Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ТО)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ТО) - Чтение (стр. 30)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  К. Н. Попов.

Тормасов Александр Петрович

Торма'совАлександр Петрович [1752 - 13(25).11.1819, Москва], граф (1816), русский военачальник, генерал от кавалерии (1801). На военной службе с 1772, участвовал в русско-турецкой войне 1787-91 и подавлении Польского восстания 1794 . В 1803-08 киевский и рижский генерал-губернатор. В 1808-11 главнокомандующий в Грузии и на Кавказской линии, руководил боевыми действиями в русско-турецкой войне 1806-12 и русско-иранской войне 1804-13. С 1811 член Государственного совета. В начале Отечественной войны 1812 командовал 3-й армией, которая нанесла поражение частям саксонского корпуса генерала Ж. Ренье у Кобрина [15(27) июля], а 31 июля (12 августа) отразила при Городечне атаки превосходящих сил корпусов Ренье и К. Шварценберга, не допустив их активных действий на киевском направлении. В сентябре 1812, после соединения 3-й армии с Дунайской армией генерала П. В. Чичагова, Т. был отозван в штаб действующей русской армии, где руководил внутренним управлением и организацией войск. Весной 1813 во время болезни М. И. Кутузова - исполняющий обязанности главнокомандующего. С 1814 главнокомандующий в Москве, много сделал для её восстановления после пожара 1812.

Торможение (биол.)

Торможе'ние(биол.), активный нервный процесс, приводящий к угнетению или предупреждению возбуждения . В зависимости от локализации тормозного процесса различают периферическое Т., осуществляемое непосредственно в синапсах на мышечных и железистых элементах, и центральное, реализуемое в пределах центральной нервной системы. Большинство изученных видов Т. основано на взаимодействии медиатора , секретируемого и выделяемого из пресинаптических элементов (обычно нервных окончаний), со специфическими молекулами постсинаптической мембраны (см. Биологические мембраны ). При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К +или Cl -, вызывающее снижение её входного электрического сопротивления и во многих случаях также генерацию гиперполяризационного тормозящего потенциала постсинаптического . Это приводит к снижению возбудимости мембраны, длящемуся в разных случаях от единиц до десятков мсек, и значительному уменьшению вероятности её охвата распространяющимся возбуждением.

  Т. всегда развивается вторично как следствие возбуждения соответствующих тормозящих нейронов . Направленность постсинаптического эффекта (возбуждение или Т.) определяется изменением ионной проницаемости постсинаптической мембраны при взаимодействии медиаторов с рецепторами. Поэтому некоторые медиаторы способны опосредовать как возбуждение, так и Т. Например, ацетилхолин вызывает Т. волокон миокарда и возбуждение скелетных мышц позвоночных. В нервных ганглиях моллюсков найдены ацетилхолинергические нейроны, синапсы которых на одних клетках вызывают возбуждение, а на др. - Т. По мнению ряда исследователей, существуют специфические медиаторы Т., например глицин в спинном и продолговатом мозге, а также гамма-аминомасляная кислота в центрах головного мозга и периферических синапсах ракообразных. Обнаружены нейроны со специфической функцией Т. (клетки Реншоу спинного мозга, Пуркине клетки мозжечка, корзинчатые клетки гиппокампа, входящего в состав лимбической системы , и др.). Образуемые ими синапсы имеют особенности ультраструктуры, позволяющие отличать их от возбуждающих синапсов. У некоторых типов нейронов тормозные синапсы локализуются на телах и близких к ним участках дендритов , что вследствие соседства с триггерной зоной генерации распространяющегося возбуждения обеспечивает высокую эффективность Т. (см. Триггерные механизмы ). Из этого правила есть исключения (например, тормозные синапсы звездчатых нейронов на клетках Пуркине мозжечка расположены на удалённых участках дендритов).

  Функциональная значимость постсинаптического Т. разнообразна. Афферентное (прямое) Т. служит для ослабления возбуждения функционально антагонистических элементов и тем самым способствует координированному, пространственно направленному протеканию возбуждения в цепях нейронов. В спинном мозге, в частности, такое Т. является основой так называемого реципрокного (взаимообратного) Т. мотонейронов, иннервирующих мышцы-антагонисты (см. Реципрокная иннервация ). Возвратное (коллатеральное) Т., осуществляемое через систему возвратных коллатералей (ветвей) аксонов эфферентных нейронов и специализированных вставочных тормозных нейронов, стабилизирует собственный уровень возбуждения определённого структурно-функционального объединения (блока) нейронов и ограничивает распространение возбуждения на соседние популяции нейронов.

  Менее изучено так называемое пресинаптическое Т., выражающееся в угнетении возбуждения в нервных терминалиях, то есть на входе постсинаптического клеточного элемента. Это Т. имеет необычайно большую длительность (сотни мсек) и совпадает во времени с проявлением деполяризации приходящих афферентов. Предполагают, что на деполяризации основано пресинаптическое Т., а его морфологическим субстратом являются аксо-аксональные синапсы, происхождение пресинаптических элементов которых неизвестно. Имеются веские аргументы в пользу роли гамма-аминомасляной кислоты как медиатора пресинаптического Т., по крайней мере в нервно-мышечных соединениях ракообразных и в спинном мозге позвоночных. По-видимому, сеченовское торможение у лягушки осуществляется по механизму преспнаптического Т. Известно также пессимальное, или вторичное, Т., выражающееся в блокировании возбуждения вследствие его чрезмерности (см. Парабиоз ). Этот феномен, описанный впервые Н. Е. Введенским , трудно выявить при физиологических условиях эксперимента, но можно демонстрировать при аномальных (в частности, судорожных) состояниях.

  Изучая условнорефлекторную деятельность, И. П. Павлов выделил внешнее торможение , заключающееся в Т. какой-либо текущей деятельности ориентировочным рефлексом на посторонний раздражитель, и внутреннее торможение , наблюдаемое при угасании условных рефлексов , их дифференцировании, при образовании запаздывающих и следовых условных рефлексов. В особый вид Павлов выделял охранительное Т., предохраняющее нервные центры от чрезмерно сильного раздражения или переутомления. При нарушении взаимоотношений между Т. и возбуждением возникают различные нервные и психических заболевания. См. также Биоэлектрические потенциалы , Высшая нервная деятельность , Гипноз .

  Лит.:Экклс Дж.. Физиология синапсов, пер. с англ., М., 1966; Анохин П. К., Биология и нейрофизиология условного рефлекса, М., 1968; Костюк П. Г., Торможение, в кн.: Общая и частная физиология нервной системы, Л., 1969; Экклс Дж., Тормозные пути центральной нервной системы, пер. с англ., М., 1971.

  Л. С. Батуев, Д. Н. Ленков.

Торможение противовключением

Торможе'ние противовключе'нием, торможение электрическое , осуществляемое таким переключением питания обмоток исполнительного электродвигателя, при котором направление тягового усилия изменяется на противоположное. Достигается либо сменой полярности напряжения, подводимого к обмотке вращающегося якоря (ротора) двигателя, либо переключением двух фаз обмотки статора. Величина тормозящего момента регулируется изменением сопротивления в цепи якоря (ротора). При Т. п. сразу же после остановки электропривода он должен быть отключен от сети во избежание изменения направления движения исполнительного двигателя на противоположное. Т. п. применяется в электроприводах грузоподъёмных и транспортных машин, а также прокатных станов и рольгангов.

  Лит. см. при ст. Торможение электрическое .

Торможение электрическое

Торможе'ние электри'ческое, уменьшение скорости или полное прекращение поступательного или вращательного движения машин, транспортных средств, движущихся деталей приборов, осуществляемое посредством преобразования их кинетической (потенциальной) энергии в электрическую либо путём такого переключения питания обмоток исполнительного электродвигателя, при котором направление тягового усилия изменяется на противоположное. В процессе Т. э. направление вращения электродвигателя сохраняется таким же, как и в рабочем режиме, но действующий на его якорь (ротор) электрический вращающий момент имеет противоположное направление. Различают реостатное торможение , рекуперативное торможение , торможение противовключением , а также смешанное (рекуперативно-реостатное).

  Т. э. нашло применение на транспорте (для замедления движения или полной остановки электровозов, трамваев, троллейбусов и т.п.), а также в подъёмно-транспортных машинах , в которых используются тяговые электродвигатели . Применение Т. э. уменьшает износ тормозных колодок механических тормозов и в ряде случаев (например, на горных участках магистральных железных дорог) обеспечивает существенную экономию электроэнергии.

  Лит.:Трахтман Л. М., Электрическое торможение электроподвпжного состава, М., 1965; Чиликин М. Г., Общий курс электропривода, 5 изд., М., 1971.

  Г. М. Вотчицев.

Тормоз

То'рмоз(от греч. tо'rmos - отверстие для вставки гвоздя, задерживающего вращение колеса), комплекс устройств для снижения скорости движения или для осуществления полной остановки машины или механизма, а в подъёмно-транспортных машинах также для удержания груза в подвешенном состоянии.

  Т. подразделяются по принципу действия на механические (фрикционные), гидравлические и электрические (электромагнитные, индукционные и т.д.). По конструктивному выполнению рабочих элементов различают Т. колодочные, ленточные, дисковые, конические и др.

  Наибольшее применение в машинах и механизмах (подъёмно-транспортные машины, механизмы станков, железнодорожные поезда) находят колодочные Т. с внешними колодками, расположенными на качающихся рычагах, обычно диаметрально по отношению к тормозному барабану. В автомобилях применяются колодочные Т. с внутренними колодками ( рис. 1 ).

  Конструктивные разновидности колодочных Т. ( рис . 2 ) определяются главным образом рычажной системой и типом привода. В механизмах передвижения некоторых транспортных машин, железнодорожных вагонов и локомотивов применяются колодочные рельсовые Т., действие которых основано на прижатии тормозных колодок к рельсам. Эти Т. особенно эффективны при экстренном торможении.

  В ленточном Т. вместо колодок используется гибкая лента, охватывающая барабан, что позволяет повысить момент трения, возрастающий с увеличением угла обхвата. Ленточные Т. находят применение в механизмах подъёма, передвижения и поворота подъёмно-транспортных машин. К недостаткам ленточных Т. относятся значительное усилие, изгибающее вал тормозного барабана, неравномерность распределения давления и износа фрикционного материала по дуге обхвата, большее по сравнению с др. Т. влияние изменения коэффициента трения на тормозной момент.

  В дисковых Т. момент трения создаётся в результате прижатия дисков, вращающихся вместе с валом механизма, к закрепленным дискам. Дисковыми Т. можно получать высокие значения момента трения, возрастающего с увеличением числа дисков. Кроме того, эти Т. отличаются компактностью, возможностью относительно лёгкой защиты их от окружающей среды (вплоть до герметизации). Недостатки - плохой отвод тепла от поверхностей трения, особенно в многодисковых Т. Дисковые Т. находят применение в различных механизмах транспортных машин, металлообрабатывающих станков.

  Перспективны дисково-колодочные Т., в которых трение создаётся между торцевыми поверхностями диска и прижимаемыми к диску с обоих торцов фрикционными колодками, перекрывающими только небольшую часть поверхности трения диска, что обеспечивает улучшение теплоотвода и повышение срока службы колодок. Существенное достоинство дисково-колодочного Т. - относительно малый момент инерции диска (по сравнению с моментом инерции тормозного барабана колодочного или ленточного Т.), что уменьшает нагрузку на двигатель при пуске механизма и кинетическую энергию, переходящую в теплоту при торможении. Такие Т. особенно эффективны в системах торможения тяжёлых транспортных машин, например грузовых автомобилей.

  В механизмах подъёмно-транспортных машин применяются грузоупорные Т., в которых тормозной момент создаётся под действием транспортируемого груза. Эти Т. применяются в качестве спускных Т. в подъёмных и стреловых лебёдках , а также как аварийные Т. в эскалаторах . В грузоподъёмных машинах с ручным приводом используют так называемые безопасные рукоятки (грузоупорные Т. с храповым механизмом), предотвращающие вращение (раскручивание) приводных рукояток под действием поднимаемого груза. По условиям безопасности работ в некоторых машинах и механизмах необходимо применение так называемых скоростных Т. (ограничителей скорости), которые не допускают увеличения скорости движения механизма сверх заданной, но остановить механизм и груз не могут. Их используют для регулирования скорости спуска тяжёлых грузов в приводах различных подъёмников , конвейеров , в испытательных установках и т.п. Различают несколько типов скоростных Т.: центробежные, динамические (гидравлические), вихревые (индукционные), порошковые. Например, в центробежном Т. при увеличении скорости движения сверх заданной возрастает центробежная сила вращающихся элементов Т., создающая давление на неподвижную часть тормозного устройства, в результате чего возникает необходимый тормозной момент.

  Момент трения, создаваемый Т., зависит от усилия, с которым фрикционные элементы Т. (колодки, лента, диски) прижимаются к поверхности трения элемента, связанного с механизмом (барабан, диск), и от свойств материалов трущейся пары. Для увеличения усилия прижатия в некоторых Т. используется эффект самоторможения, при котором сила трения, возникающая между трущимися поверхностями, способствует дополнительному сжатию этих поверхностей. Для обеспечения малых габаритных размеров Т. и меньшей мощности его привода с одновременным получением больших тормозных моментов применяют фрикционные материалы, которые приклеивают или приклёпывают к рабочим элементам Т.

  Для управления Т. служит привод, который может быть механическим, гидравлическим, пневматическим, вакуумным, электромагнитным, электрогидравлическим, электромеханическим и т.п. При механическом управлении Т. (обычно ручные Т. автомобилей и др. транспортных машин) усилие управления передаётся от рычага или педали управления к рабочим элементам Т. через систему тяг, рычагов, шарниров. При значительном удалении Т. от места управления механический привод становится громоздким. Более совершенны гидравлическая система управления Т. (например, в легковых автомобилях и подъёмных кранах) и пневматическая система (например, в грузовых автомобилях, автобусах, трамваях, железнодорожных поездах, шасси самолётов). Пневматические и электропневматические системы привода Т. ( рис. 3 ), в которых основными силовыми органами являются тормозные силовые цилиндры, связанные воздушной магистралью с компрессором через кран машиниста , а системой рычагов с фрикционными колодками, применяются на железнодорожном подвижном составе (см. Казанцева тормоз , Матросова тормоз ). При электрическом приводе Т. используют специальные тормозные электромагниты постоянного или переменного тока, воздействующие на рычажную систему Т., а также электрогидравлические или электромеханические толкатели , которые представляют собой устройства, состоящие из преобразователя энергии с самостоятельным двигателем и собственно толкателя со штоком, движущимся поступательно и соединённым с рычажной системой Т. Толкатели Т. нечувствительны к перегрузкам (позволяют ограничить ход штока в обоих направлениях без опасности перегрузки двигателя и элементов толкателя), дают возможность работать с большой частотой включений, благодаря чему их можно использовать в системах регулирования скорости движения рабочих органов машины. В некоторых конструкциях Т. находят применение приводы от короткозамкнутого серводвигателя, соединённого с рычажной системой Т. через зубчатую или кривошипную передачи.

  Кроме торможения, осуществляемого описанными Т., применяют торможение электрическое и аэродинамическое (например, с помощью тормозных парашютов и элементов механизации крыла самолёта), а также торможение, производимое в результате изменения режима работы двигателя машины (например, тормоз-замедлитель в автомобиле).

  Лит.:Александров М. П., Тормозные устройства в машиностроении, М., 1965; Мащенко А. Ф., Розанов В. Г., Тормозные системы автотранспортных средств, М., 1972; Борисов С. М., Фрикционные муфты и тормоза строительных и дорожных машин, М., 1973; Крылов В. И., Клыков Е. В., Ясенцев В. Ф., Автоматические тормоза, М., 1973; Казаринов В. М., Иноземцев В. Г., Ясенцев В. Ф., Теоретические основы проектирования и эксплуатации автотормозов, М., 1968; Гавриленко Б. А., Минин В. А., Словников Л. С., Гидравлические тормоза, М., 1961; Иогансон Р. А., Индукторные тормоза, М. - Л., 1966.

  М. П. Александров, Ю. К. Есеновский-Лашков, В. Г. Иноземцев, Е. В. Клыков. Под общей редакцией М. П. Александрова.

Рис. 1. Схема колодочного тормоза: 1 - барабан; 2 и 4 - колодки; 3 - шарнир; 5 - стяжная пружина.

Рис. 2. Трансмиссионный тормоз автомобиля: 1 - тормозная накладка; 2 - тормозной барабан; 3 - стяжная пружина; 4 - фланец вторичного вала коробки передач; 5 - колодка; 6 - разжимной кулак; 7 - тормозной щит; 8 - рычаг привода ручного тормоза; 9 - коробка передач.

Рис. 3. Схема тормозной системы железнодорожного поезда: 1 - воздушный компрессор; 2 - главный воздушный резервуар; 3 - воздухопровод; 4 - кран машиниста; 5 - воздушная магистраль; 6 - тормозная колодка; 7 - обратный клапан; 8 - воздухораспределитель; 9 - запасной воздушный резервуар; 10 - тормозной цилиндр; А, В, С - основные положения рукоятки крана машиниста (отпуск тормозов, нейтральное положение, торможение).

Тормоз-замедлитель

То'рмоз-замедли'тель, служит для замедления движения автомобиля, главным образом на затяжных спусках. Т.-з. повышает безопасность движения и облегчает работу колёсных тормозов . Действие Т.-з. основано на переключении двигателя ( дизеля ) в режим работы компрессора . При этом вместо топлива в цилиндры двигателя поступает только воздух. В выпускном трубопроводе прикрывают специальную заслонку, отчего создаётся противодавление в выпускной системе двигателя, то есть повышается сопротивление выходу воздуха, выталкиваемого из цилиндров. Работая в таком режиме, двигатель не только не развивает мощность, но сам поглощает часть энергии движения автомобиля, затрачивая её на сжатие воздуха в цилиндрах. Таким образом, двигатель, связанный через трансмиссию с ведущими колёсами, замедляет их вращение. На некоторых автомобилях особо большой грузоподъёмности с гидродинамической передачей в трансмиссии используют Т.-з. роторного типа. Ротор с криволинейными лопатками установлен на ведущем валу коробки передач. При его включении в корпус подаётся масло, создающее сопротивление вращению ротора, а следовательно, и ведущего вала коробки передач, в результате чего замедляется движение автомобиля.

  Лит. см. при ст. Тормоз .

  А. А. Сабинин.

Тормозное излучение

Тормозно'е излуче'ние, электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие Т. и. включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (в ускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин синхротронное излучение .

  Согласно классическом электродинамике, которая достаточно хорошо описывает основные закономерности Т. и., его интенсивность пропорциональна квадрату ускорения заряженной частицы (см. Излучение ). Так как ускорение обратно пропорционально массе mчастицы, то в одном и том же поле Т. и. легчайшей заряженной частицы - электрона будет, например, в миллионы раз мощнее излучения протона. Поэтому чаще всего наблюдается и практически используется Т. и., возникающее при рассеянии электронов на электростатическом поле атомных ядер и электронов; такова, в частности, природа рентгеновских лучей в рентгеновских трубках и гамма-излучения , испускаемого быстрыми электронами при прохождении через вещество.

  Спектр фотонов Т. и. непрерывен и обрывается при максимально возможной энергии, равной начальной энергии электрона. Интенсивность Т. и. пропорциональна квадрату атомного номера Z ядра, в поле которого тормозится электрон (по закону Кулона сила fвзаимодействия электрона с ядром пропорциональна заряду ядра Ze, где е- элементарный заряд, а ускорение определяется вторым законом Ньютона: а = f/m). При движении в веществе электрон с энергией выше некоторой критической энергии E 0тормозится преимущественно за счёт Т. и. (при меньших энергиях преобладают потери на возбуждение и ионизацию атомов). Например, для свинца E 0» 10 Мэв, для воздуха - 200 Мэв.

  Рассеяние электрона в электрическом поле атомного ядра и атомных электронов является чисто электромагнитным процессом, и его наиболее точное описание даёт квантовая электродинамика (см. Квантовая теория поля ). При не очень высоких энергиях электрона хорошее согласие теории с экспериментом достигается при учёте одного только кулоновского поля ядра. Согласно квантовой электродинамике, в поле ядра существует определённая вероятность квантового перехода электрона в состояние с меньшей энергией с излучением, как правило, одного фотона (вероятность излучения большего числа фотонов мала). Поскольку энергия фотона E gравна разности начальной и конечной энергии электрона, спектр Т. и. ( рис. 1 ) имеет резкую границу при энергии фотона., равной начальной кинетической энергии электрона T e. Так как вероятность излучения в элементарном акте рассеяния пропорциональна Z 2, то для увеличения выхода фотонов Т. и. в электронных пучках используются мишени из веществ с большими Z(свинец, платина и т.д.). Угловое распределение Т. и. существенно зависит от T e: в нерелятивистском случае ( T eЈ m ec 2; где m e  - масса электрона, с- скорость света) Т. и. подобно излучению электрического диполя , перпендикулярного к плоскости траектории электрона. При высоких энергиях ( T e>> m ec 2) Т. и. направлено вперёд по движению электрона и концентрируется в пределах конуса с угловым раствором порядка q » m ec 2/ T e рад( рис. 2 ); это свойство используется для получения интенсивных пучков фотонов высокой энергии (g-квантов) на электронных ускорителях. Т. и. является частично поляризованным.

 Дальнейшее уточнение теории Т. и. достигается учётом экранирования кулоновского поля ядра атомными электронами. Поправки на экранирование, существенные при T e>> m ec 2и E g<< T

e, приводят к снижению вероятности Т. и. (так  как при этом эффективное поле меньше кулоновского поля ядра).

  На свойства Т. и. при прохождении электронов через вещество влияют эффекты, связанные со структурой среды и многократным рассеянием электронов. При T e>>100 Мэвмногократное рассеяние сказывается ещё и в том, что за время, необходимое для излучения фотона, электрон проходит большое расстояние и может испытать столкновения с другими атомами. В целом многократное рассеяние при больших энергиях приводит в аморфных веществах к снижению интенсивности и расширению пучка Т. и. При прохождении электронов больших энергий через кристаллы возникают интерференционные явления - появляются резкие максимумы в спектре Т. и. и увеличивается степень поляризации ( рис. 3 ).

  Причиной значительного Т. и. может быть тепловое движение в горячей разреженной плазме (с температурой 10 5-10 6К и выше). Элементарные акты Т. и., называются в этом случае тепловым, обусловлены столкновениями заряженных частиц, из которых состоит плазма. Космическое рентгеновское излучение, наблюдение которого стало возможным с появлением искусственных спутников Земли, частично (а излучение некоторых дискретных рентгеновских источников, возможно, полностью) является, по-видимому, тепловым Т. и.

  Тормозное рентгеновское и гамма-излучение широко применяются в технике, медицине, в исследованиях по биологии, химии и физике.

  Лит.:Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969; Байер В. Н., Катков В. М., Фадин В. С., Излучение релятивистских электронов, М., 1973; Богданкевич О. В., Николаев Ф. А., Работа с пучком тормозного излучения, М,, 1964: Соколов А. А., Тернов И. М., Релятивистский электрон, М.,1974.

  Э. А. Тагиров.

Рис. 1. Теоретические спектры энергии ( E g) фотонов тормозного излучения (с учётом экранирования) в свинце (4 верхних кривых) и в алюминии (нижняя кривая); цифры на кривых - начальная кинетическая энергия электрона T eв единицах энергии покоя электрона m e c 2» 0,511 Мэв(интенсивность Iдана в относительных единицах).

Рис. 2. Угловое распределение тормозного излучения при высоких начальных энергиях электронов ( T e>> m e c 2).

Рис. 3. Поляризация Р(верхняя кривая) и энергетический спектр (нижняя кривая) фотонов у тормозного излучения как функция E gв единицах полной начальной энергии электрона E e= T e+ m e c 2для E e= 1 Гэв(интенсивность Iдана в произвольных единицах).

Тормозной путь

Тормозно'й путь, расстояние, проходимое транспортным средством (автомобилем, поездом, трамваем и т.п.) от момента привода в действие тормозного устройства до полной остановки. Полный Т. п. (остановочный путь) включает в себя также расстояние, проходимое за время от момента восприятия водителем (машинистом) необходимости торможения до приведения в действие органов управления тормозами . Длина Т. п. пропорциональна квадрату скорости движения, быстроте срабатывания тормозов, нагрузке, приходящейся на затормаживаемые колёса, коэффициенту сцепления колёс с дорогой (рельсами), а также зависит от реакции водителя или машиниста (для полного Т. п.). На длину Т. п. автомобилей большое влияние оказывает состояние протектора шин и дорожного покрытия. В СССР (согласно «Правилам дорожного движения») длина Т. п. автодорожного транспорта при движении со скоростью 70 км/ч на сухом горизонтальном участке дороги с твёрдым покрытием составляет для легковых автомобилей 7,2 м, для грузовых - 9,5-11 м, для мотоциклов - 7,5-8,2 м. Расчётная длина Т. п. для железнодорожных поездов установлена «Правилами технической эксплуатации железных дорог».

  А. А. Сабинин.

Торнадо

Торна'до, название смерчей (тромбов) в Соединённых Штатах Америки.

Торнария

Торна'рия, личинка кишечнодышащих . Размеры - от микроскопических до нескольких мм. На брюшной стороне - околоротовая впадина, окаймленная предротовым и послеротовым ресничными шнурами, при помощи которых Т. плавает. Сзади - мерцательный поясок. На верхнем полюсе Т. расположен чувствительный теменной орган с султаном ресничек. Кишечник включает пищевод, желудок и заднюю кишку, заканчивающуюся анальным отверстием на заднем полюсе Т. Имеются 1 (передний) непарный и 2 (средние и задние) парных целомических мешка, полости которых впоследствии преобразуются соответственно в полости хобота, воротничка и туловища взрослого животного. Строение Т. сходно со строением личинок иглокожих , что служит одним из доказательств родства кишечнодышащих и иглокожих. Принадлежность Т. к кишечнодышащим установил И. И. Мечников (1869, 1870), детально изучивший её метаморфоз.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36