Современная электронная библиотека ModernLib.Net

Академия здоровья и удачи - Живая и мертвая вода против свободных радикалов и старения. Народная медицина, нетрадиционные методы

ModernLib.Net / Здоровье / Дина Ашбах / Живая и мертвая вода против свободных радикалов и старения. Народная медицина, нетрадиционные методы - Чтение (Ознакомительный отрывок) (стр. 2)
Автор: Дина Ашбах
Жанр: Здоровье
Серия: Академия здоровья и удачи

 

 


Свободные радикалы постоянно вырабатываются в организме в процессе клеточного обмена веществ (около 5 % свободных радикалов – это простые производные кислорода). При нормальном функционировании антиоксидантной системы их избыточное количество нейтрализуется или уничтожается ферментами (дисмутаза, каталаза, пероксидаза). Радикалы, которые «удирают» от упомянутых ферментов, «вылавливаются» в клетке витамином С, а вне клетки – витаминами А и Е.



Рис. 3. Свободные радикалы – это молекулярные частицы, имеющие непарный электрон на внешней электронной оболочке


Для обозначения свободных радикалов в России употребляется сокращение «АФК-активные формы кислорода», в Европе – ROS, reactive oxygen species (что означает в переводе то же самое). Название не совсем точное, так как свободными радикалами могут быть производные не только кислорода, но и азота и хлора: оксиды, супероксид, гидрооксид, окись азота, озонид, липидные радикалы, гипохлорит.

Все вышеперечисленные свободные радикалы являются вторичными. Вторичные радикалы оказывают разрушительное действие на клеточные структуры, стремясь отнять электроны у «полноценных» молекул, вследствие чего «пострадавшая» молекула сама становится свободным радикалом (третичным), но чаще всего слабым, не способным к разрушающему действию. Именно образование вторичных радикалов приводит к развитию патологических состояний и лежит в основе канцерогенеза, атеросклероза, хронических воспалений и нервных дегенеративных болезней.

В ряды свободных радикалов также затесались и не радикалы вовсе, а так называемые реактивные молекулы, среди них и наши очень давние знакомые – перекись водорода, например. Традиционно перекись водорода широко применяется в медицине в качестве наружного антисептического средства при первичной обработке ран. В России в последние годы появились работы, рекомендующие прием перекиси водорода внутрь в виде питья или даже внутривенно. Я понимаю положительные стороны такой терапии, хотя перекись водорода и сильный окислитель и свободный радикал – роль ее в организме отнюдь не однозначна. Вернее, не только отрицательна. Об этом свидетельствуют интересные исследования доктора У. Дугласа и практический опыт применения перекиси водорода доктора медицинских наук профессора И. П. Неумывакина. На первый взгляд положительный эффект при приеме перекиси водорода – это парадокс, но парадокс объяснимый. Перекись водорода – это активный первичный свободный радикал. Разрушительное же действие на клеточные стенки в основном оказывают вторичные радикалы, обладающие намного меньшей энергетической активностью. Бактерию или злокачественную клетку они убить не способны, а вот чтобы разрушить клеточную стенку или повредить ДНК, энергии им вполне хватает. Перекись водорода способна сделать и то и другое. Поэтому ее введение в малых количествах и непродолжительное время зачастую оказывает положительный эффект. Время это ограничивается неделями. Потом начинаются осложнения, особенно часто в процесс оказывается вовлечена печень. Кроме того, нельзя забывать, что перекись водорода имеет очень низкий pH, что отрицательно сказывается на желудке и при приеме внутрь может вызвать язву слизистой желудка.

Какие факторы вызывают избыточное образование свободных радикалов и нарушение окислительно-восстановительного равновесия в организме?

Избыточное образование свободных радикалов происходит под действием радиационного облучения, но сегодня в благополучных по уровню радиации районах эта причина отходит на второй план.

Другой важной причиной избыточного образования свободных радикалов является применение некоторых лекарственных средств. Подвергаясь всевозможным ферментативным превращениям в организме, молекулы некоторых лекарств теряют свои электроны и превращаются в свободные радикалы.

Одним из самых известных и широко антирекламируемых способов насытить свой организм свободными радикалами является курение: никотин и смолы поражают клетки организма, запуская целый ряд свободнорадикальных реакций.

Распространенными на сегодня причинами избыточного образования свободных радикалов считается плохое состояние окружающей среды. Десятки тысяч агрессивных химических молекул, загрязняющих ее, попадают в организм при дыхании и через кожу, и защититься от их проникновения каким-либо физическим способом невозможно.

Ультрафиолетовое излучение солнца тоже один из мощных источников свободных радикалов. Поэтому с летним солнцем, особенно у моря, надо обращаться очень осторожно и рекомендации врачей загорать с 9.00 до 12.00 и с 16.00 до 18.00 соблюдать обязательно. Сегодня встречается все больше женщин, которые чрезмерно увлекаются искусственным загаром в солярии. Обычно они выглядят старше своего возраста, хотя и уделяют своей внешности много внимания. Кстати, солярным загаром в основном увлекаются женщины из Европы. Их тут называют «курочками гриль». Ультрафиолетовое излучение в солярии не только покрывает кожу искусственным загаром, но буквально на глазах старит ее. Это излучение проникает в клетки кожи, при этом оно настолько мощное, что прямо-таки выбивает электроны из молекул, образующих клеточные мембраны и внутреннюю среду клетки. В результате свободнорадикального окисления молекулы, которые раньше были инертными, вступают в химические реакции. Например, молекулы коллагена, столкнувшись с радикалами кислорода, становятся настолько активными, что способны связываться, «сшиваться» друг с другом. Сшитый коллаген менее эластичен, чем обычный, а накопление таких коллагеновых димеров ведет к старению кожи, появлению морщин. Американские врачи-онкологи, проведя эксперимент с участием более чем 2260 человек, пришли к выводу, что солярии опасны для здоровья человека. Как сообщает агентство HPL, исследователи факультета общественного здоровья Университета Миннесоты и Онкологического центра Масоника заявили, что даже при самых минимальных сеансах искусственного загара, риск возникновения меланомы – быстрорастущего и очень опасного рака кожи – вырастает на 74 %.

Завсегдатаи соляриев, на счету которых более 50 часов или 100 сессий загара, сталкиваются с этой болезнью в среднем в три раза чаще своих «бледнолицых» коллег, никогда не получавших искусственный загар. «Мы обнаружили, что, вне зависимости от используемого солярия, риск развития меланомы сохраняется на высоком уровне; безопасного солярия не существует», – говорится в заявлении одного из руководителей исследовательской группы, Диэнн Лазович. Она подчеркнула, что вероятность появления болезни практически не связана с возрастом, в котором человек начинает ходить в солярий. «Мы также пришли к выводу – и это новые данные, – что риск развития меланомы связан с количеством времени, проводимого в солярии, а не с возрастом», – заметила Лазович.

Доказано мощное влияние стресса на активацию свободнорадикальных процессов. Гормоны стресса – адреналин и кортизол – при неблагоприятных жизненных ситуациях вырабатываются в повышенных количествах, нарушая питание и нормальное дыхание клетки, что моментально приводит к накоплению и распространению свободных радикалов во всем организме.

Главным же источником свободных радикалов на сегодняшний день являются наши продукты питания и напитки, которые мы пьем. Изменения условий жизни человека привели к тому, что факторов, повышающих концентрацию свободных радикалов в организме, становится все больше, а антиоксидантов в нашей пище – все меньше.

Многие из вышеперечисленных факторов нам неподвластны, что-то мы и не хотим менять, но многое мы все же в силах изменить. Во всяком случае, знать своих «врагов» в лицо мы просто обязаны.

Что повреждают свободные радикалы и к каким заболеваниям ведут эти повреждения

Реакции с участием свободных радикалов могут повреждать ДНК клетки, липиды или белки.


Повреждение ДНК свободными радикалами – причина рака и инфаркта

Излюбленной мишенью свободных радикалов является ДНК – кислота, обеспечивающая хранение и передачу генетической программы.


Рис. 4. Повреждение клетки свободными радикалами

(а — нормальная клетка, б – свободные радикалы атакуют клетку, в — поврежденная клетка)


ДНК – это индивидуальная сжатая, зашифрованная запись всех данных человеческого организма. В ней содержится полная информация и о той клетке, в которой молекула ДНК находится, и об устройстве и потребностях других клеток организма. Молекулы ДНК содержат информацию о вашем росте, весе, цвете глаз, о вашем давлении и болезнях, к которым вы предрасположены.

Молекула ДНК – объект для свободных радикалов весьма привлекательный. Подсчитано, что ДНК подвергается нападению свободных радикалов до 10 ООО раз в день.

Когда свободные радикалы атакуют ДНК, которая хранит всю информацию, позволяющую существовать нашему организму, происходит нарушение генетического кода клетки. Нарушение генетического кода в лучшем случае делает клетку бесполезной, не способной выполнять свои функции, в худшем – происходит накопление мутаций, обусловленных свободнорадикальным окислением, что ведет к перерождению клетки, превращению ее в онкологическую, злокачественную. Именно с повреждением структур ДНК свободными радикалами связывают в настоящее время развитие рака.


Окисление липидов свободными радикалами вызывает глаукому, катаракту, цирроз, ишемию

Любимыми мишенями свободных радикалов являются также легко окисляющиеся жиры и жироподобные вещества – липиды, и в первую очередь – ненасыщенные жирные кислоты, из которых состоит мембрана клетки. Такое окисление называется перекисным окислением липидов.

Перекисное окисление липидов приводит к драматическим последствиям в организме – дестабилизации и нарушению барьерных функций мембран, в результате чего развиваются катаракта, артрит, ишемия, нарушения микроциркуляции в тканях мозга.

Головной мозг особо чувствителен к гиперпродукции свободных радикалов и окислительному стрессу, так как в нем содержится множество ненасыщенных жирных кислот, таких как, например, лецитин. При их окислении в мозге повышается уровень липофусцина. Это один из пигментов изнашивания, избыток которого ускоряет процесс старения.

Научные исследования показали, что у пациентов с инфарктом миокарда концентрация окисленного холестерина (ХНП) явно выше, чем у здоровых людей. (Holvoet Р., Vanhaecke J., Janssens S., Van de WerfF. and Collen D. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery diseases. Circul 98:1487–1494, 1998.)

Окисление липидов играет большую роль в развитии хронических заболеваний печени (гепатита, цирроза).

Связанное с перекисным окислением липидов окисление белков и образование белковых агрегатов в хрусталике глаза заканчивается его помутнением, что ведет к развитию диабетической и старческой катаракты.


Свободные радикалы разрушают легкие

В отличие от других органов легкие непосредственно подвергаются действию кислорода – инициатора окисления, а также оксидантов, содержащихся в загрязненном воздухе (озона, диоксидов азота, серы и т. д.). В ткани легких в избытке содержатся ненасыщенные жирные кислоты, которые оказываются жертвами свободных радикалов. На легкие прямо воздействуют оксиданты, образующиеся при курении. Легкие подвергаются воздействию микроорганизмов, содержащихся в воздухе. Микроорганизмы активируют фагоцитирующие клетки, которые выделяют активные формы кислорода, запускающие процессы свободнорадикального окисления.


Поражение сердечно-сосудистой системы

В последних научных публикациях все больше отмечается роль свободных радикалов в повреждении эндотелиальных клеток и нарушении сосудистой стенки. Повреждение эндотелия стенки сосудов – прямой путь к атеросклерозу. Изменения молекул мембран клеток, вызванные атакой свободных радикалов, оказывают разрушительное воздействие на сердечно-сосудистую систему: компоненты крови становятся «липкими», стенки сосудов пропитываются липидами и холестерином, в результате возникают тромбоз, атеросклероз и другие заболевания.


Свободные радикалы и сахарный диабет

Экспериментально доказано, что свободные радикалы могут являться как первичными факторами, провоцирующими развитие сахарного диабета, так и вторичными факторами, усугубляющими течение диабета и вызывающими его осложнения.


Свободные радикалы и болезни суставов

Свободные радикалы способны разрушать вещества, входящие в состав синовиальной жидкости суставов. Эти вещества называются протеогликаны. Вместе с волокнами коллагена и эластина, протеогликаны образуют основное вещество соединительной ткани и синовиальной жидкости. Их повреждение приводит к развитию ревматоидного артрита и синусоидитов.

Почему мы умираем? «Лимит Хайфлика»

Каждая нормальная клетка организма может делиться только определенное количество раз – около 50, после чего она эту способность теряет и, когда отживает свой срок, – умирает. Поэтому умираем и мы. Предел деления клетки был открыт американским ученым Леонардом Хайфликом из института Вистар в Филадельфии (Leonard Hayflick und Paul S. Moorhead (Wistar-Institut fur Anatomie und Biologie in Philadelphia) в 1961 году, и с тех пор причина нашей смерти носит название «лимит Хайфлика» – Hayflick-Limit.

Лимит Хайфлика зависит от теломер. Теломеры – это концевые участки ДНК. При каждом делении клетки в нормальных тканях теломеры укорачиваются на какие-то доли микрон. После определенного количества таких делений теломеры уменьшаются до строго определенной длины, при которой дальнейшее деление клетки становится невозможным. Клетка умирает.


Рис. 5. Хромосомы. На концах светлые участки – теломеры


Старость имеет прямую зависимость от длины теломер. Ученые нашли этому множество доказательств. Так, например, у больных синдромом Хатчинсона-Гилфорда (детская прогерия; переводится как pro — раньше, gerontos — старец) длина теломер значительно короче, чем у нормальных людей. Синдром Хатчинсона-Гилфорда – это врожденное заболевание быстрого старения, при котором клетки больных имеют укороченные теломеры и резко сниженное по сравнению с нормой число делений. Наиболее трагично протекает прогерия детей. Ребятишки с этим страшным диагнозом стремительно стареют. В среднем они едва дотягивают до 12 лет и чаще всего умирают в этом юном возрасте от старческих инфарктов. К этому времени они и выглядят как глубокие старики – лысеют, теряют зубы, тяжело и скованно двигаются, страдают от атеросклероза и фиброза миокарда, практически полностью лишаются подкожного жирового слоя. Болезнь эта настолько редка, что все ее жертвы известны – предположительно, их насчитывается около ста во всем мире. Прогерия поражает годовалых младенцев независимо от пола, расы или социального положения. Начинается она внезапно с появления крупных пигментных пятен на животе. И вскоре детей одолевают старческие хвори: у них развиваются болезни сердца, сосудов, диабет, выпадают волосы и зубы. Кости делаются ломкими, кожа – морщинистой, а тела – сгорбленными. Дети с детской прогерией плохо растут (редко вырастают выше 1 метра). Самое удивительное заключается в том, что почти все они становятся похожими друг на друга, как близнецы, будто их кто-то специально клонировал или вывел иную расу людей, которые живут в ускоренном времени. Несколько лет назад даже был случай, когда труп одного ребенка из Америки, страдавшего прогерией, уфологи хотели выдать за останки инопланетянина.

Самый старый ребенок в мире с детской прогерией – мальчик по имени Дэнни. Он дожил до 20 лет, но выглядит на все 70. Дэнни перенес кровоизлияние в мозг, страдает от артрита, все его пальцы скрючены. Рост этого 20-летнего человека всего 120 сантиметров. Передвигается он в инвалидной коляске. У Дэнни уже выпали зубы, нет волос.

Выжил Дэнни благодаря исключительной силе воли и любви приемных родителей, с которыми маленький старичок живет в северной части Лондона.

Другой характерный пример – прогерия взрослых, или синдром Вернера. Клетки больных синдромом Вернера обычно перестают делиться в культуре после 10–20 удвоений. Страдающие этим заболеванием люди развиваются с нормальной скоростью до 17–18 лет, а потом начинают стремительно стареть. Лишь немногие дотягивают до пятидесяти. Клинически заболевание начинает проявляться в период полового созревания. Отмечается замедленный рост, позже у больного седеют и выпадают волосы, развивается катараьсга, постепенно истончается кожа и атрофируется подкожная клетчатка на лице и конечностях. У больных синдромом Вернера быстро развивается широкий спектр всевозможных патологий, обычно связываемых с возрастными изменениями, – атеросклероз, диабет, катаракта, различные типы доброкачественных и злокачественных опухолей.


Рис. 6. Так выглядят дети, больные прогерией


Синдром раннего старения прекрасно описан в фантастическом романе братьев Стругацких «Жук в муравейнике», в главах об операции «Мертвый мир» на планете Надежда: «…В шестнадцать лет он выглядел тридцатипятилетним, а в девятнадцать, как правило, умирал от старости. Разумеется, такая цивилизация не имела никакой исторической перспективы…»

Самое интересное, что, когда авторы придумывали историю гибели человечества на планете Надежда из-за непонятной болезни, проявлявшейся в ускоренном старении организма, они и не подозревали о том, что такое заболевание действительно существует! В то время не были известны причины болезни, в Советском Союзе никто и не слышал о теломерах, и никого в мире не занимали проблемы экологии и загрязнения окружающей среды. Поэтому только гениальностью и предвидением можно объяснить точное, медицинское описание пандемии «взбесившихся генов» Стругацкими и найденное ими объяснение причины заболевания (экологическая катастрофа, загрязнение окружающей среды).

Вернемся назад, к нашим теломерам. Вот еще один яркий пример зависимости возраста от длины теломер – история знаменитой клонированной овечки Долли. Вскоре после ее рождения оказалось, что она подвержена болезням, которые совершенно нетипичны для новорожденной, а появляются намного позже. Исследования ДНК-хромосом Долли подтвердили догадки ученых: длина ее теломер соответствовала возрасту шестилетнего животного и была равна 19 единицам, а не нормальным для ее возраста 24 единицам (напомню, что для клонирования было взято клеточное ядро шестилетнего животного, которым и заменили ядро в яйцеклетке «полусуррогатной матери» Долли). Таким образом, хотя Долли и находилась в младенческом возрасте от рождения, генетически ей было уже шесть лет. Овечка Долли прожила всего 6 лет (обычно овцы живут 12 лет) и умерла молодой.

Как свободные радикалы укорачивают теломеры, а с ними и нашу жизнь

Теория зависимости старения организма от свободно-радикального процесса была впервые сформулирована Дэнхеном Харманом. Он утверждал, что именно свободные радикалы играют в процессе старения ключевую роль, и приводил тому убедительные доказательства.

В это время и позже было проведено множество очень интересных экспериментов, доказывающих, что укорочение теломер неуклонно ведет к старению организма, а причиной укорочения теломер являются свободные радикалы. Так, например, Packer и Fuehr (1977) доказали, что в мышечных волокнах человека, находящихся в условиях пониженного потребления кислорода, процессы укорочения длины теломер проходят намного медленнее. И наоборот, как показали исследования (Zglinicki et al., 1995), клетки, находящиеся в условиях интенсивного потребления кислорода, стареют быстрее. Тот же, но еще более интенсивный процесс старения клеток наблюдали Chen и Ames (1994) у клеток, находящихся в условиях повышенного потребления перекиси водорода.

В организме существуют специальные ферменты, главной функцией которых является уничтожение свободных радикалов. Их называют ферментными антиоксидантами. К ним относятся каталаза, а также фермент с труднопроизносимым названием супероксиддисмутаза, сокращенно СОД. Птицы-падальщики, такие как вороны и грифы, питаются продуктами, вызывающими в их организме повышенное образование радикалов кислорода. У них же многократно повышена активность антиокислительной защиты, и в частности фермента СОД. Усиленная система защитных ферментов, которую они приобрели в ходе эволюции, – одна из главных причин их долгожительства по сравнению с «нормально» питающимися видами и «нормально» функционирующей антиокислительной ферментной системой.

Генетикам удалось в эксперименте усилить продукцию каталазы и супероксиддисмутазы, ферментов, дезактивирующих свободные радикалы. При этом наблюдалось значительное (до трехкратного) продление жизни у подопытных животных. Притягательным в исследовательских работах по усилению активности ферментных (своих родных) антиоксидантов является то, что, по крайней мере на первый взгляд, генетическое усиление нормальных «ремонтных» и «защитных» генов не предвещает того множества осложнений и побочных эффектов, с которыми приходится сталкиваться при попытках продлить жизнь другими методами, например с помощью гормонов.

Доказано, что в процессе старения число свободных радикалов растет (назвать их точное количество трудно, поскольку время их жизни составляет тысячную долю секунды!). С возрастом уменьшается число «ловушек», нейтрализующих свободные радикалы, и нарушается деятельность обезвреживающих их ферментов.

Глава 3 Антиоксиданты

Для борьбы со свободными радикалами наш организм использует антиоксиданты – вещества, способные ловить и нейтрализовать свободные радикалы. Об антиоксидантах сегодня знают все. О них пишут не только в научных и научно-популярных журналах, но и в газетах, говорят по радио и телевидению.

Антиоксиданты могут вырабатываться самим организмом, и тогда они называются ферментными, или поступать в организм извне – вместе с пищей, и тогда они называются неферментными.

Антиоксиданты нашего организма – это ферменты с довольно труднопроизносимыми названиями: каталаза, супероксиддисмутаза, глутатион пероксидаза. Это, так сказать, ремонтные силы организма, они ускоряют реакции нейтрализации свободных радикалов в клетке, не давая им возможности нанести клетке повреждения и тем самым не давая болезни развиться.

Антиоксиданты из природы – это в основном витамины С и Е, флавоноиды, каротины. Антиоксиданты природного происхождения действуют как ловушки для свободных радикалов. Отдавая электрон свободному радикалу, антиоксиданты останавливают цепную реакцию повреждающего окисления и помогают организму расти, вырабатывать энергию, бороться с инфекцией, предотвращать болезни и обеззараживать химические и загрязняющие вещества.

Ферментные антиоксиданты

Ферментные антиоксиданты – это ферменты, которые вырабатываются самим организмом. Действие ферментов абсолютно точно зашифровано в их названии – ферменты или энзимы (от лат. fermentum, англ. ensimo – закваска и zyme — дрожжи) – закваска, дрожжи, т. е. вещества, играющие роль катализаторов.

Ферменты ускоряют химические реакции во многие тысячи или даже десятки тысяч раз. Они присоединяются к участникам химических реакций, отдают им свою энергию, ускоряют эти реакции, а потом снова выходят из реакции, химически совершенно не изменяясь.

Наиболее известными ферментами-антиоксидантами являются белки-катализаторы – СОД, каталаза, пероксидаза. Они катализируют (ускоряют) реакции, в результате которых токсичные свободные радикалы и перекиси превращаются в безвредные соединения.

Неферментные антиоксиданты

<p>Витамины</p>

Самыми известными из неферментных антиоксидантов являются витамины С, Е, В, А. Аскорбиновая кислота, или витамин С, является наиболее известным водорастворимым антиоксидантом. Аскорбиновая кислота уменьшает концентрацию «плохих» холестеринов и увеличивает концентрацию «хороших», снимает артериальные спазмы и аритмии, предотвращает образование тромбов.

Антиоксидантом аскорбиновая кислота является потому, что она активный восстановитель, обладающий способностью «ловить» свободные радикалы. Наш организм не вырабатывает витамин С, не накапливает его и поэтому всецело зависит от его поступления извне.

<p>Флавоноиды (катехины, кверцетин)</p>

Флавоноиды в последнее время все чаще упоминаются в связи с «французским парадоксом».

Так называют аномально низкий уровень сердечно-сосудистых заболеваний во Франции по сравнению с ее соседями – Англией и Германией. Хотя большинство французов придерживаются довольно своеобразной «диеты», в которой почетные места занимают хороший жирный кусок мяса, гусиный паштет и другие продукты с высоким содержанием холестерина, и едят в два раза больше сливочного масла и в три раза больше свиного сала, чем американцы, во Франции удивительно низкий уровень сердечно-сосудистых заболеваний.

Причину этого феномена ученые нашли в вине. Причем в красном. Как выяснилось, красное вино содержит в большом количестве флавоноиды, которые значительно снижают вероятность образования тромбов, увеличивают содержание в крови «хорошего» холестерина – липопротеинов высокой плотности, – снижают содержание в крови триглицеридов, а также «плохого» холестерина – липопротеинов низкой плотности.

В белых винах и крепких алкогольных напитках флавоноидов почти нет. Они содержатся в основном в кожице, мякоти и косточках красного винограда. Причем именно во Франции имеются специальные «флавоноидные» районы, в которых производят вино, в каком особенно много этих врагов свободных радикалов. Флавоноиды являются активными антиоксидантами, которые нейтрализуют свободные радикалы, отдавая им свои электроны.

Катехины — органические вещества из группы флавоноидов. Антиоксидантные свойства многих растительных продуктов в значительной мере обусловлены именно содержанием катехинов. Особенно эффективно действуют катехины против свободных радикалов – пероксинитрита и радикала гидроксила, которые обусловливают повышенное кровяное давление и в настоящее время считаются одной из главных причин гипертонии.

Кверцетин также относится к группе флавоноидов и витаминам группы Р. Кверцетин применяют для профилактики и лечения нарушений мозгового кровообращения, заболеваний сердца и сосудов. Этот первоклассный чистильщик сосудов улучшает кровоток, тормозит процесс старения клеток роговицы глаза. Кверцетин препятствует развитию атеросклероза и гипертонии, обладает антиканцерогенными свойствами.

Антиоксипданты – защита от рака и лучевого облучения

Развитие лучевой болезни у жертв атомной бомбардировки Хиросимы и Нагасаки проходило по-разному. У некоторых болезнь вначале себя никак не проявляла, наблюдался период, так сказать, мнимого благополучия, а затем вдруг наступало быстрое и необратимое разрушение организма. Это напоминало ход разветвленной цепной реакции, заканчивающейся взрывом. В 1954 году профессор биологического факультета МГУ Борис Николаевич Тарусов опубликовал книгу «Основы биологического действия радиоактивных излучений», в которой высказал гипотезу, что развитие лучевой болезни связано с цепной реакцией окисления жиров клеточных мембран и что продукты этой реакции токсичны для клетки[1]. Когда реакции окисления приобретают цепной характер и каждый свободный радикал вызывает образование новых и новых, организм не может справиться с этой лавиной патологических разрушений клеток. Наступает смерть.

Свободные радикалы участвуют в развитии не только лучевой болезни, но и многих других заболеваний, в частности рака. А это означает, что с помощью антиоксидантов можно тормозить свободнорадикальные реакции и тем самым лечить болезнь или хотя бы замедлять ее ход.

Глава 4 Живая вода – сильнейший антиоксидант нашего времени

В последнее время в Европе, Америке и Японии появился ряд сенсационных статей об удивительных свойствах «reduced water», что в переводе на русский звучит как «редуцированная вода». Авторитетные ученые и врачи утверждают, что редуцированная вода является сильнейшим антиоксидантом, стимулирует иммунную систему, очищает организм. Ее рекомендуют для профилактики онкологических заболеваний. И не только для профилактики: последние исследования ученых Японии и Америки выявили эффективность применения редуцированной воды в лечении рака и рассасывании метастазов.

Вода, которую ученые на Западе, в Америке и Японии называют «reduced water», хорошо известна и в России. Уже лет 30 наши люди знают ее под названием «живая и мертвая вода». К сожалению, у нас в стране этим феноменом природы интересуются прежде всего больные, услышавшие о чудодейственном средстве от знакомых. Медики о научных разработках в этой области знают немного, так как они ведутся в основном за рубежом. Обидно, ведь начиналось все у нас, в бывшем Советском Союзе, а именно в одной из республик бывшего Советского Союза – Узбекистане.

Как были открыты лечебные свойства живой и мертвой воды

Скорее всего, первый электролизер сконструировала природа: удивительные свойства различных лечебных вод были известны уже в глубокой древности. Среди них несомненно были и полученные в результате электролиза и пьезоэлектрического эффекта в естественной электролизной камере Земли. Возникновение такого геодезического электролизера возможно при наличии в земле минеральных пород, являющихся прообразами анода и катода и обладающих свойствами легко отдавать или получать электроны.


  • Страницы:
    1, 2, 3