять в эти напитки сахар). Удовольствие с каплей горечи – горько-сладкий вкус – вот что объясняет наше двойственное отношение к горечи.

Ощущение вкуса формируется во вкусовых сосочках – специализированных группах клеток, расположенных в основном на языке. Не все части языка воспринимают одинаковый вкус в одинаковой степени. Кончик наиболее чувствителен к сладкому, а кислота сильнее ощущается боковыми поверхностями ближе к корню. Вы сами можете в этом убедиться, попробовав дотронуться до сладкого раствора кончиком и боковой стороной языка. Кончик языка обычно чувствует сладость сильнее. Но если вы проведете тот же эксперимент с лимонным соком, результат будет еще нагляднее: кончик языка не воспринимает лимонный сок очень-очень кислым, но положите только что срезанный ломтик лимона на боковую поверхность языка, и вы сразу поймете, где расположены рецепторы, ответственные за восприятие кислоты. Можете продолжить эксперимент: горечь лучше всего ощущается в средней части языка ближе к корню, а соленый вкус сильнее всего ощущается с двух сторон от кончика.

Сладкий вкус, безусловно, изучен лучше остальных. Связано это с тем, что, как и во времена работорговли, сахар остается важным источником дохода. Связь между химической структурой и сладостью достаточно сложна. Простая модель, известная как модель A-H,B, предполагает, что сладкий вкус определяется расположением групп атомов в молекуле. Эти атомы (A и B на схеме) имеют определенную геометрию, благодаря которой атом B притягивает атом водорода, соединенный с атомом A. В результате происходит кратковременное связывание сладкой молекулы с белковой молекулой рецептора вкуса, что приводит к выработке сигнала, передающегося по нервам в головной мозг: “Это – сладкое”. Обычно атомы A и B – атомы кислорода или азота, но иногда одним из них может быть атом серы.

Модель восприятия сладкого вкуса A-H,B


Кроме сахара, существует множество других сладких веществ, но не все они пригодны для еды. Например, этиленгликоль является основным компонентом автомобильного антифриза. Сладкий вкус этиленгликоля объясняется растворимостью и гибкостью его молекулы, а также тем, что расстояние между атомами кислорода в этой молекуле близко к расстоянию между атомами кислорода в сахарах. Однако это вещество ядовито: всего столовой ложки достаточно, чтобы убить человека или домашнее животное.

Интересно, что ядовит не сам этиленгликоль, а то вещество, в которое он превращается в организме. Окисление этиленгликоля под действием ферментов организма приводит к образованию щавелевой кислоты.

Щавелевая кислота содержится во многих растениях, в том числе в таких съедобных растениях, как шпинат и ревень. Мы редко едим эти продукты в большом количестве, так что наши почки справляются с выведением следовых количеств щавелевой кислоты. Но если выпить этиленгликоль, внезапное появление в организме большого количества щавелевой кислоты может вызвать почечную недостаточность и смерть. Если за обедом вы съедите шпинат и пирог с ревенем, вы не умрете. В худшем случае это может способствовать образованию почечных камней. Камни в почках в значительной степени состоят из оксалата кальция – нерастворимой соли щавелевой кислоты. Людям со склонностью к образованию почечных камней не советуют употреблять в пищу продукты, содержащие много оксалатов. Для остальных лучший совет – умеренность во всем.

Другое близкое к этиленгликолю по структуре вещество – глицерин, тоже со сладким вкусом. В умеренных количествах глицерин безопасен для здоровья. Из-за вязкости и хорошей растворимости в воде его добавляют во многие пищевые продукты. Термин “пищевые добавки” в последнее время пользуется дурной славой из-за того, что они нередко имеют неорганическую природу и синтетическое происхождение. Глицерин – органическое вещество, он нетоксичен и содержится во многих природных продуктах, например в вине.

Глицерин


Если взболтать вино в бокале, на стекле образуются “ножки”, которые как раз и связаны с присутствием в вине глицерина, повышающего вязкость и бархатистость хорошего вина.

Заменители сахара

Существует множество других сладких веществ, не являющихся сахарами, и некоторые из них могут служить заменителями сахара. Доходы от производства этой продукции составляют около миллиарда долларов. К таким веществам предъявляют следующие требования: их химическая структура должна некоторым образом имитировать структуру сахаров, что позволяет им связываться с рецепторами сладкого вкуса, они должны растворяться в воде, быть нетоксичными и желательно не подвергаться расщеплению в организме. Эти вещества обычно в сотни раз слаще сахара.

Первым искусственным заменителем сахара был сахарин. Это мелкий порошок, настолько сладкий, что даже очень малая доза вызывает реакцию организма: если при работе с этим веществом поднести руку к губам, немедленно ощущается сладкий вкус. Наверное, именно это произошло в 1879 году в Университете Джонса Хопкинса в Балтиморе. Студент-химик[7] почувствовал необычно сладкий вкус хлеба, который ел. Он вернулся к рабочему столу и, принявшись систематически пробовать все вещества, с которыми в тот день работал (рискованная, но достаточно распространенная в те времена практика), обнаружил вещество, имеющее сильно выраженный сладкий вкус.

Сахарин не обладает калорийностью, и это сочетание сладости с отсутствием калорийности быстро обеспечило ему коммерческий успех (сахарин стали применять уже в 1885 году). Сначала его планировали использовать в качестве заменителя сахара для диабетиков, но он быстро приобрел популярность у всего населения. Однако беспокойство по поводу возможной токсичности этого вещества, а также его металлическое послевкусие стимулировали создание других искусственных заменителей сахара, таких как цикламат и аспартам. Как видно из рисунка, структура этих трех веществ различна и сильно отличается от структуры сахаров, однако все они обладают необходимым набором атомов в специфических позициях и необходимой гибкостью, чтобы вызывать у человека ощущение сладкого вкуса.

Сахарин


Цикламат натрия


Аспартам


Ни один искусственный заменитель сахара не является идеальным. Некоторые из них разлагаются при нагревании и поэтому могут употребляться только с холодными напитками или пищей. Другие недостаточно хорошо растворяются в воде. Третьи обладают неприятным привкусом. Синтетическое вещество аспартам состоит из двух природных аминокислот. Аспартам расщепляется в организме, но поскольку он в двести раз слаще глюкозы, для получения сладкого вкуса его нужно значительно меньше. Людям с таким наследственным заболеванием, как фенилкетонурия (неспособность расщеплять аминокислоту фенилаланин, образующуюся при распаде аспартама), не рекомендовано употреблять этот заменитель сахара.

В создании нового заменителя сахара, одобренного в 1998 году Управлением США по надзору за качеством пищевых продуктов и лекарственных средств, был применен другой подход. Это вещество – сукралоза – отличается от сахарозы всего по двум параметрам. Звено глюкозы (слева на рисунке) заменено галактозой – тем же сахаром, который входит в состав молочного сахара. Кроме того, три OH-группы заменены на три атома хлора (Cl): один в галактозном звене и два других во фруктозном звене (справа на рисунке). Три атома хлора не влияют на сладость этой молекулы, но они не позволяют организму ее расщеплять. Поэтому сукралоза не обладает калорийностью.

Структура сукралозы. Стрелками показаны атомы хлора, введенные в молекулу вместо OH-групп.


Сейчас исследователи занимаются поиском несахарных подсластителей из растительных источников; сладость таких веществ может в тысячу раз превышать сладость сахарозы. Давно известно о сладком вкусе некоторых растений. В качестве примера можно назвать южноамериканскую траву Steviarebaudiana, корень лакричного растения Glycyrrhiza glabra, мексиканский представитель семейства вербеновых Lippia dulcis, а также корневища папоротника Selliguea feei с запада Явы. Сладкие вещества из природных источников могут найти промышленное применение, однако предстоит решить проблему их низкого содержания в природном источнике, токсичности, плохой растворимости в воде, неприятного привкуса, нестабильности и непостоянства качества этих веществ.

Сахарин, использовавшийся дольше века, был, однако, не первым заменителем сахара. Первым должен считаться ацетат свинца Pb (C2H3O2)2, которым древние римляне подслащивали вино. Это вещество, известное как свинцовый сахар, способно придать вину сладость, не вызывая дальнейшей ферментации, которая неизбежна при добавлении меда. Многие соли свинца имеют сладкий вкус, многие из них нерастворимы и абсолютно все ядовиты. Ацетат свинца растворяется очень хорошо, а о его токсичности римляне ничего не знали. Это наводит нас размышления о “старых добрых временах”, когда еда и напитки якобы не содержали вредных добавок.

Кроме того, римляне хранили вино и другие жидкости в свинцовых контейнерах, а вода в дома поступала по свинцовым трубам. Отравление свинцом носит кумулятивный характер. Свинец воздействует на нервную систему, репродуктивные и другие органы. Первые симптомы отравления свинцом довольно неспецифические: нарушение сна, потеря аппетита, раздражительность, головные боли, анемия и боли в желудке. Позднее происходит нарушение мозговой деятельности, приводящее к параличу. Некоторые историки связывают упадок Рима с отравлением свинцом: многие римские правители, включая Нерона, страдали от подобных симптомов. Однако только состоятельная аристократическая публика могла позволить себе иметь дома водопровод и хранить вино в свинцовых контейнерах. Простые люди вынуждены были ходить за водой, а вино хранили в других емкостях. Но если свинец действительно был одной из причин упадка Римской империи, возможно, его также можно отнести к химическим веществам, изменившим ход истории.


Сахар и пристрастие к сладкому во многом определили историю человечества. Не будь сахара, работорговля не приобрела бы такой гигантский масштаб, а без невольников не было бы развитой торговли сахаром. Достояние Западной Африки – ее люди – было принесено в жертву чужому благосостоянию.

Стремление к сладкой жизни влияло на судьбы и после уничтожения рабовладения. Так, в конце XIX века множество индийцев приехало на Фиджи, чтобы наняться на плантации сахарного тростника. В результате этнический состав населения этих островов Тихого океана изменился настолько, что исконные жители этих мест – меланезийцы – стали составлять меньшинство. После трех государственных переворотов, произошедших в последние годы, политическая и этническая ситуация на Фиджи по-прежнему нестабильна. Этнический состав населения других тропических островов также связан с производством сахара. Предки людей, составляющих сейчас основное население Гавайских островов, перебрались сюда из Японии, чтобы выращивать сахарный тростник.

И в наши дни сахар продолжает оказывать влияние на развитие общества. Сахар – важный пищевой продукт. Капризы погоды и заражение вредителями влияют на экономику стран-производителей сахара и на мировой рынок. Повышение стоимости сахара сказывается на всей пищевой промышленности. Сахар влияет и на политику. Например, продажа сахара в СССР много десятилетий позволяла режиму Фиделя Кастро держаться на плаву.

Сахар содержится во многих продуктах и напитках. Наши дети любят сладкое. Мы угощаем сладким друзей (а не преломляем с ними простой хлеб, как было принято когда-то). Сладкое стало неотъемлемым элементом праздника во всем мире. Современный уровень потребления глюкозы и ее изомеров во много раз превысил соответствующий уровень потребления во времена наших предков, что является одной из причин распространения ожирения, диабета и кариеса. В общем, наша жизнь по-прежнему зависит от сахара.

Глава 4

Целлюлоза

Укоренение рабства в Америке было связано с выращиванием сахарного тростника, однако его существование на протяжении трех с лишним столетий поддерживала не только торговля сахаром. Свой вклад внесло производство и других товаров для европейского рынка, например хлопка. В Англии из импортного хлопка-сырца изготавливали дешевый текстиль, который в Африке можно было обменять на рабов – и отправить их на плантации Нового Света, особенно на юг Соединенных Штатов. Прибыль от продажи сахара составила начальный капитал для развития британской промышленности. Хлопок же способствовал расцвету экономики Британии в конце XVIII и начале XIX века.

Промышленная революция и хлопок

Плод хлопчатника представляет собой круглую коробочку с маслянистыми семенами, окруженными пушистыми волокнами. Хлопчатник, относящийся к роду Gossypium, выращивали в Индии и Пакистане, а также в Мексике и Перу уже пять тысяч лет назад, однако в Европе это растение стало известно только в 300-х годах до н. э., когда воины Александра Македонского вернулись из Индии в одежде из хлопка. В Средние века арабские торговцы привезли хлопчатник в Испанию. Хлопчатник любит долгое жаркое лето, поскольку не переносит холода, и хорошо растет на влажной, но дренированной почве. Таких условий не найти в Европе с ее умеренным климатом. Поэтому Англия и другие северные страны вынуждены были импортировать хлопок.

Центром по переработке хлопка в Англии стало графство Ланкашир. Влажный климат этих мест способствовал слипанию хлопковых волокон, что очень хорошо для переработки, поскольку снижает вероятность разрыва нитей при прядении и ткачестве. Прядильные фабрики в регионах с более сухим климатом требуют больших затрат. Кроме того, в Ланкашире было достаточно места для строительства фабрик и размещения тысяч рабочих, которые обслуживали это производство, достаточно химически мягкой воды для отбеливания и окраски ткани, а также достаточно угля (это обстоятельство стало очень важным после появлении паровых машин).

В 1760 году Англия импортировала более тысячи тонн хлопка-сырца. Всего через восемьдесят лет фабрики страны обрабатывали в 140 раз больше хлопка. Потребность в дешевой хлопковой ткани способствовала механизации производства, и вскоре практически все стадии процесса были механизированы. В XVIII веке появились: хлопкоочистительная машина, отделяющая волокна от семян, ворсовальная машина для подготовки сырого волокна, механическая прялка “Дженни” и гребенная машина для вытягивания волокон и их скручивания, а также различные ткацкие челноки. Вскоре эти механизмы, которыми сначала управлял человек, стали приводиться в движение животными или водяными мельницами. Изобретение Джеймсом Уаттом паровой машины привело к постепенному переходу промышленности на энергию пара.

Социальные последствия подъема хлопчатобумажной промышленности оказались значительными. В сельских районах Центральной Англии выросло свыше трехсот промышленных городов и поселков. Условия труда там были ужасными. Рабочий день был очень длинным. Жизнь рабочих строго регламентировалась. Конечно, положение этих людей нельзя сравнить с положением рабов на заокеанских хлопковых плантациях, однако и здесь, в Англии, тысячи рабочих выполняли поистине каторжную работу. Они жили в грязи, шуме и нищете, постоянно подвергая себя опасности на фабрике. Зарплату рабочим зачастую выдавали готовой продукцией, причем по завышенным ценам. Условия жизни были нестерпимыми. Вокруг фабрик вырастал лабиринт узких темных улочек, застроенных тесными, сырыми домами, в которых жили одновременно несколько семей. До пяти лет доживало менее половины детей. Власти были обеспокоены этим обстоятельством, но не потому, что им было жаль детей, а потому, что дети умирали прежде, чем могли быть привлечены к работе на фабрике или к какому-либо другому труду. После достижения определенного возраста дети шли на прядильное производство: благодаря своему невысокому росту они могли проползать под машинами и заделывать разрывы в нитях. Детей нередко заставляли работать 12–14 часов в сутки.

Общественное недовольство дурным обращением с детьми и беззаконием вылилось в массовое движение, требовавшее законодательной регламентации продолжительности рабочего дня, условий и защиты труда, в том числе детского. Во многом на основе этих требований сформировалось современное трудовое законодательство. Условия жизни и работы заставляли многих рабочих вступать в профсоюзы и требовать социальных, политических и образовательных реформ. Однако добиться изменений было непросто. Фабриканты и акционеры обладали политической властью и не желали идти на уступки, снижавшие прибыль от производства хлопка.

Пелена дыма от сотен фабрик висела над Манчестером, который рос вместе с развитием производства хлопка. Прибыль вкладывалась в дальнейшую индустриализацию региона. Были построены каналы и железные дороги, перевозившие сырье и уголь на фабрики, а конечный продукт – в ближайший порт, Ливерпуль. Для расширения производства требовались инженеры, механики, строители, химики и ремесленники, чьи знания и умения могли пригодиться в таких областях, как производство красителей и отбеливателей, чугунолитейное производство и металлообработка, производство стекла и кораблестроение, а также прокладка железных дорог.

Несмотря на то, что в 1807 году в Англии была запрещена торговля людьми, промышленники не стеснялись импортировать с юга Америки хлопок, собранный руками рабов. В 18251873 годах хлопок-сырец был основной статьей британского импорта, его везли из Египта, Индии и Соединенных Штатов. Однако производство хлопчатобумажных тканей пошло на спад в связи с нерегулярностью поставок сырья во время Первой мировой войны. Британская промышленность никогда уже не восстановилась в прежнем объеме, поскольку страны-производители хлопка, обзаведшись необходимым оборудованием и меньше платя рабочим, сами стали крупными производителями и потребителями хлопчатобумажной ткани.

Торговля сахаром обеспечила начальный капитал для Промышленной революции, однако процветание Британии в XIX веке в значительной степени связано с ростом спроса на хлопчатобумажную ткань. Она была дешевой и идеально подходила для изготовления одежды и предметов домашнего обихода. Хлопок хорошо смешивается с другими волокнами, а ткань из него легко стирать и сшивать. Хлопковые ткани быстро вытеснили более дорогие льняные из обихода простых людей. Невероятное повышение спроса на хлопок-сырец в Европе, особенно в Англии, привело к росту использования труда рабов в Америке. Хлопководство – очень трудоемкий процесс. Сельскохозяйственная техника, пестициды и гербициды стали применяться гораздо позднее, а в те времена выращивание хлопка полностью зависело от усилий рабов. В 1840 году в Соединенных Штатах насчитывалось около полутора миллионов невольников. Спустя двадцать лет, когда на долю хлопка-сырца приходилось две трети всего американского экспорта, рабов было уже четыре миллиона.

Целлюлоза – структурный полисахарид

Подобно другим растительным волокнам, хлопок на 90 % состоит из целлюлозы, которая представляет собой полимер глюкозы и является основным компонентом клеточной стенки растений. Слово “полимер” у многих ассоциируется с синтетическими волокнами и пластмассами, однако в природе тоже существует множество полимеров. Это слово происходит из греческого языка: poly – “много”, а meros означает часть, или звено, так что полимер – это соединение многих звеньев. Полимеры глюкозы, иначе называемые полисахаридами, можно классифицировать на основании функции, выполняемой ими в организме. Структурные полисахариды, такие как целлюлоза, обеспечивают прочность тканей и систем, а запасные полисахариды являются формой хранения глюкозы. Структурные полисахариды состоят из звеньев ?-глюкозы, запасные – из ?-глюкозы. Мы упоминали в третьей главе, что в ?-структуре OH-группа у углерода С1 находится над поверхностью глюкозного кольца, а в ?-структуре – под поверхностью кольца.

Структура ?-глюкозы


Структура ?-глюкозы


Разница между ?– и ?-глюкозой может показаться незначительной, однако она ответственна за чрезвычайно важное различие в функции полисахаридов, образованных из тех и других звеньев глюкозы: группа OH над кольцом – структурная функция, под кольцом – запасная. В химии часто случается, что незначительные, казалось бы, изменения в структуре молекулы оказывают очень серьезное влияние на свойства вещества. Полимеры ?– и ?-глюкозы являются прекрасной иллюстрацией.

Как в структурных, так и в запасных полисахаридах звенья глюкозы соединены друг с другом через атом углерода С1 одного звена и атом углерода С4 соседнего звена. При соединении происходит удаление атома водорода с одной стороны и OH-группы с другой стороны и образование молекулы воды. Такой процесс называют конденсацией, а образующиеся в результате полимеры – конденсационными полимерами.

Реакция конденсации (удаление молекулы воды) между двумя молекулами ?-глюкозы. На свободном конце каждой молекулы этот процесс может повториться.


Каждый свободный конец молекулы способен еще раз вступить в реакцию конденсации, в результате чего образуются протяженные цепи глюкозных звеньев, в которых оставшиеся OH-группы распределены вокруг цепей.

Удаление молекул воды между атомами C1 и С4 у двух соседних молекул ?-глюкозы с образованием длинной полимерной цепи целлюлозы. На рисунке показано пять глюкозных звеньев.


Структура участка цепи целлюлозы. Атомы кислорода, соединенные с каждым атомом С1 (указаны стрелками), находятся в ?-положении, т. е. расположены над поверхностью глюкозного кольца слева от них в каждом случае.


Многие свойства хлопка, обеспечившие ему успех, объясняются уникальной структурой целлюлозы. Длинные цепи целлюлозы лежат вплотную друг к другу, образуя жесткие, нерастворимые в воде волокна, из которых состоят клеточные стенки растений. Рентгеноструктурный анализ и электронная микроскопия – основные методы изучения физической структуры веществ – показывают, что цепи целлюлозы уложены в пучки. Форма ?-связи позволяет цепям целлюлозы укладываться вплотную друг к другу. Эти пучки скручиваются и формируют волокна, видимые невооруженным глазом. На поверхности пучков располагаются OH-группы, не принимающие участия в образовании цепей целлюлозы, и эти OH-группы способны притягивать молекулы воды. Поэтому целлюлоза может захватывать воду, что объясняет высокую сорбционную способность хлопка и других продуктов на основе целлюлозы. Утверждение, будто “хлопок дышит”, имеет отношение не к вентиляции, а к способности поглощать влагу. В жару выступающий на теле пот впитывается в одежду из хлопчатобумажной ткани, а при его испарении тело охлаждается. Одежда из нейлона или полиэстера не впитывает влагу, пот не уходит с тела, и мы испытываем дискомфорт.

Участок цепи структурного полимера хитина, входящего в состав раковин моллюсков. Группа OH у атома С2 в каждом остатке глюкозы заменена группой NHCOCH3.


Хлопковое поле. Фото Питера Лекутера


Примером другого структурного полисахарида является хитин, из которого сложены панцири крабов, креветок и лобстеров. Хитин, подобно целлюлозе, является ?-полисахаридом. От целлюлозы он отличается только заместителем у атома углерода С2 в каждом звене глюкозы: вместо OH-группы здесь располагается амидная группа (NHCOCH3). Таким образом, звеном хитина является остаток глюкозы с группой NHCOCH3 у атома углерода С2. Такая молекула называется N-ацетилглюкозамином. Возможно, эта информация интересна не всем, но если у вас артрит или какое-либо иное заболевание суставов, это название должно быть вам знакомо. N-ацетилглюкозамин и родственное ему соединение глюкозамин (оба получают из раковин моллюсков) являются хорошими лекарствами от артрита. По-видимому, эти вещества стимулируют замену хрящевой ткани в суставах.

В организме млекопитающих нет пищеварительных ферментов, способных расщеплять ?-связи в структурных полисахаридах, поэтому они не могут использовать структурные полисахариды в качестве источника пищи, несмотря на то, что в растительных клетках в виде целлюлозы заключены миллиарды остатков глюкозы. Однако некоторые бактерии и простейшие синтезируют ферменты, расщепляющие такие связи и способные разделять полимерные цепи на составляющие их молекулы глюкозы. В пищеварительной системе некоторых животных постоянно обитают такие микроорганизмы, позволяющие их хозяевам питаться растениями. Например, у лошадей бактерии живут в слепой кишке – большом отростке в месте соединения тонкой и толстой кишок. Жвачные животные, к которым относятся коровы и овцы, обладают четырехкамерным желудком, в одной из частей которого обитают симбиотические бактерии. Коровы и овцы иногда срыгивают и повторно пережевывают пищу – это дополнительная адаптация, призванная повысить эффективность расщепления ?-связей.

У кроликов и некоторых других грызунов бактерии-помощники живут в толстой кишке. Поскольку всасывание основной доли пищи происходит в тонкой кишке, предшествующей толстой, такие животные получают продукты расщепления ?-связей путем поедания собственных экскрементов. Когда питательные вещества проходят по пищеварительной системе во второй раз, тонкая кишка всасывает глюкозу, высвободившуюся при первом прохождении. Нам это может показаться достаточно неприятным способом решения проблемы ориентации OH-групп, однако такая система неплохо работает. В организме некоторых насекомых, включая термитов, муравьев-древоточцев и других поедающих древесину насекомых, также живут микроорганизмы, позволяющие им питаться целлюлозой, что иногда приводит к плачевным для человека результатам. Но даже для нас, неспособных переваривать целлюлозу, она все равно является важным пищевым продуктом. Дело в том, что растительные волокна, состоящие из целлюлозы и других неусвояемых веществ, помогают продвижению пищи по пищеварительному тракту.

Запасные полисахариды

В нашем организме нет фермента, способного расщеплять ?-связи, однако есть пищеварительный фермент, который расщепляет ?-связи. А ?-связи, как мы видели, встречаются в запасных полисахаридах, таких как крахмал и гликоген. Один из основных пищевых источников глюкозы, крахмал, содержится в корнях, клубнях и семенах многих растений. Он состоит из двух слабо различающихся полисахаридов, которые являют собой полимеры ?-глюкозы. От 20 до 30 % крахмала представлено амилозой – неразветвленным полисахаридом, состоящим из нескольких тысяч звеньев глюкозы, соединенных через атом С1 одного остатка глюкозы и атом С4 соседнего остатка. Единственное различие между целлюлозой и амилозой заключается в том, что в первом случае остатки глюкозы соединены между собой ?-связью, а во втором – ?-связью. Однако функции целлюлозы и амилозы совершенно различны.

Участок цепи амилозы, образованной путем соединения остатков ?-глюкозы с выделением молекул воды. Альфа-связь в молекуле означает, что атом кислорода (показан стрелкой) расположен под поверхностью кольца глюкозы, в котором задействован атом С1.


На долю амилопектина приходятся оставшиеся 70 или 80 % массы крахмала. Амилопектин также состоит из длинных цепей ?-глюкозы, соединенных через атомы С1 и С4, однако он представляет собой разветвленную молекулу, имеющую перекрестные сшивки между атомом С1 в одном остатке глюкозы и атомом С6 в другом остатке. Эти перекрестные сшивки встречаются через каждые 20–25 остатков глюкозы. Наличие миллионов остатков глюкозы в связанных между собой цепях делает амилопектин одной из самых крупных молекул, обнаруженных в природе.

Участок структуры амилопектина. Стрелкой показана перекрестная ?-связь между атомом С1 и атомом С6, приводящая к образованию разветвленной структуры.


Альфа-связи в крахмале не только позволяют нам переваривать его, но и отвечают за другие важные свойства этого вещества. Цепи амилозы и амилопектина образуют спирали, а не плотно упакованные линейные структуры, как в целлюлозе. Молекулы воды, обладающие достаточной энергией, могут проникать внутрь спирали, поэтому крахмал растворим в воде, а целлюлоза – нет. Любой человек, имевший дело с крахмалом, знает, что его растворимость в воде зависит от температуры. Если нагреть суспензию крахмала в воде, его гранулы начинают впитывать больше воды, и при определенной температуре молекулы крахмала разделяются, образуя сеть распределенных в воде длинных нитей (так называемый гель). Мутная суспензия становится прозрачнее и гуще. Повара используют такие крахмалсодержащие вещества, как мука, тапиока и кукурузный крахмал, для придания соусам необходимой густоты.

В тканях животных сахара запасаются в виде гликогена, образующегося главным образом в клетках печени и скелетных мышц. Гликоген очень похож на амилопектин, но поперечные ?-связи между атомами С1 и С6 встречаются в нем чаще – через каждые десять остатков глюкозы. В результате молекула получается сильно разветвленной. Для животных это чрезвычайно важно, и вот почему. У неразветвленной цепи только два конца, а разветвленная цепь, состоящая из того же количества остатков глюкозы, имеет гораздо больше концов. Когда нужно быстро получить энергию, можно одновременно отщеплять несколько остатков глюкозы от нескольких концов. Растениям, в отличие от животных, не приходится внезапно растрачивать энергию, убегая от хищников или преследуя добычу, так что хранение энергии в виде малоразветвленного амилопектина и неразветвленной амилозы вполне подходит для более медленных метаболических процессов в растениях. Это небольшое химическое различие, связанное лишь с числом, даже не с типом перекрестных сшивок, является основой одного из важнейших различий между растениями и животными.

Характер ветвления полисахаридных цепей крахмала (амилоза и амилопектин) и гликогена. Чем сильнее разветвлен полимер, тем больше концов цепей доступно для фермента и тем быстрее высвобождается глюкоза.

Целлюлоза: настоящая бомба

В природе имеется большое количество запасных полисахаридов, однако структурного полисахарида (целлюлозы) существует гораздо больше. По некоторым оценкам примерно половина всего органического углерода на нашей планете содержится в составе целлюлозы. Ежегодно в природе синтезируется и расщепляется около 1014 кг целлюлозы (около ста миллиардов тонн). Целлюлоза уже давно привлекала внимание химиков и предпринимателей по той причине, что она является не только распространенным, но и восполняемым природным ресурсом.

К 30-х годам XIX века стало известно, что если целлюлозу растворить в концентрированной азотной кислоте, а образующийся раствор добавить в воду, получается легко воспламеняющийся взрывчатый белый порошок. Коммерческое использование этого вещества началось в 1845 году после открытий, сделанных в Базеле, в Швейцарии, немецким химиком Фридрихом Шенбейном. Он проводил эксперименты со смесями азотной и серной кислот дома, на кухне, чему активно противилась фрау Шенбейн, не желавшая, понятное дело, подвергать жилье опасности. Однажды, когда жены не было дома, Шенбейн пролил немного смеси кислот. Чтобы вытереть жидкость, он схватил первое, что попалось под руку – хлопчатобумажный фартук жены. Химик вытер кислоту и повесил фартук над печкой, чтобы высушить. Однако фартук взорвался, произведя страшный грохот и породив столб пламени. Неизвестно, что сказала жена ученого, когда вернулась домой и застала мужа за продолжением кухонных экспериментов с хлопком и азотной кислотой. Мы знаем только, что Шенбейн назвал новое вещество Schie?baumwolle, “стреляющий хлопок”. Хлопок на 90 % состоит из целлюлозы, и теперь мы знаем, что “стреляющий хлопок” Шенбейна был нитроцеллюлозой (пироксилином), образующейся при замене атомов водорода в некоторых OH-группах в молекуле целлюлозы на нитрогруппы (NO2). Чем больше таких замен, тем взрывоопаснее вещество.

Участок молекулы целлюлозы с указанием мест возможного нитрования OH-групп у атомов С2, С3 или С6 в любом остатке глюкозы


Участок молекулы нитроцеллюлозы: в данном случае атомы водорода из OH-групп заменены нитрогруппами во всех возможных положениях в каждом остатке глюкозы


Шенбейн, осознавший возможную выгоду от своего открытия, основал фабрики по производству нитроцеллюлозы, надеясь, что она сможет заменить порох. Однако нитроцеллюлоза – очень опасное вещество, которое необходимо беречь от влаги. В те времена не знали, что азотная кислота является чрезвычайно едким веществом, и на нескольких фабриках произошли сильные взрывы, что вынудило Шенбейна закрыть производство. Только в конце 60-х годов XIX века, когда был разработан метод очистки нитроцеллюлозы от остатков азотной кислоты, стало можно получать достаточно устойчивую нитроцеллюлозу для промышленного производства взрывчатки.

Позднее был разработан контролируемый процесс, позволяющий получать разную нитроцеллюлозу: пироксилин с высоким содержанием нитрогрупп и такие вещества, как коллодий и целлулоид, отличающиеся низким содержанием нитрогрупп. Коллодий – это нитроцеллюлоза, смешанная со спиртом и водой. Эту смесь использовали на заре развития фотографии. Целлулоид (смесь нитроцеллюлозы с камфарой) – одна из первых пластмасс, из которой делали первую кинопленку. Другое производное целлюлозы – ацетат целлюлозы – оказалось гораздо менее горючим, чем нитроцеллюлоза, и быстро заменило ее во многих областях. Современные фото– и кинопроизводство обязаны своим нынешним размахом многогранной структуре целлюлозы.

Целлюлоза не растворима в большинстве растворителей, но переходит в щелочной раствор одного органического вещества – сероуглерода. В результате образуется ксантат целлюлозы. Эту вязкую дисперсию назвали вискозой. Если вискозу продавить через мелкие отверстия, а потом обработать кислотой, целлюлоза опять принимает форму тонких волокон, которые можно прясть. Так получают вискозный шелк. В похожем процессе, в котором вискозу продавливают через узкую щель, получают целлофан. Вискозу и целлофан обычно относят к синтетическим материалам, однако их нельзя считать полностью синтетическими: они созданы на основе природной целлюлозы.


И ?-полимер глюкозы (крахмал), и ?-полимер (целлюлоза) остаются важным компонентом нашего питания и продолжают оказывать влияние на нашу жизнь. Однако историческая роль целлюлозы и ее производных не связана с их пищевой функцией. Целлюлоза в форме хлопка явилась причиной двух важнейших событий XIX века: Промышленной революции в Европе и Гражданской войны в США. Хлопок послужил “топливом” Промышленной революции, изменившей развитие Англии и сопровождавшейся переселением сельских жителей в города, быстрой индустриализацией, инновациями, социальными изменениями и, наконец, процветанием страны. С другой стороны, с хлопком связан один из самых серьезных кризисов в истории Америки, поскольку одной из главных причин Гражданской войны были разногласия по вопросу о рабстве между свободным Севером и рабовладельческим Югом, экономика которого была основана на труде невольников, работавших на хлопковых плантациях.

Нитроцеллюлоза (пироксилин) – одно из первых взрывчатых веществ, созданных человеком, и ее открытие послужило толчком к развитию многих отраслей современной промышленности, поначалу связанных с различными формами нитроцеллюлозы (производство взрывчатых веществ, фото– и киноиндустрия). Производство синтетических тканей, начавшееся с вискозы, в XX веке сыграло важную роль в развитии экономики. Без целлюлозы наш мир был бы совсем другим.

Глава 5

Нитроорганические соединения

Фрау Шенбейн, утратившая фартук в результате новаторских опытов мужа, – не первая в истории жертва взрыва созданных человеком взрывчатых веществ и, конечно, не последняя. Если химическая реакция протекает очень-очень быстро, она может обладать поистине страшной разрушительной силой. Целлюлоза – лишь одна из многих молекул, измененных человеком для получения взрывчатки. Некоторые из полученных химических соединений принесли человечеству огромную пользу, другие, напротив, причинили ему тяжкий урон. Но, как бы то ни было, эти соединения оказали на наш мир существенное влияние и изменили его лицо.

Структура взрывчатых веществ весьма разнообразна, однако в большинстве случаев молекулы этих веществ содержат нитрогруппы. Эта маленькая группа атомов, состоящая из одного атома азота и двух атомов кислорода (NO2), присоединенная в правильной позиции, изменила характер современной войны, определила судьбу целых народов, в буквальном смысле позволила человеку двигать горы.

Порох

Порох (черный порох) – первая взрывоопасная смесь, придуманная человеком, – уже в древности использовался в Китае, Индии и в Аравии. В древних китайских текстах упоминается “огненное зелье”. Состав пороха был впервые описан только в начале 1000-х годов, но и тогда точная пропорция нитратной соли, серы и углерода не была известна. Нитратная соль (селитра, “китайский снег”, “китайская соль”) представляет собой нитрат калия, химическая формула которого такова: KNO3. Углерод для пороха брали в виде древесного угля, что и объясняло черный цвет порошка.

Сначала порох использовали для салютов и фейерверков, однако к середине XI века военные научились пускать огненные стрелы. В 1067 году производство серы и селитры было взято китайским правительством под контроль.

Мы точно не знаем, когда порох прибыл в Европу. Францисканский монах Роджер Бэкон, родившийся в Англии и обучавшийся в университетах Оксфорда и Парижа, упомянул о порохе около 1260 года, за несколько лет до того, как Марко Поло вернулся в Венецию с рассказами о китайском “огненном зелье”. Бэкон был ученым и экспериментатором. Он занимался вопросами, которые сейчас мы отнесли бы к области астрономии, химии и физики. Он знал арабский язык, так что, возможно, читал и о порохе. Бэкон мог знать о разрушительной силе пороха, поскольку дал его описание в виде анаграммы, которую следовало расшифровать: семь частей селитры, пять – древесного угля, пять частей серы. Загадка оставалась нераскрытой на протяжении 650 лет, пока ее не разгадал один английский полковник[8].

Современные типы пороха несколько различаются по составу, однако все содержат значительно больше селитры, чем указал Бэкон. Химическую реакцию взрыва пороха можно записать следующим образом:

Из этой химической реакции можно узнать соотношение реагирующих веществ и образующихся продуктов. Буквы “тв” в скобках говорят о том, что данное вещество твердое, а буква “г” указывает на то, что это – газ. Из уравнения видно, что все реагирующие вещества твердые, но в результате реакции образуется восемь газообразных молекул: три молекулы двуокиси углерода, три – окиси углерода и две – азота. Именно горячие расширяющиеся газы, образующиеся при быстром горении пороха, толкают пушечное ядро или пулю. Образующиеся твердые карбонат и сульфид калия распыляются в виде мельчайших частичек и являются причиной появления плотного дыма, сопровождающего взрыв пороха.

Первое огнестрельное оружие, появившееся между 1300 и 1325 годом, представляло собой железную трубку, заваренную с одного конца. Ее наполняли порохом, который поджигали раскаленной проволокой. По мере развития оружия – фитильный, колесцовый, кремневый замки – возникала потребность в порохе с разной скоростью возгорания. Порох для пистолетов должен был гореть быстро, ружейный – медленнее, для пушек и ракет – еще медленнее. Смесь воды и спирта использовали для получения прессованного пороха, который можно было измельчить и разделить на тонкую, среднюю и грубую фракцию. Чем мельче порошок, тем быстрее горение. Так стало возможным получать порох для различных нужд. Вместо воды для изготовления пороха часто брали мочу рабочих пороховых заводов, поскольку считалось, что моча людей, пьющих много вина, способствует получению наиболее мощного пороха. Для получения пороха высшего качества также подходила моча священника, а лучше епископа.

Химия взрыва

Движущей силой взрыва является образование газов и их быстрое расширение под действием реакционного тепла. Газы занимают гораздо больший объем, чем аналогичное количество твердого вещества или жидкости. Разрушительное действие взрыва связано с ударной волной, вызванной очень быстрым изменением объема вещества при образовании газов. Ударная волна, образующаяся при взрыве пороха, распространяется со скоростью несколько сотен метров в секунду, однако в случае более мощной взрывчатки (такой как тринитротолуол или нитроглицерин) скорость ударной волны может достигать шести тысяч метров в секунду.

При любом взрыве выделяется большое количество тепла. Реакции, сопровождающиеся выделением тепла, называют экзотермическими. Большое количество тепла способствует активному расширению газов: чем выше температура, тем больше объем газовой смеси. Выделение тепла связано с различием между молекулами, расположенными в двух частях уравнения реакции. Образующиеся молекулы (находящиеся в правой части уравнения) обладают меньшей энергией, запасенной в их химических связях, чем исходные молекулы (находящиеся слева). Образующиеся вещества более устойчивы. В частности, в реакциях взрыва нитросоединений образуется чрезвычайно устойчивая молекула азота N2. Стабильность этой молекулы связана с прочностью тройной связи, соединяющей два атома азота.

Примечания

1

По-русски такие продукты чаще называют натуральными, а по-английски слова “натуральный” и “органический” в этом смысле действительно являются синонимами. – Здесь и далее – примечания переводчика.

2

Рутбир (корневое пиво) – популярный в Северной Америке газированный напиток из корней или коры сассафраса и некоторых других растений.

3

Тамаринд (индийский финик) – вечнозеленое тропическое растение из семейства бобовых со съедобными плодами.

4

Неведомая южная земля (лат. Terra Australis Incognita) – земля вокруг Южного полюса, которую с глубокой древности изображали на картах. Соответствует территории Антарктиды. В 1772 году Джеймс Кук пересек Южный полярный круг и почти достиг Антарктиды.

5

Северо-Западный проход – морской путь через Северный Ледовитый океан вдоль северного берега Северной Америки. Соединяет Атлантический и Тихий океаны. Впервые полностью пройден Амундсеном в 1903–1906 годах.

6

Высшая награда Королевского общества. Присуждается за “выдающиеся достижения в какой-либо области науки”. Названа в честь ее учредителя сэра Годфри Копли.

7

Константин Фальберг (1850–1910) – немецкий химик русского происхождения.

8

Речь идет о полковнике артиллерии Генри Уильяме Гайме. Написанная им книга о происхождении огнестрельного оружия вышла в свет в 1915 году. Однако далеко не все историки согласны с тем, что фрагмент текста Бэкона, который он расшифровал, описывал формулу пороха.

Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3, 4, 5