ModernLib.Net

()

ModernLib.Net / / / () - (. 74)
:
:

 

 


д. Держатель образца может иметь приспособления для создания необходимых температур, вакуума, давления, измерительные приборы и защиту узлов камеры от нежелательных воздействий.

  Р. к. для исследования поликристаллов и монокристаллов существенно различны. Для исследования поликристаллов можно использовать параллельный первичный пучок (дебаевские Р. к.; рис. 2 , а; см. также Дебая - Шеррера метод ) и расходящийся (фокусирующие Р. к.; рис. 2 , б и в). Фокусирующие Р. к. обладают большой экспрессностью измерений, но рентгенограммы, получаемые на них, регистрируют лишь ограниченную область углов дифракции. В этих Р. к. в качестве источника первичного излучения может служить радиоактивный изотопный источник (см. Рентгеновские лучи )

  Р. к. для исследования монокристаллов конструктивно различны в зависимости от их назначения. Существуют камеры для ориентировки кристалла, т. е. определения направления его кристаллографических осей ( рис. 3 , а, см. также ст. Лауэграмма ); Р. к. вращения-колебания для измерения параметров кристаллической решётки (по измерению угла дифракции отдельных отражений или положению слоевых линий) и для определения типа элементарной ячейки ( рис. 3 , б и в); Р. к. для раздельной регистрации дифракционных максимумов (развёртки слоевых линий), называются рентгеновскими гониометрами с фоторегистрацией; топографические Р. к. для исследования нарушений кристаллической решётки в почти совершенных кристаллах. Р. к. для монокристаллов часто снабжены системой отражательного гониометра для измерений и начальной установки огранённых кристаллов.

  Для исследования аморфных и стеклообразных тел, а также растворов используют Р. к., регистрирующие рассеяние под малыми углами дифракции (порядка нескольких угловых секунд) вблизи первичного пучка; коллиматоры таких камер должны обеспечить нерасходимость первичного пучка, чтобы можно было выделить излучение, рассеянное исследуемым объектом под малыми углами. Для этого используют сходимость пучка, протяжённые идеальные кристаллографические плоскости, создают вакуум и т.д. Р. к. для изучения объектов микронных размеров применяют с острофокусными рентгеновскими трубками; в этом случае расстояние образец - фотоплёнка можно значительно уменьшить (микрокамеры).

  Р. к. часто называют по имени автора метода рентгенографирования, используемого в данном приборе.

  Лит.:Уманский М. М., Аппаратура рентгеноструктурных исследований, М., 1960; Гинье А., Рентгенография кристаллов, пер. с франц., М., 1961; Финкель В. А., Высокотемпературная рентгенография металлов, М., 1968; его же. Низкотемпературная рентгенография металлов, М., 1971.

  В. В. Зубенко.

Рис. 2. Основные схемы рентгеновских камер для исследования поликристаллов: а - дебаевская камера;б - фокусирующая камера с изогнутым кристаллом-монохроматором для исследования образцов «на просвет» (область малых углов дифракции); в - фокусирующая камера для обратной съёмки (большие углы дифракции) на плоскую кассету. Стрелками показаны направления прямого и дифрагированного пучков. О - образец; F - фокус рентгеновской трубки; М - кристалл-монохроматор; К - кассета с фотоплёнкой Ф; Л - ловушка, перехватывающая неиспользованный рентгеновский пучок; ФО - окружность фокусировки (окружность, по которой располагаются дифракционные максимумы); КЛ - коллиматор; МЦ - механизм центрировки образца.

Рис. 3. Основные схемы рентгеновских камер для исследования монокристаллов: а - камера для исследования неподвижных монокристаллов по методу Л ауэ; б - камера вращения. На фотоплёнке видны дифракционные максимумы, расположенные по слоевым линиям; при замене вращения на колебание образца число рефлексов на слоевых линиях ограничено интервалом колебаний. Вращение образца осуществляют с помощью шестерёнок 1 и 2, колебания его - через капоид 3 и рычаг 4; в - рентгеновская камера для определения размеров и формы элементарной ячейки. О - образец; ГГ - гониометрическая головка; і - лимб и ось поворота гониометрической головки; КЛ - коллиматор; К - кассета с фотоплёнкой Ф; КЭ - кассета для съёмки эпиграмм (обратная съёмка); МД - механизм вращения или колебания образца; Ж - лимб и ось колебания образца; ґ - дуговая направляющая наклонов оси гониометрической головки.

Рис. 1. Гониометрическая головка: О - образец; Д - дуговые направляющие для наклона образца в двух взаимно перпендикулярных направлениях; МЦ - механизм центрировки образца, служащий для выведения центра дуг, в котором находится образец, на ось вращения камеры.

Рентгеновская микроскопия

Рентге'новская микроскопи'я,совокупность методов исследования микроскопического строения объектов с помощью рентгеновского излучения. В Р. м. используют специальные приборы - рентгеновские микроскопы. Их предел разрешения может быть на 2-3 порядка выше, чем световых, поскольку длина волны l рентгеновского излучения на 2-3 порядка меньше длины волны видимого света.

  Специфичность взаимодействия рентгеновских лучей с веществом обусловливает отличие рентгеновских оптических систем от оптических систем для световых волн и для электронов. Малое отклонение показателя преломления рентгеновских лучей от единицы (меньше чем на 10 -4) практически не позволяет использовать для их фокусировки линзы и призмы. Электрические и магнитные линзы для этой цели также неприменимы, так как рентгеновские лучи инертны к электрическому и магнитному полям. Поэтому в Р. м. для фокусировки рентгеновских лучей используют явление их полного внешнего отражения изогнутыми зеркальными плоскостями или отражение от кристаллографических изогнутых плоскостей (отражательная Р. м.). Благодаря высокой проникающей способности, простоте линейчатой структуры спектра и резкой зависимости коэффициента поглощения рентгеновского излучения от атомного номера элемента Р. м. можно осуществить по методу проекции в расходящемся пучке лучей, испускаемых «точечным» источником (проекционная, или теневая, Р. м.).

  Отражательный рентгеновский микроскоп содержит микрофокусный источник рентгеновского излучения, изогнутые зеркала-отражатели из стекла (кварца с нанесённым на него слоем золота) или изогнутые монокристаллы и детекторы изображения (фотоплёнки, электроннооптические преобразователи ) .На рис. 1 приведена схема хода лучей в рентгеновском микроскопе с 2 зеркалами, повёрнутыми друг относительно друга на 90°. Получение высокого разрешения в отражательной Р. м. ограничивается малым углом полного внешнего отражения (угол скольжения < 0,5°), а следовательно, большими фокусными расстояниями (> 1 м) и очень жёсткими требованиями к качеству обработки поверхности зеркал (допустимая шероховатость ~10 ). Полное разрешение отражательных рентгеновских микроскопов определяется дифракционным эффектом (зависящим от l) и угловой апертурой,не превышающей угла скольжения. Например, для излучения с l = 1  и угла скольжения в 25' дифракционное разрешение не превышает 85  (увеличение до 100 000 раз). Изображения, создаваемые отражательными рентгеновскими микроскопами даже при точном выполнении профиля их зеркал искажаются различными аберрациями оптических систем (астигматизм, кома).

  При использовании для фокусировки рентгеновского излучения изогнутых монокристаллов, помимо геометрических искажений, на качество изображения влияют структурные несовершенства монокристаллов, а также конечная величина брэгговских углов дифракций (см. Дифракция рентгеновских лучей ) .

  Отражательные рентгеновские микроскопы не получили широкого распространения из-за технических сложностей их изготовления и эксплуатации.

  Проекционная Р. м. основана на принципе теневой проекции объекта в расходящемся пучке рентгеновских лучей, испускаемых «точечным» источником ( рис. 2 ). Проекционные рентгеновские микроскопы состоят из сверхмикрофокусного источника рентгеновских лучей с фокусом 0,1-1 мкмв диаметре [например, специальная микрофокусная рентгеновская трубка или камера-обскура   (диафрагма) в сочетании с обычной широкофокусной рентгеновской трубкой], камеры для размещения исследуемого объекта и регистрирующего устройства. Увеличение Мв методе проекционной Р. м. определяется отношением расстояний от источника рентгеновского излучения до объекта ( а) и до детектора ( b): М = b/a(см. рис. 3 ).

  Следовательно, объект должен находиться на малых расстояниях от источника рентгеновского излучения. Для этого фокус трубки располагается непосредственно на окне рентгеновской трубки либо на вершине иглы анода, помещенной вблизи окна трубки.

  Линейное разрешение проекционных рентгеновских микроскопов достигает 0,1-0,5 мкм.Геометрическое разрешение определяется величиной нерезкости (полутени) края объекта P rзависящей от размера источника рентгеновских лучей d  и увеличения М: P r= Md.Дифракционное разрешение зависит от дифракционной френелевской «бахромы» на крае: P r= аl 1/2 ,где а -расстояние от источника до объекта. Поскольку апрактически не может быть меньше 1 мкм,разрешение при l = 1  составит 100  (если размеры источника обеспечат такое же геометрическое разрешение). Контраст в изображении возникает благодаря различному поглощению рентгеновского излучения в областях объекта с различной плотностью или составом; чувствительность метода проекционной Р. м. определяется отличием коэффициентов поглощения рентгеновского излучения различными участками исследуемого объекта.

  Проекционная Р. м. находит широкое применение для исследований микроскопического строения различных объектов: в медицине ( рис. 4 ) ,в минералогии ( рис. 5 ), в металловедении ( рис. 6 ) и др. областях науки и техники. С помощью рентгеновского микроскопа можно оценивать качество окраски или тонких покрытий, оклейки или отделки миниатюрных изделий. Он позволяет получать микрорентгенографии биологических и ботанических срезов толщиной до 200 мкм.Его используют также для анализа смеси порошков лёгких и тяжёлых металлов, при изучении внутреннего строения объектов, непрозрачных для световых лучей и электронов. Исследуемые образцы при этом не надо помещать в вакуум, как в электронном микроскопе, они не подвергаются разрушающему действию электронов. Применение в рентгеновских микроскопах различных преобразователей рентгеновских изображений в видимые в сочетании с телевизионными системами позволяет осуществлять оперативный контроль объектов в научно-исследовательских и производственных условиях.

  Лит.:Уманский Я. С., Рентгенография металлов и полупроводников, М., 1969; Ровинский Б. М., Лютцау В. Г., Камера-обскура для теневой рентгеновской микроскопии, «Изв. АН СССР. Сер. физическая», 1956, т. 20, № 7; Лютцау В. Г., Рентгеновская теневая микроскопия включений, неоднородности состава зерен и примесей по их границам, «Заводская лаборатория», 1959, т. 25,.№ 3; Cosslett V. Е., Nixon W. С., X-ray microscopy, Camb., 1960.

  В. Г. Лютцау.

Рис. 1. Схема фокусировки рентгеновских лучей в отражательном рентгеновском микроскопе с 2 скрещенными зеркалами: OO' - оптическая ось системы; А - объект; A' - его изображение. Увеличение O'A'/OA.

Рис. 6а. Снимки микроструктуры сплава алюминия с 5% меди, полученные с помощью оптического микроскопа. Для сравнения сняты одни и те же участки сплава. Вверху и внизу представлены снимки одинаковых по составу сплавов, кристаллизовавшихся с разной скоростью охлаждения (вверху 180 град/мин, внизу 1 град/мин). На верхнем снимке увеличение в 2,5 раза больше, чем на нижнем.

Рис. 4. Рентгеновская микрофотография среза берцовой кости человека в месте перелома (по прошествии 28 дней после перелома). Видно клеточное строение костной ткани - остеоны и остеоциты (белые точки). Увеличено.

Рис. 3. Образование полутени Pr и дифракционной «бахромы» в проекционном рентгеновском микроскопе.

Рис. 5. Рентгеновская микрофотография железной руды: а - силикат железа; б - магнетит. Увеличено.

Рис. 6б. Снимки микроструктуры сплава алюминия с 5% меди, полученные с помощью рентгеновского микроскопа. Для сравнения сняты одни и те же участки сплава. Вверху и внизу представлены снимки одинаковых по составу сплавов, кристаллизовавшихся с разной скоростью охлаждения (вверху 180 град/мин, внизу 1 град/мин). Рентгеновская микроскопия выявляет более тонкое строение микрозёрен сплава (микродендриты - тёмные полосы, скопления атомов меди по границам субзёрен - светлые линии). На верхнем снимке увеличение в 2,5 раза больше, чем на нижнем.

Рис. 2. Схема проекционного рентгеновского микроскопа с использованием широкофокусной рентгеновской трубки и камеры-обскуры.

Рентгеновская спектроскопия

Рентге'новская спектроскопи'я,получение рентгеновских спектров испускания и поглощения и их применение к исследованию электронной энергетической структуры атомов, молекул и твёрдых тел. К Р. с. относят также рентгено-электронную спектроскопию, т. е. спектроскопию рентгеновских фото- и оже-электронов, исследование зависимости интенсивности тормозного и характеристического спектров от напряжения на рентгеновской трубке (метод изохромат), спектроскопию потенциалов возбуждения.

  Рентгеновские спектры испускания получают либо бомбардировкой исследуемого вещества, служащего мишенью в рентгеновской трубке, ускоренными электронами (первичные спектры), либо облучением вещества первичными лучами (флуоресцентные спектры). Спектры испускания регистрируются рентгеновскими спектрометрами (см. Спектральная аппаратура рентгеновская ) .Их исследуют по зависимости интенсивности излучения от энергии рентгеновского фотона. Форма и положение рентгеновских спектров испускания дают сведения об энергетическом распределении плотности состояний валентных электронов, позволяют экспериментально выявить симметрию их волновых функций и их распределение между сильно связанными локализованными электронами атома и коллективизированными электронами твёрдого тела.

  Рентгеновские спектры поглощения образуются при пропускании узкого участка спектра тормозного излучения через тонкий слой исследуемого вещества. Исследуя зависимость коэффициента поглощения рентгеновского излучения веществом от энергии рентгеновских фотонов, получают сведения об энергетическом распределении плотности свободных электронных состояний. Спектральные положения границы спектра поглощения и максимумов его тонкой структуры позволяют найти кратность зарядов ионов в соединениях (её можно определить во многих случаях и по смещениям основных линий спектра испускания). Р. с. даёт возможность также установить симметрию ближнего окружения атома, исследовать природу химической связи. Рентгеновские спектры, возникающие при бомбардировке атомов мишени тяжёлыми ионами высокой энергии, дают информацию о распределении излучающих атомов по кратности внутренних ионизаций. Рентгеноэлектронная спектроскопия находит применение для определения энергии внутренних уровней атомов, для химического анализа и определения валентных состояний атомов в химических соединениях.

  Лит.:Блохин М. А., Физика рентгеновских лучей, М., 1957; Рентгеновские лучи, под ред. М. А. Блохина, М., 1960; Баринский Р. Л., Нефедов В. И., Рентгено-спектральное определение заряда атомов в молекулах, М., 1966; Зимкина Т. М., Фомичев В. А., Ультрамягкая рентгеновская спектроскопия, Л, 1971; Немошкаленко В. В., Рентгеновская эмиссионная спектроскопия металлов и сплавов, К., 1972; X-ray spectroscopy, ed. L. V. Azaroff, N. - Y., 1974.

   М. А. Блохин.

Рентгеновская съёмка

Рентге'новская съёмка,фотографическая или видеомагнитная регистрация теневого изображения различных объектов, получаемого при просвечивании их рентгеновскими лучами (РЛ) и отображающего внутреннее строение объектов. Р. с. применяется в медицине, биологии, физике, технике и военном деле. Объектами Р. с. могут быть внутренние органы и системы организма человека и животных, растения, промышленные изделия, детали конструкций, образцы различных веществ и пр. Р. с. осуществляют либо прямым методом, при


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107