Современная электронная библиотека ModernLib.Net

По следам сенсаций

ModernLib.Net / Бобров Лев / По следам сенсаций - Чтение (стр. 14)
Автор: Бобров Лев
Жанр:

 

 


Допустим, что М — обыкновенное множество. Тогда оно должно содержать себя в качестве, элемента: ведь М, по определению, множество всех до единого обыкновенных множеств. — Но если оно включает самое себя, значит, перед нами необыкновенное множество! Ладно, пусть будет таковым. Стоп… Что же получилось: необыкновенное М входит в множество всех обыкновенных множеств? Но ведь мы же договорились вообще не иметь дела с необыкновенными множествами! М, по определению, не имеет права входить в множество всех и одних только обыкновенных множеств! А уж если оно угодило туда, пусть изволит стать обыкновенным. Остаётся одно: объявить множество М обыкновенным и… начать сызнова «сказку про белого бычка». Как видно, в отличие от своего севильского коллеги из бессмертной трилогии Бомарше Фигаро лорда Рассела занялся интригами на более высоком уровне — в области логики и математики.
      Парадоксы теории множеств заставили математику ревизовать свои логические устои.
      Как известно, ахиллесовой пятой канторовской теории множеств был её неконструктивный характер. Кантору ставили в упрёк, что он прибегал к доказательству от противного. Он обосновывал истинность фундаментальнейших выводов своей теории не прямо, а косвенно — демонстрируя абсурдность противоположного утверждения. До поры до времени это казалось убедительным. В самом деле, если одно из двух взаимоисключающих предложений ложно, то другое обязательно должно быть истинным. По крайней мере так гласил закон исключённого третьего. Приём редукцио ад абсурдум (приведение к нелепости) широко практиковался в математике со времён Евклида. Но ведь у Рассела в его парадоксе с брадобреем та же логическая процедура, проверенная тысячелетиями, дала осечку! Так почему же, спрашивается, она не могла подвести и Кантора? Неужто и впрямь… «движенья нет»? Во всяком случае, в логике опровергателей Зенона, апеллировавших к построениям Кантора…
      Но, быть может, противоречия были порождены чересчур вольной трактовкой понятия «множество»? А если более строго сформулировать требования к смыслу каждого термина, к каждой логической процедуре? И даже попытаться, если удастся, построить «конструктивную» логику, где не будет закона исключённого третьего и доказательств от противного?
      Теорема Гёделя легла в основу целого направления в математике и логике. Сама математическая теория, непротиворечивость которой пытаются обосновать, стала предметом изучения особой «надматематической» науки, названной метаматематикой, или теорией доказательств. Какова природа истины? На каких посылках зиждется сам фундамент математики? Какой смысл имеют математические предложения: аксиомы, леммы, теоремы? Какую логическую структуру должны иметь доказательства? Так попытки разрешить парадоксы столкнулись с более широкой проблемой обоснования математики и логики.
      Загляните в книгу С. К. Клини «Введение в метаматематику». Поначалу она наверняка отпугнёт вас умопомрачительной абракадаброй символов, а потом… Потом, глядишь, и притянет — скорей всего удивительным лаконизмом, элегантной строгостью, а если разобраться, то и простотой своеобычного языка знаков. Языка, которым описываются самые замысловатые умозаключения. В том числе и комичные логические нелепицы наподобие той, что возникла в эпизоде с «сеньором губернатором» Санчо Пансой. Странное, парадоксальное сочетание, не правда ли? Полнокровная проза Сервантеса и анемичные иероглифы математической «стенографии» — ведь это на первый взгляд две вещи столь же несовместные, как гений и злодейство! Ну как втиснуть живую человеческую речь, да не просто речь, а рассуждения, в прокрустово ложе математических формул?
      «Когда я, будучи мальчиком, знакомился с предложениями обычной логики и мне ещё была незнакома математика, у меня возникла, не знаю, по какому наитию, мысль о том, что можно изобрести такой анализ понятий, с помощью которого истины можно будет комбинировать и высчитывать как числа».
      Так на закате жизни делился своими неосуществлёнными мечтами блестящий дипломат и гениальный математик Готфрид Вильгельм Лейбниц. Он, как никто другой, остро чувствовал изъяны классической логики. Сведённая в систему ещё Аристотелем, она с тех пор на протяжении двадцати веков оставалась неизменной. Но значило ли это, что её нельзя усовершенствовать?
      Великий немецкий реформатор считал, что наши знания можно разложить на простые элементы. Обозначенные особыми символами, они составят алфавит человеческих мыслей. Спрашивается, зачем?
      — Споры не придут к концу, ежели не отказаться от словесных рассуждений в пользу простого исчисления, — объяснял Лейбниц, — ежели не заменить слова неясного и неопределённого смысла однозначными символами. После введения оных двум философам, буде возникнет между ними препирательство, уже не надобно стараться перекричать друг друга. Спорщикам не потребуется ничего иного, кроме как взять в руки перья, сесть, подобно бухгалтерам, за свои конторки и сказать: давайте-ка вычислять!
      Лишь через полтораста лет началось осуществление идей Лейбница. В 1847 году ирландский учёный Джордж Буль печатает «Математический анализ логики», где впервые излагает исчисление высказываний — так называемую алгебру логики. «Тот, кто знаком с современной алгеброй, — замечает автор, — знает, что правильность аналитической процедуры не зависит от истолкования символов. Поэтому один и тот же приём может дать при одном истолковании решение проблемы теории чисел, при другом — решение проблемы геометрии, при третьем — решение проблемы динамики или оптики и так далее». В булевой алгебре буквами обозначаются высказывания, причём самые громоздкие и запутанные логические построения сводятся к простым арифметическим действиям.
      Вторжение формул и уравнений имело для логики столь же решающее значение, как и появление буквенных обозначений для математики. Архимед, Евклид, Диофант и другие титаны античной математики не пользовались языком формул. Нет, не потому, что не хотели. Они его не знали. И излагали свои мысли в словах и рисунках. Геометр перед геометром изображал палочкой на песке квадрат. Потом проводил внутри него крест-накрест две черты, отсекавшие от квадрата по равной продолговатой краюхе справа и снизу. Пересекаясь, линии образовали в правом нижнем углу маленький квадратик. И любой, кто смотрел на рисунок, — грек ли, римлянин или араб, — даже не зная языка, понимал без слов: квадрат суммы двух величин равен сумме квадратов этих величин, сложенной с удвоенным произведением первой величины на вторую. Труднее было объяснить, чему равен куб суммы. Приходилось чертить куб, вычленять из него меньший куб и затем суммировать объёмные дольки. Зато четвёртую степень суммы наглядно объяснить не удавалось, не говоря уже о пятой, шестой и так далее. Геометрия пасовала. Между тем с помощью буквенных обозначений по формуле бинома Ньютона можно без труда подсчитать сумму двух членов, возведённую в любую степень:
      (a + b) 2= a 2+ 2ab + b 2;
      (a + b) 3= a 3+ Зa 2b + Зab 2+ b 3;
      (a + b) 4= a 4+ 4a 3b + 6a 2b 2+ 4ab 3+ b 4.
      И так далее. Комментарии излишни: преимущества говорят сами за себя.
      А теперь вчитаемся в необычную надгробную надпись:
 
Путник! Здесь прах погребён Диофанта. И числа поведать
Могут, о чудо, сколь долог был век его жизни. Шестую
Часть его составляло прекрасное детство,
Двунадесятая часть протекла ещё жизни — покрылся
Пухом тогда подбородок. Седьмую в бездетном
Браке провёл Диофант. Пятилетие минуло; он
Был осчастливлен рожденьем прекрасного первенца сына,
Коему рок половину лишь жизни прекрасной и светлой
Дал на земле по сравненью с отцом. И в печали глубокой
Старец земного удела конец восприял, переживши
Года четыре с тех пор, как сына лишился. Скажи-ка,
Скольких лет жизни достигнув, смерть восприял Диофант?
 
      Ну-ка решите задачу в уме, рассуждая — и только, не прибегая к услугам пера и бумаги. Что, трудновато? Ладно, давайте лучше втиснем певучий гекзаметр в строгую метрику формул.
      x/6 + x/12 + x/7 + 5 x/2 + 4 = х.
      Это уравнение с одним неизвестным решается в два счёта. Ответ: «прекрасное детство» будущего великого математика закончилось в четырнадцать лет. В двадцать один год Диофант сыграл свадьбу, в тридцать восемь у него родился сын, умерший сорока двух лет, когда самому Диофанту стукнуло восемьдесят. Наконец, на восемьдесят четвёртом году великий грек ушёл из жизни. Его не стало (хотя это уже не вытекает из нашего уравнения) в III веке новой эры. Евклид и Аристотель жили и творили в III веке до новой эры. И несмотря на то, что биографии великих мыслителей разделяет более полутысячелетия, во времена Диофанта ещё не родилась алгебра — та самая, которая позволяет нам столь лихо расправляться с трудными арифметическими задачами.
      Как ускорился прогресс, насколько богаче стали возможности математики, когда встала на ноги и окончательно утвердилась алгебра, сразу же обретшая права гражданства! А случилось это в эпоху Возрождения — через тысячи лет после появления геометрии и арифметики.
      Что касается логики, тоже весьма почтенной старушки («Органон») Аристотеля создан примерно в одно время с «Началами» Евклида), то здесь алгебра не сразу получила признание. Символика и операции математической логики пришлись то ли не по вкусу, то ли не по зубам логикам середины XIX века. А кто осилил булеву алгебру, десятилетиями считали её занятным, однако никчёмным изобретением досужего ума. Положение изменилось лишь к концу XIX века, когда перед наукой во весь рост поднялась серьёзная задача — обосновать самые кардинальные идеи и понятия математики. Аристотелева логика, при всём её совершенстве, вынуждена была сложить оружие перед неодолимыми трудностями. Тут-то и пришлось идти на поклон к логике символической. И понятно почему.
      В своё время, разбирая кипу откликов на статью «По следам логических катастроф», напечатанную в журнале «Техника — молодёжи», автор обнаружил массу опровержений всех знаменитых парадоксов. В том числе парадокса Сервантеса. Искренне сочувствуя бедняге Санчо, изо всех сил стараясь ему подсобить, читатели пускались на всевозможные казуистические ухищрения. Одни выискивали смысловые лазейки в формулировке закона. Другие в заявлении чудаковатого пришельца. Третьи — в процедуре исполнения приговора. Что ж, кое-кому это удавалось. Удавалось постольку, поскольку в статье фигурировала популярная версия парадокса со всеми атрибутами реальной житейской ситуации. Зато сформулированное в терминах математической логики с их однозначной трактовкой, не допускающей никаких двусмысленностей, противоречие предстало бы перед нами во всей его роковой, неумолимой, неизбежной, неуничтожимой сущности.
      Разумеется, симпатии учёных притягивала и притягивает не только эта строгость и однозначность определений, скрывающаяся за символами математической логики. Сведя построение силлогизмов к буквенным преобразованиям, булева алгебра освободила человека от необходимости держать в голове содержание посылок и промежуточных умозаключений. Вся забота свелась к наблюдению за правильностью алгебраических выкладок, напоминающих решение системы уравнений, А такую, премудрость способен постигнуть даже школьник.
      Да, далеко шагнули вперёд математика и логика со времён Зенона и Аристотеля. Появилась и успешно развивается теория доказательств — метаматематика. И тем не менее, несмотря ни на что, парадоксы с невозмутимостью Сфинкса, сквозь загадочно-насмешливую маску каменного колосса- продолжают взирать на все ухищрения логистов, как они тысячелетия назад смотрели на наивные потуги опровергателей. Есть ли выход из тупика? Если да, то где он? Неужели есть вещи, недоступные человеческому разуму?
      Бессильная в своём могуществе, математическая логика в недоумении разводит руками.
      «Ну и что? — пожмёт плечами читатель. — Разве из-за этих сугубо теоретических, лучше даже сказать, надматематических изъянов хуже действуют столь мощные практические инструменты, как, например, дифференциальное и интегральное исчисление? Или вы забыли, какие чудеса творит кибернетика? То ли будет впереди! А вы всё толкуете о каких-то там парадоксах…»
      Спору нет, успехи современной математики грандиозны. Кибернетики — тоже. Электронные машины вторглись в заповедные области человеческого интеллекта… Нынче они навострились не только доказывать известные теоремы, но даже… формулировать новые!
      Работая по программе, составленной американским учёным Ваном Хао, универсальная цифровая машина ИБМ-704 за восемь минут тридцать секунд доказала все триста пятьдесят теорем, что составляют целых девять глав в монографии Рассела и Уайтхеда «Основания математики»!
      Этим дело не ограничилось. Ван Хао так запрограммировал машину, чтобы она не просто доказывала или опровергала математические предложения, заданные человеком, а сама занялась научным творчеством. И машина охотно принялась печатать одну за другой новые теоремы…
      Так, может, эра машинного мышления знаменует собой начало полного раскрепощения математики от логических несуразностей?
      Послушаем специалистов.
      «Имеется ряд результатов математической логики, — говорит А. Тьюринг, автор книги «Может ли машина мыслить?», — которые можно использовать для того, чтобы показать наличие определённых ограничений возможностей машин..! Наиболее известный из этих результатов — теорема Гёделя… Существуют определённые вещи, которые эта машина не может выполнить. Если она устроена так, чтобы давать ответы на вопросы, то будут вопросы, на которые она или даст неверный ответ, или не сможет дать ответа вообще, сколько бы ни было ей предоставлено для этого времени».
      А вот какого мнения придерживается «отец кибернетики» Норберт Винер: «Всякая логика ограничена вследствие ограничений человеческого разума, которые обнаруживаются при том виде его деятельности, который мы называем логическим мышлением. Например, в математике мы посвящаем много времени рассуждениям, включающим понятие бесконечности, но эти рассуждения и сопровождающие их доказательства в действительности не бесконечны. Всякое, допустимое доказательство содержит лишь конечное число шагов…
      Доказательство есть логический процесс, который должен привести к определённому заключению через конечное число шагов. Напротив, логическая машина, действующая по определённым правилам, не обязательно должна прийти когда-либо к заключению. Она может продолжать проходить через различные шаги, никогда не останавливаясь; при этом она будет либо совершать последовательность действий всё увеличивающейся сложности, либо повторять один и тот же процесс, подобно вечному шаху в шахматной партии. Это действительно имеет место в случае некоторых парадоксов Кантора и Рассела».
      Значит, и машины пасуют перед логическими парадоксами? Если бы только перед парадоксами…
      Недавно вышла в свет прелюбопытнейшая книжица М. Таубе «Вычислительные машины и здравый смысл. Миф о думающих машинах». Там сказано: «В свете теоремы Гёделя о неполноте элементарной теории чисел существует бесконечное множество задач, которые принципиально неразрешимы этими машинами, как бы сложна ни была их конструкция и как бы быстро они ни работали. Очень может быть, что человеческий мозг — это тоже «машина» с присущими ей ограничениями и с неразрешимыми для неё математическими проблемами. Даже если это так, то человеческий мозг воплощает в себе систему операционных правил, значительно более могущественную, чем у мыслимых в настоящее время машин. Так что в ближайшем будущем не видно перспектив замены человеческого разума роботами».
      Неужели и тут «движенья нет»?
      Прежде чем окончательно, уяснить неутешительный вывод Таубе, давайте разберёмся, о какой ограниченности машины по сравнению с человеком твердят кибернетики.
      Если верить историческому анекдоту, Архимед открыл свой знаменитый закон гидростатики нежданно-негаданно — лёжа в ванне. Взволнованный внезапно осенившей его идеей, учёный, забыв одеться, побежал по улицам Сиракуз с криком: «Эврика!»
      Отголосок этого восклицания великого эллина через двадцать с лишним веков зазвучал в слове «эвристика». Таким термином современные учёные пользуются, когда говорят о характерных особенностях человеческого мышления.
      Инженер денно и нощно бьётся над какой-нибудь технической головоломкой. Он уже изрисовал чертежами ворох бумаги, он перечитал груду книг, он прибегал и к моделям и к расчётам. Увы, нужная конструкция «не вытанцовывается». Проходяг часы, дни, недели… Мысль зашла в тупик. И отвязаться-то от идеи не отвяжешься: она неотступно стоит перед внутренним оком изобретателя. Вдруг… «Эврика!» И на бумагу ложится выстраданная бессонными ночами долгожданная находка. «Внезапное озарение», — говорит инженер. «Эвристическая деятельность», — говорят учёные. Технология этого мучительного и радостного творческого процесса — величайшая загадка природы.
      К пионерам науки об эвристике относят Декарта и Лейбница, великих математиков и философов своего времени. В их сочинениях эвристика зачастую отождествляется с интуицией. В книге «Правила для руководства ума» Рене Декарт чётко отграничивает интуитивную форму познания от цепи последовательных логических умозаключений. Он рекомендует в ряде случаев «отбросить все узы силлогизмов, — вполне довериться интуиции как единственно остающемуся у нас пути». О неосознаваемых сторонах мыслительного процесса, наряду с его логической структурой, говорили Бенедикт Спиноза и Анри Пуанкаре, Альберт Эйнштейн и А. Колмогоров.
      Ситуации, когда нет готового алгоритма, готового набора правил для решения задачи, возникают на каждом шагу — в работе шахматиста и писателя, следователя и режиссёра, врача и экономиста. А порой и вовсе не известно, разрешима ли задача вообще. Какими же путями бредёт ищущая человеческая мысль?
      Систематический перебор вариантов — вот что считалось одно время основой творческого процесса. На эту идею опиралось и конструирование кибернетических соперников человека, например электронных шахматистов. Но странное дело: машина проигрывала даже не ой каким сильным партнёрам! А странное ли? Количество всевозможных позиций в шахматных партиях выражается невообразимо, чудовищно огромным числом — единицей со ста двадцатью нулями! Надо сказать, что атомов во вселенной в миллиарды миллиардов раз меньше. Если бы вы в поисках наилучшего ответа на ход противника механически перебирали в уме все возможные ходы и их последствия, вы бы попали в такой цейтнот, что поседели бы за шахматной партией, так и не добравшись до эндшпиля. Между тем турнирный регламент отпускает, как известно, всего два с половиной часа на сорок ходов. И игроки укладываются в сроки. Значит, человек умеет какими-то неисповедимыми путями отсеивать никчёмные варианты. И даже далеко вперёд рассчитывать последствия необычных жертв. Вспомните изящные комбинации Морфи или Алехина! Машина же, при всём её быстродействии, чаще всего занимается формальной комбинаторикой, далёкой от подлинно творческой работы мысли. Правда, многое зависит от программы. Но вернёмся к рассуждениям Таубе о возможном, вернее, о невозможном для умных машин.
      «Гигантский искусственный мозг, машины-переводчики, обучающиеся машины, играющие в шахматы, понимающие машины и т. п., заполнившие нашу литературу, обязаны своим «существованием» людям, пренебрегающим сослагательным наклонением. В эту игру играют так. Сначала заявляют, что, если не учитывать незначительные детали инженерного характера, машинную программу можно приравнять самой машине. Затем блок-схему программы приравнивают самой программе. И наконец, заявление, что можно составить блок-схему несуществующей программы для несуществующей машины, означает уже существование самой машины».
      Автор, правда, поясняет свою мысль на примере электронных переводчиков, не шахматистов, но сути дела это не меняет.
      Итак, машине чужда интуиция. И если машине суждено переводить, то лишь формально. Между тем язык невозможно формализовать целиком и полностью. Хотя бы потому, что он включает в себя всю математику, а математика не сводится к формальной системе, это доказано.
      «Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству, — говорит американский учёный Рихард Курант. — Её основные и взаимно противоположные элементы — логика и интуиция, анализ и конструкция, общность и конкретность. Как бы ни были различны точки зрения, питаемые теми или иными традициями, только совместное действие этих полярных начал и борьба за их синтез обеспечивают жизненность, полезность и высокую ценность математической науки».
      Самые строгие формалисты никогда всерьёз не отрицали участия человеческой интуиции даже в тех математических выкладках и умозаключениях, когда её вроде бы и не требовалось! (Слово «интуиция», замечает Таубе, употребляется здесь в смысле ничуть не более таинственном, чем обычные слова: «опыт», «ощущения».) Сказать «человек переводит неформально» — значит подчеркнуть, что в каждом акте перевода он пользуется своим арсеналом опыта и чувств. Кое-кто мог бы возразить: Дескать, словесное выражение опыта и чувств — это уже не что иное, как их формализация! Отвечая на такой выпад своему предполагаемому оппоненту, Таубе приводит контраргумент: нет ни малейшего намёка на то, что опыт и чувства можно исчерпывающе полно и абсолютно точно выразить словами. На эквивалентности всего словесно выразимого нашему опыту и чувствам способен настаивать только тот, кто отрицает свою принадлежность к человеческому роду, кто никогда не слушал музыку, не имеет представления о живописи, никогда не влюблялся и не был ничем глубоко захвачен. Вывод: переводить формально с одного человеческого языка на другой невозможно. А машина способна переводить только так, ведь ей чужда интуиция!
      Значит, «в свете известной неформальности языка и смысла, изыскания в области машинного перевода носят характер не истинно научных исследований, а романтического поиска… Нашим инженерам-электрикам и энтузиастам вычислительных машин следует либо прекратить болтовню об этом, либо принять на себя серьёзное обвинение в том, что они сочиняют научную фантастику с целью пощекотать читателям нервы в погоне за лёгкими деньгами и дешёвой популярностью».
      Так считает Мортимер Таубе, профессор Колумбийского университета, специалист по программированию и применению электронных машин в области научной информации.
      Здесь было бы неуместно ввязываться в спор с профессором Таубе, это не входит в цели нашего разговора о логических несуразицах. Профессор, по-видимому, чуточку переборщил в своих пессимистических прогнозах, хотя в чём-то он, безусловно, глубоко прав. Нам гораздо важнее усвоить, что парадоксы отнюдь не забавные словесные выкрутасы, а самый настоящий пробный камень совершенства нашей мыслительной схемы.
      Да, трудности, связанные с пониманием непрерывности, бесконечности, движения, ещё в древние времена служили предметом жарких философских дискуссий. И это не прошло бесследно для научного прогресса. Апории Зенона, открытие иррациональных точек смутили античных геометров, помешали им развить искусство численных операций, заставили их искать выход из тупика в дебрях чистой геометрической аксиоматики. Стремление дать строгое непротиворечивое обоснование всем логическим и геометрическим построениям поглотило силы лучших умов древней Греции. Так, по словам Куранта, началось одно из самых странных и долгих блужданий в истории математики. При этом, по-видимому, были упущены богатые возможности. Груз древнегреческих геометрических традиций подавлял идею числа, он затормозил эволюцию арифметики и алгебры, цифрового и буквенного исчисления, ставшего позднее фундаментом точных наук. Лишь в XVII столетии греческий идеал кристально чистой аксиоматики и дедукции, строгой в своей систематичности, потускнел в глазах учёных. Логически безупречное мышление, отправляющееся от отчётливых определений и «очевидных», взаимно не противоречащих постулатов, уже не импонировало революционному духу новой математики. Предавшись оргии интуитивных догадок, слепо вверяясь сверхчеловеческой силе формальных процедур, пионеры дифференциального и интегрального исчисления открыли новый математический мир, полный несметных богатств.
      Однако мало-помалу экстатическое состояние ума, упоённого головокружительными успехами, стало уступать место трезвости, сдержанности, критицизму. В XIX веке устои новой математики подверглись ревизии. Были предприняты энергичные попытки уяснить понятие предела, подразумеваемое математическим анализом. Классический идеал доказательной строгости, логической безупречности, отвлечённой общности торжествовал снова. Но тут, как и во времена Зенона, на арену теоретических исканий вдруг высыпала анархическая гвардия парадоксов. Учёные снова заметались в тревоге, спасая пошатнувшееся здание математики. Кризис продолжается и по сей день.
      Обратите внимание, насколько парадоксальна сама история парадоксов. Атомистическая математика, игнорировавшая парадоксы и приводившая к ошибкам, оказывается более плодотворной, нежели математика, построенная на принципе непрерывности, тяготеющая к строгим обоснованиям и устраняющая ошибки атомистов! Так обстояло дело не только в глубокой древности. «С конца XVI века учение о непрерывности являлось характерной чертой схоластического застоя, — отмечает уже цитированный в этой главе профессор С. Я. Лурье, — борцы за возрождающуюся науку, став на точку зрения математического атомизма, привели математику к небывалому расцвету, создав заново ряд дисциплин. Однако и эти учёные сделали ряд ошибок и произвольных допущений; математики XIX века, став последовательно на точку зрения непрерывности пространства, исправили эти ошибки, дав методологию предельной процедуры».
      И профессор Лурье, исходя из диалектичности научного прогресса, предсказывает «возможность нового расцвета математики на почве возрождения нового математического атомизма — несравненно более совершенного, чем учения не только Демокрита, но также Кеплера, Кавальери, Ньютона и Лейбница»
      Эти слова произнесены в тридцатые годы. И содержащаяся в них идея кое-кому может показаться архаичной, отвергнутой всем ходом развития современных наук. Нет, тысячу раз нет!
      Откроем монографию А. Н. Вяльцева «Дискретное пространство-время», изданную в 1965 году. Эта книга являет собой редкостное сочетание научной глубины и популяризаторского блеска в изложении темы, которую никак не назовёшь тривиальной, ибо она вот уже не первый десяток лет, лежит в стороне от обычных исследовательских и тем, паче журналистских троп, Почитайте её и поразмыслите над такими словами её автора: «Современный математический анализ по праву можно назвать теорией непрерывных процессов. Возможность непрерывного движения принимается при этом как нечто данное свыше. По существу же во всех относящихся к делу случаях речь идёт о способности движущихся тел достигать разумной цели. Достаточно напомнить в этой связи о Диогене, который в ответ на заявление Зенона о том, что непрерывное движение невозможно, начал ходить взад и вперёд перед своей бочкой, демонстрируя одновременно и чувственную реальность движения и убожество своего мышления. В математическом анализе факт достижения разумных целей воплощён в понятии предельного перехода. Именно эту черту математического анализа следует считать главной причиной успешного применения его в области физики, и значит, надо признать, что непрерывный анализ решает проблемы физики чисто по-диогеновски.
      Применение дифференциального исчисления к подсчёту электрического заряда тел, периода радиоактивного распада ядер и некоторых других прерывных эффектов даёт хорошие результаты, хотя ни в атомистической природе электричества, ни в дискретном характере радиоактивного излучения никто из нас никогда не сомневался. Дееспособность непрерывного математического анализа должна, как можно думать, потерпеть крах на той стадии познания природы, когда дискретность мира станет существенной чертой его математической картины. По всей видимости, современная физика уже стоит на пороге этой стадии… Тогда придётся оторваться от классической почвы, отказаться от помощи классических «лесов» и вступить в область оригинального математического творчества — в собственную область математики дискретного мира. Эта новая математика, надо думать, будет находиться по отношению к классической примерно в том же положении, в каком квантовая физика находится к классической физике, то есть будет сводиться к ней, но не выводиться из неё. Для продвижения вперёд потребуется поэтому деятельность умов гениальных. Поприще для них, возможно, окажется не менее широким, чем в случае классической математики, то есть работы хватит на несколько поколений. В практической возможности новой математики сомневаться не приходится: ведь это будет математика реального, живого, окружающего нас и составляющего нас мира. Что касается внутренней привлекательности новой математики, то и в этом отношении дискретная математика нисколько не уступает непрерывной. Истины дискретной математики привлекают к себе своей таинственностью и поразительной красотою.
      Какая это заманчивая задача — создать новую математику, опираясь на великий свод математики классической! Как важно для математиков, особенно молодых, понимать, где лежат ещё не разработанные карьеры их науки; как важно для них знать, что математический аппарат ещё ждёт своих Лагранжей и Гамильтонов!»
      Здесь опять-таки для нас интересны не столько пути, которыми пойдёт математика будущего, сколько сам факт: математика, как и логика, никогда не была чем-то законченным, завершённым, застывшим в своём развитии. И сегодня она не представляет собой каталог готовых истин. Напротив, её ждут новые откровения и разочарования, новые революции и спады, новые драматические столкновения идей, в которых, словно в горниле, будут выкристаллизовываться новые истины.
      Мы стоим в преддверии века автоматики. Человек твёрдо намерен построить машину, способную мыслить и творить, невзирая ни на какие теперешние логические ограничения.
      Но для этого мало овладеть в совершенстве уже имеющимся логическим аппаратом. Требуются широкие исследования путей и способов, какими идёт человеческий мозг в своём стремлении достигнуть истинного знания. Как далёк век Ньютона от века Зенона! Но ещё дальше ушли мы от века Ньютона. По объёму накопленных знаний. Между тем о технологии своего мышления Бертран Рассел и Курт Гёдель смогли бы рассказать едва ли больше, чем Зенон и Аристотель. Иными словами, нам известно всё, что следует за восклицанием: «Эврика!» Но нам ещё предстоит узнать то, что ему предшествует — в недрах человеческого мозга.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18