Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (МО)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (МО) - Чтение (стр. 23)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  Данные о химической природе и тонком строении генов позволили разработать методы их выделения. Впервые это было выполнено в 1969 американским учёным Дж. Бэквитом с сотрудниками для одного из генов кишечной палочки. Затем то же удалось осуществить у некоторых высших организмов (земноводных). Ещё более значительный успех М. г. - первый химический синтез гена (кодирующего аланиновую транспортную РНК дрожжей), осуществленный Х. Корана в 1968. Работы в этом направлении ведутся в ряде лабораторий мира. Для внеклеточного синтеза более крупных генов успешно применены новейшие биохимические методы, основанные на явлении т. н. обратной транскрипции (см. ниже). Используя эти методы, С. Спигелмен, Д. Балтимор, П. Ледер и их сотрудники (США) далеко продвинулись по пути искусственного синтеза генов, определяющих структуру белка в молекулах гемоглобина у кролика и человека. Такие же работы проведены в последнее время и в ряде других лабораторий, в том числе и в СССР.

  Т. о., М. г. уже выяснила в принципе вопрос о том, как записана и хранится генетическая информация, получаемая потомками от родителей, хотя расшифровка конкретного содержания этой информации для каждого отдельного гена требует ещё огромной работы.

  Установление структуры ДНК открыло возможности для экспериментального исследования биосинтеза молекул ДНК - их репликации.Этот процесс лежит в основе передачи генетической информации от клетки к клетке и от поколения к поколению, т. е. определяет относительное постоянство генов. Изучение репликации ДНК привело к важному выводу о матричном характере биосинтеза ДНК: для его осуществления необходимо наличие готовой молекулы ДНК, на которой, как на шаблоне (матрице), синтезируются новые молекулы ДНК. При этом двойная спираль ДНК раскручивается, и на каждой её нити синтезируется новая, комплементарная ей нить, так что дочерние молекулы ДНК состоят из одной старой и одной новой нити (полуконсервативный тип репликации). Выделен белок, вызывающий раскручивание двойной спирали ДНК, а также ферменты, осуществляющие биосинтез нуклеотидов и их соединение («сшивание») друг с другом. Несомненно, что в клетке имеются механизмы, регулирующие синтез ДНК. Пути такой регуляции ещё во многом неясны, но очевидно, что она в большой степени определяется генетическими факторами.

  М. г. достигла выдающегося успеха и в решении важнейшей задачи, сформулированной ещё классической генетикой, - каким образом ген определяет признак, или как происходит реализация генетической информации. Предпосылкой послужило сформулированное ещё в 1941 Дж. Бидлом и Э. Тейтемом положение «один ген - один фермент». Это положение позволило поставить вопрос в следующем виде: как гены, т. е., по сути дела, участки молекулы ДНК, определяют химическую структуру и свойства белков, специфическую для данного организма? Раскрытие химической структуры ДНК и белка дало возможность сопоставить эти два типа биополимеров,что привело к концепции генетического кода,согласно которой порядок чередования 4 сортов нуклеотидов в ДНК определяет порядок чередования 20 сортов аминокислот в белковой молекуле. От последовательности расположения аминокислот в белковой молекуле (её первичной структуры) зависят все её свойства. Расшифровка принципов, на которых основан генетический код, была осуществлена в 1962 Ф. Криком с сотрудниками в генетических опытах с мутантами одного бактериального вируса. Оказалось, что каждая тройка нуклеотидов в цепи ДНК (триплет, кодон ) определяет, какая именно из 20 аминокислот займёт данное место в полипептидной цепи синтезируемого белка, т. е. каждый триплет кодирует определённую аминокислоту. Последующие работы позволили полностью расшифровать генетический код и установить нуклеотидный состав всех триплетов, кодирующих аминокислоты, а также состав инициирующего кодона, определяющего начало синтеза данной полипептидной цепи, и трёх терминирующих кодонов, определяющих конец синтеза. Было найдено, что генетический код универсален для всего живого, т. е. что он один и тот же для любого организма, начиная от вирусов и кончая высшими животными и человеком. Участок молекулы ДНК, составляющий один ген, определяет, как правило, последовательность аминокислот в молекуле одного белка (или в одной полипептидной цепи, если данный белок состоит из нескольких таких цепей).

  Расшифровка генетического кода сыграла выдающуюся роль в выяснении механизма биосинтеза белка - процесса, включающего перенос заключённой в ДНК генетической информации на молекулы т. н. информационной, или матричной, РНК (и-РНК). Этот процесс, сущность которого составляет синтез и-РНК на матрице ДНК, получил название транскрипции.Информационная РНК связывается затем с особыми клеточными структурами - рибосомами,на которых и осуществляется синтез полипептидной цепи в соответствии с информацией, записанной в молекуле и-РНК. Этот процесс синтеза полипептидных цепей при посредстве и-РНК назван трансляцией.

 Т. о., передача генетической информации происходит по схеме: ДНК ® РНК ® белок. Это основное положение (догма), правильность которого установлена многими исследованиями на различных организмах, получило в 1970 важное дополнение. Американские учёные Х. Темин и Д. Балтимор обнаружили, что при репродукции некоторых РНК-содержащих вирусов, вызывающих опухоли у животных, генетическая информация передаётся от РНК вируса к ДНК. Подобная обратная транскрипция осуществляется особыми ферментами, содержащимися в этих вирусах. Явление обратной транскрипции было обнаружено также в некоторых здоровых клетках животных и человека. Полагают, что обратная транскрипция играет существенную роль в возникновении по крайней мере некоторых форм злокачественных опухолей и лейкозов, а, возможно, также в процессах дифференцировки при нормальном развитии организмов. Следует подчеркнуть, что открытие обратной транскрипции не противоречит основному положению М. г. о том, что генетическая информация передаётся от нуклеиновых кислот к белкам, но не может передаваться от белка к нуклеиновым кислотам.

  Замечательное достижение М. г. - раскрытие генетических механизмов регуляции синтеза белков в бактериальной клетке. Как показали в 1961 французские учёные Ф. Жакоб и Ж. Моно,биосинтез белка в бактерии находится под двойным генетическим контролем. С одной стороны, молекулярная структура каждого белка детерминируется соответствующим структурным геном, с другой - возможность синтеза этого белка определяется особым геном-регулятором, который кодирует специальный регуляторный белок, способный связываться со специфическим участком ДНК - т. н. оператором - и при этом «включать» или «выключать» функционирование структурных генов, управляемых этим оператором. Система из одного или нескольких структурных генов и их оператора составляет т. н. оперон.Способность регуляторных белков связываться с оператором зависит от взаимодействующих с этими белками низкомолекулярных соединений - эффекторов. Эффекторы поступают в клетку извне или синтезируются ею и служат сигналами о необходимости синтеза этой клеткой тех или иных белков или прекращения их синтеза. Регуляторные белки бывают двух типов: белки-репрессоры, которые, связываясь с оператором, блокируют синтез белка (негативная регуляция), и белки-активаторы, которые, связываясь с оператором, индуцируют синтез белка (позитивная регуляция). При негативной регуляции в одних случаях репрессор до взаимодействия с эффектором находится в активной форме и, связываясь с оператором, препятствует транскрипции структурных генов оперона (а следовательно, и синтезу соответствующих белков). Эффектор переводит репрессор в неактивную форму, оператор освобождается и транскрипция структурных генов (а отсюда и синтез кодируемых ими белков) становится возможной. В других случаях взаимодействие репрессора с эффектором переводит репрессор в активную форму, в которой он способен связаться с оператором, что и приводит к блокированию синтеза белка. При позитивной регуляции, напротив, только активная форма белка-активатора, способная связываться с оператором, обусловливает синтез белка. Активная форма белка-активатора тоже определяется его взаимодействием с эффектором.

  У многоклеточных организмов генетическая регуляция синтеза белка сложнее и пока изучена недостаточно. Однако ясно, что и здесь большую роль играет обратная связь,подобная описанной у бактерий для системы эффектор - регуляторный белок - оператор, причём сигнальными веществами в ряде случаев служат гормоны.

  С развитием М. г. более глубоким стало понимание мутационного процесса, т. е. изменения генетической информации. Было показано, что мутации представляют собой либо замены отдельных нуклеотидов, либо вставки или выпадения нуклеотидов в молекуле ДНК. Мутации возникают как вследствие случайных ошибок при репликации ДНК, так и в результате повреждающего нуклеиновые кислоты действия различных физических и химических агентов - мутагенов;они возникают также из-за изменений т. н. генов-мутаторов, кодирующих ферменты, участвующие в репликации, исправляющие генетические повреждения и др. Вызываемые мутагенами изменения химической структуры ДНК либо непосредственно представляют мутации, либо ведут к возникновению мутаций вследствие обусловленных этими изменениями ошибок в ходе последующей репликации ДНК. Значительная доля молекулярных повреждений ДНК, вызываемых мутагенами, не реализуется в мутации, а исправляется (репарируется). Суть явления репарации состоит в том, что у всех организмов имеются гены, кодирующие особые ферменты, способные «узнавать» поврежденные участки ДНК, «вырезать» их из молекулы и заменять полноценными. Некоторые из этих ферментов идентифицированы, установлен и механизм их действия, но полного понимания процесса репарации ещё не достигнуто.

  Изучение репарации открыло новые подходы к исследованию механизма рекомбинации сцепленных (т. е. лежащих в одной хромосоме) генов, представляющей одну из причин комбинативной изменчивости, которая наряду с мутациями играет важную роль в эволюции. Классической генетикой было показано, что рекомбинация сцепленных генов происходит путём обмена гомологичных хромосом участками ( кроссинговер ) ,но тонкий механизм такого обмена оставался неизвестным. Экспериментальные данные последних 10-15 лет позволяют рассматривать внутрихромосомную и внутригенную (межсайтовую) рекомбинацию как ферментативный процесс, происходящий при взаимодействии молекул ДНК. Акт рекомбинации осуществляется путём разрывов и соединения в новом сочетании отрезков полинуклеотидных нитей. При этом разрывы с последующим воссоединением могут происходить как одновременно в обеих нитях ДНК (кроссинговер), так и в пределах одной нити (т. н. полукроссинговер). Чтобы имел место кроссинговер, так же как и для репарации, необходимы разрывы, репарационный синтез поврежденных участков и восстановление нарушенных фосфатных связей, осуществляемые соответствующими ферментами.

  М. г. своими замечательными открытиями оказала плодотворное влияние на все биологические науки. Она явилась той основой, на которой выросла молекулярная биология, значительно ускорила прогресс биохимии, биофизики, цитологии, микробиологии, вирусологии, биологии развития, открыла новые подходы к пониманию происхождения жизни и эволюции органического мира. Вместе с тем М. г., позволившая глубоко проникнуть в природу важнейших жизненных процессов и успешно продолжающая их исследование, отнюдь не претендует на решение многих, в том числе и генетических, проблем, касающихся целостного организма, а тем более совокупностей организмов - популяций, видов, биоценозов и т. д., где преобладают закономерности, изучение которых требует иных методов, чем те, какие использует М. г.

  Достижения М. г., внёсшие огромный теоретический вклад в общую биологию, несомненно будут широко использованы в практике сельского хозяйства и медицины (т. н. генная инженерия путём замены вредных генов полезными, в том числе искусственно синтезированными; управление мутационным процессом; борьба с вирусными болезнями и злокачественными опухолями путём вмешательства в процессы репликации нуклеиновых кислот и опухолеродных вирусов; управление развитием организмов посредством воздействия на генетические механизмы синтеза белка и т. д.). Перспективность практического применения достижений М. г. подтверждается успехами, достигнутыми на модельных объектах. Так, у наиболее изученных в генетическом отношении видов бактерий удаётся получать мутации любого гена, лишать клетку какого-либо гена или привносить в неё желаемый ген извне, регулировать функции многих генов. Несмотря на то что генетические свойства клеток эукариотов изучены на молекулярном уровне ещё недостаточно, увенчались успехом первые попытки введения некоторых генов в клетки млекопитающих с помощью вирусов, осуществлена гибридизация соматических клеток и др. Например, в 1971 американский учёный С. Меррилл с сотрудниками, культивируя вне организма клетки человека, больного галактоземией (такие клетки неспособны вырабатывать один из ферментов, необходимых для утилизации молочного сахара, что и является причиной этой тяжёлой наследственной болезни), ввели в эти клетки неинфекционный для них бактериальный вирус, содержащий ген, кодирующий данный фермент. В результате клетки «излечились» - стали синтезировать недостающий фермент и передавать эту способность последующим клеточным поколениям. Уже сейчас данные М. г. используют при создании медикаментов, применяемых для профилактики и лечения новообразований, лейкозов, вирусных инфекций, лучевых поражений, при изыскании новых мутагенов и т. д.

  Лит.:Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Молекулярная генетика. Сб. ст., пер. с англ., ч. 1, М., 1964; Кольцов Н. К., Наследственные молекулы, «Бюлл. Московского общества испытателей природы. Отдел биологический», 1965, т. 70, в. 4, с. 75-104; Бреслер С. Е., Введение в молекулярную биологию, 3 изд., М. - Л., 1973; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Гершкович И., Генетика, пер. с англ., М., 1968; Хесин Р. Б., Энзимология генетических процессов, в кн.: Вопросы молекулярной генетики и генетики микроорганизмов, М., 1968; Ратнер В. А., Принципы организации и механизмы молекулярно-генетических процессов, Новосибирск, 1972; Stent G. S., Molecular genetics, S. F., 1971; Eigen М., Selforganization of matter and the evolution of biological macromolecules, «Naturwissenschaften», 1971, Jg. 58, Н. 10; Baltimore D., Viral RNA-dependent DNA polymerase, «Nature», 1970, v. 226, № 5252; Temin Н., Mizutani S., RNA-dependent DNA polymerase in virions of Rous sarcoma virus, «Nature», 1970, v. 226, № 5252; Kacian D. L. [a. o.], In vitro synthesis of DNA components of human genes for globins, «Nature. New Biology», 1972 v. 235, № 58.

  С. М. Гершензон, Е. И. Черепенко.

Молекулярная дистилляция

Молекуля'рная дистилля'ция,способ разделения жидких смесей в высоком вакууме. См. Дистилляция.

Молекулярная масса

Молекуля'рная ма'сса,молекулярный вес, значение массы молекулы, выраженное в атомных единицах массы.Практически М. м. равна сумме масс всех атомов, входящих в состав молекулы; умножение М. м. на принятую величину атомной единицы массы (1,66043 ± 0,00031) Ч10 -24 гдаёт массу молекулы в граммах.

  Понятие М. м. прочно вошло в науку после того, как в результате работ С. Канниццаро,развившего взгляды А. Авогадро,были четко сформулированы различия между атомом и молекулой; уточнению понятия М. м. способствовали открытие Ф. Содди явления изотопии (см. Изотопы ) и разработка Ф. Астоном масс-спектрометрического метода определения масс.

  Понятие М. м. тесно связано с определением молекулы;однако оно приложимо не только к веществам, в которых молекулы существуют раздельно (газы, пары, некоторые жидкости и растворы, молекулярные кристаллы ) ,но и к остальным случаям (ионные кристаллы и др.).

  За М. м. часто принимают среднюю массу молекул данного вещества, найденную с учётом относительного содержания изотопов всех элементов, входящих в его состав. Иногда М. м. определяют не для индивидуального вещества, а для смеси различных веществ известного состава. Так, можно рассчитать, что «эффективная» М. м. воздуха равна 29.

  М. м. - одна из важнейших констант, характеризующих индивидуальное вещество. М. м. разных веществ сильно различаются между собой. Так, например, величины М. м. водорода, двуокиси углерода, сахарозы, гормона инсулина соответственно составляют: 2,016; 44,01; 342,296; около 6000. М. м. некоторых биополимеров (белков, нуклеиновых кислот) достигают многих млн. и даже нескольких млрд. Величины М. м. широко используются при различных расчётах в химии, физике, технике. Знание М. м. автоматически даёт величину грамм-молекулы (моля), позволяет вычислить плотность газа (пара), рассчитать молярную концентрацию ( молярность ) вещества в растворе, найти истинную формулу соединения по данным о его составе и т. д.

  Экспериментальные методы определения М. м. разработаны главным образом для газов (паров) и растворов. В основе определения М. м. газов (паров), лежит Авогадро закон.Известно, что объём 1 моля газа (пара) при нормальных условиях (0 °С, 1 атм) составляет около 22,4 л; поэтому, определив плотность газа (пара), можно найти число его молей, а следовательно, найти и М. м. В случае растворов для определения М. м. чаще всего используют криоскопический и эбулиоскопический методы (см. Криоскопия и Эбулиоскопия ) .Экспериментальные методы дают сведения о среднем значении М. м. вещества. Оценку М. м. отдельных молекул можно проводить методом масс-спектрометрии.

  М. м. являются важной характеристикой высокомолекулярных соединений - полимеров,определяющей их физические (и технологические) свойства. Макромолекулы полимеров образуются повторением сравнительно простых звеньев (групп атомов); число мономерных звеньев, входящих в состав различных молекул одного и того же полимерного вещества, различно, вследствие чего М. м. макромолекул таких полимеров также неодинакова. Поэтому при характеристике полимеров обычно говорят о среднем значении М. м.; эта величина даёт представление о среднем числе звеньев в молекулах полимера (о степени полимеризации).

  Полное описание размеров молекул полимера даёт функция распределения по М. м. (молекулярно-массовое распределение): эта функция позволяет найти долю молекул (определённого размера) данного полимерного вещества, М. м. которых лежат в заданном интервале масс (от Мдо М+ D М).

  На практике обычно определяют среднюю М. м. полимера, исследуя тем или иным методом его раствор. Свойства растворов могут зависеть от числа молекул, находящихся в растворе (при этом разные по массе молекулы ведут себя совершенно одинаково), от массовой (весовой) концентрации раствора (в этом случае одна большая молекула производит такой же регистрируемый эффект, как и несколько малых) и от других факторов. Если полимер состоит из неодинаковых молекул, то средние значения М. м., измеренные разными способами, будут различны. Так, понижение температуры замерзания (повышение температуры кипения) разбавленного раствора зависит только от числа содержащихся в нём молекул, а не от их размеров, поэтому криоскопический и эбулиоскопический методы позволяют находить среднечисленную М. м. полимера («простое» среднее). Интенсивность света, рассеянного раствором полимера, зависит от массы вещества, находящегося в растворе, а не от числа молекул: поэтому метод, основанный на измерении интенсивности рассеянного света, используется для определения величины М. м. полимера, усреднённой по массе. Другие методы (седиментационного равновесия, вискозиметрический и т. д.) позволяют найти иные средние значения М. м. полимеров. Сравнивая средние величины М. м., определённые разными методами, можно сделать вывод о молекулярно-массовом распределении. В простейшем случае, когда среднечисленная М. м. полимера совпадает со значением М. м., усреднённой по массе, можно сделать вывод, что полимер состоит из одинаковых молекул (т. е. монодисперсен).

  Лит.:Некрасов Б. В., Основы общей химии, т. 1, М., 1973; Гуггенгейм Э. А. и Пру Дж., Физико-химические расчёты, пер. с англ., М., 1958; Губен-Вейль, Методы органической химии, т. 2, М., 1967. См. также лит. при ст. Макромолекула .

  С. С. Бердоносов.

Молекулярная оптика

Молекуля'рная о'птика,раздел оптики, в котором изучаются процессы взаимодействия оптического излучения с веществом, существенно зависящие от атомно-молекулярной структуры вещества. М. о. устанавливает связь между характером единичных актов взаимодействия световой волны с частицами (молекулами, атомами, ионами) и макроскопическими параметрами состоящей из этих частиц среды (например, её показателем преломления). С этой точки зрения в М. о. рассматриваются дисперсия света, преломление светаи - наиболее широко - рассеяние света.Изучение распространения света в кристаллах, обладающих естественной оптической анизотропией,составляет предмет кристаллооптики.Оптическая анизотропия в изотропных от природы средах может вызываться действием на них различных внешних полей: электрического (см. Керра эффект, Поккельса эффект) ,магнитного (см. Коттона - Мутона эффект ) ,поля механических или гидродинамических сил (явления фотоупругости и двойного лучепреломления в потоке жидкости). В средах, для которых характерна оптическая активность (как естественная, так и возникающая при наложении внешнего магнитного поля, см. Фарадея эффект ) ,происходит вращение плоскости поляризации света. Все эти явления, рассматриваемые в М. о., дают ценную информацию о свойствах веществ и строении составляющих их частиц.

  Процесс взаимодействия световой волны с частицами вещества определяется главным образом поляризуемостью этих частиц (см. Поляризуемость атомов, ионов и молекул). Объяснение большинства молекулярно-оптических (МО) явлений дала уже классическая электронная теория, однако для их полного теоретического истолкования необходима квантовая механика, которая позволяет связать МО постоянные со значениями уровней энергии молекул и вероятностями квантовых переходов между этими уровнями (см. Молекула, Молекулярные спектры) .

 Приложения М. о. разнообразны и расширились с появлением источников мощного когерентного излучения - лазеров,Наиболее широко методы М. о. применяются для исследования структуры и характеристик отдельных молекул. Изучение света, рассеиваемого различными средами, даёт сведения (часто уникальные) о строении этих сред - жидкостей, кристаллов, высокомолекулярных соединений,атмосферных образований (облаков, туманов и пр.), а также об особенностях теплового движения частиц в средах. М. о. тесно связана с молекулярной спектроскопией.Разрабатываются перспективные МО методы исследования космических тел и сред.

  Лит.:Волькенштейн М. В., Молекулярная оптика, М. - Л., 1951; Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Волькенштейн М. В., Строение и физические свойства молекул, М. - Л., 1955.

  В. А. Замков.

Молекулярная рефракция

Молекуля'рная рефра'кция,см. Рефракция молекулярная.

Молекулярная физика

Молекуля'рная фи'зика,раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического (молекулярного) строения. Задачи М. ф. решаются методами физической статистики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела. Атомистические представления о строении вещества, высказанные ещё философами древности (см. Атомизм ) ,в начале 19 в. были с успехом применены в химии (Дж. Дальтон,1801), что в значительной мере содействовало развитию М. ф. Первым сформировавшимся разделом М. ф. была кинетическая теория газов.В результате работ Дж. Максвелла (1858-60), Л. Больцмана (1868) и Дж. Гиббса (1871-1902), развивавших молекулярно-кинетическую теорию газов, была создана классическая статистическая физика.

 Количественные представления о взаимодействии молекул (молекулярных силах) начали развиваться в теории капиллярных явлений.Классические работы в этой области А. Клеро (1743), П. Лапласа (1806), Т. Юнга (1805), С. Пуассона,К. Гаусса (1830-31), Дж. Гиббса (1874-1878), И. С. Громеки (1879, 1886) и др. положили начало теории поверхностных явлений.Межмолекулярные взаимодействия были учтены Я. ван дер Ваальсом (1873) при объяснении физических свойств реальных газов и жидкостей.

  В начале 20 в. М. ф. вступает в новый период своего развития, характеризующийся доказательствами реального строения тел из молекул в работах Ж. Перрена и Т. Сведберга (1906), М. Смолуховского и А. Эйнштейна (1904-06), касающихся броуновского движения микрочастиц, и исследованиями молекулярной структуры веществ. Применение для этих целей дифракции рентгеновских лучей в работах М. Лауэ (1912), У. Г. Брэгга и У. Л. Брэгга (1913), Г. В. Вульфа (1913), А. Ф. Иоффе (1924), В. Стюарда (1927-31), Дж. Бернала (1933), В. И. Данилова (1936) и др., а в дальнейшем и дифракции электронов и нейтронов дало возможность получить точные данные о строении кристаллических твёрдых тел и жидкостей. Учение о межмолекулярных взаимодействиях на основании представлений квантовой механики получило развитие в работах М. Борна (1937-39), П. Дебая (30-е гг. 20 в.), Ф. Лондона (1927) и В. Гейтлера (1927). Теория переходов из одного агрегатного состояния в другое, намеченная в 19 в. Я. ван дер Ваальсом и У. Томсоном (Кельвином) и развитая в работах Дж. Гиббса, Л. Ландау (1937), М. Фольмера (30-е гг. 20 в.) и их последователей, превратилась в современную теорию образования новой фазы - важный самостоятельный раздел М. ф. Объединение статистических методов с современными представлениями о структуре веществ в работах Я. И. Френкеля (1926 и др.), Г. Эйринга (1935-36), Дж. Бернала и др. привело к М. ф. жидких и твёрдых тел.

  Круг вопросов, охватываемых М. ф., очень широк. В ней рассматриваются строение газов, жидкостей и твёрдых тел, их изменение под влиянием внешних условий (давления, температуры, электрического и магнитного полей), явления переноса (диффузия, теплопроводность, внутреннее трение), фазовое равновесие и процессы фазовых переходов (кристаллизация и плавление, испарение и конденсация и др.), критическое состояние вещества, поверхностные явления на границах раздела различных фаз.

  Интенсивное развитие М. ф. привело к выделению из неё ряда крупных самостоятельных разделов, таких, например, как статистическая физика, кинетика физическая, физика твёрдого тела, физическая химия, молекулярная биология.

  Современная наука и техника используют всё большее число новых веществ и материалов. Выявившиеся особенности строения этих тел привели к развитию различных научных подходов к их исследованию. Так, на основе общих теоретических представлений М. ф. получили развитие такие специальные области науки, как физика металлов, физика полимеров, физика плазмы, кристаллофизика, физико-химия дисперсных систем и поверхностных явлений, теория тепло- и массопереноса. Сюда же можно отнести также новую область науки - физико-химическую механику,которая составляет теоретическую основу современного материаловедения, указывая пути создания технически важных материалов с требуемыми физическими свойствами. При всём различии объектов и методов исследования здесь сохраняется, однако, основная идея М. ф.: описание макроскопических свойств вещества, исходя из особенностей микроскопической (молекулярной) картины его строения.

  Лит.:Кикоин И. К. и Кикоин А. К., Молекулярная физика, М., 1963; Гиршфельдер Дж., Кертисс Ч. и Берд Р., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Френкель Я. И., Собр. избр. трудов, т. 3. - Кинетическая теория жидкостей, М. - Л., 1959; Франк-Каменецкий Д. А., Диффузия и теплопередача в химической кинетике, 2 изд., М., 1967; Киттель Ч., Введение в физику твёрдого тела, пер. с англ., М., 1957; Лихтман В. И., Щукин Е. Д., Ребиндер П. А., Физико-химическая механика металлов, М., 1962.

  П. А. Ребиндер, Б. В. Дерягин, Н. В. Чираев.

Молекулярная электроника

Молекуля'рная электро'ника,первоначальное название одного из направлений микроэлектроники. Вместо термина «М. э.», получившего некоторое распространение в 60-е гг. 20 в., с начала 70-х гг. применяют другой термин - функциональная электроника.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94