Современная электронная библиотека ModernLib.Net

Сундук истории. Секреты денег и человеческих пороков

ModernLib.Net / Публицистика / Анатолий Вассерман / Сундук истории. Секреты денег и человеческих пороков - Чтение (Ознакомительный отрывок) (стр. 2)
Автор: Анатолий Вассерман
Жанр: Публицистика

 

 


Сходная разница у нашей техники не только с немцами времён Второй мировой (или нынешними израильтянами). Так, американский «Шерман» наши танкисты очень ценили на марше – за комфорт. Но в бою лишний – по сравнению с Т-34 – метр высоты делал его едва ли не идеальной мишенью.

Правда, погоня за боевой живучестью иной раз мешает даже военным.

Наши командиры до середины войны неохотно пользовались радиосвязью – предпочитали телефон и связных. Это изрядно затрудняло взаимодействие. Более того, иной раз – особенно в первые месяцы войны – командиры даже самого высокого ранга вовсе не представляли себе ни расположения подчинённых им соединений, ни их состояния, ни планов. Но тогдашние наши радиостанции действительно были, мягко говоря, не слишком удобны. Конструкторы гнались за прочностью и надёжностью, но не добились ни стабильности настроек (в танках пришлось выделить отдельного радиста только для постоянной подстройки частоты), ни правильной передачи тембра, ни хотя бы чёткой слышимости. Так что военным и впрямь зачастую было куда проще подавать флажные сигналы, командовать «делай как я», давать самолётам указания с помощью ракет и растягивания длинных полотнищ, чем сквозь шумы и помехи объясняться устно. Только к середине войны, используя англо-американские наработки (а то и просто поставки по ленд-лизу), нам удалось оснастить рациями приемлемого качества и пехоту (до роты включительно), и каждый танк и самолёт. Тогда и начались у нас уже не отдельные удачи, а непрерывные успехи: ведь в войне правильное взаимодействие разных видов давления на противника чаще всего куда важнее силы каждого из этих видов по отдельности.

Избыток надёжности не лучше любого другого избытка. Скажем, автомат Калашникова стреляет в самых немыслимых условиях. Но для обеспечения такой работоспособности газоотвод рассчитан на максимальную степень загрязнения, а зазоры столь велики, что подвижные детали явно болтаются. В результате кучность огня в пару раз хуже, чем у столь же легендарной – но созданной в рамках совершенно иной концепции боевого применения – М-16.

Надёжность порою мешает даже долговечности. Тот же «Калаш» выдерживает 10 000 выстрелов, прежде чем шатание затворной ямы породит неприемлемые выбоины на её направляющих. А производители М-16 гарантируют 80 000 выстрелов. Правда, за цену одной М-16 можно купить добрый десяток АК. Долговечность же в бою не особо важна: редкий пехотинец успеет исчерпать ресурс АК – даже с учётом нормального (а не принятого в пехоте последних советских и первых постсоветских лет) режима стрелковых тренировок.

В гражданских же применениях работоспособность при любых обстоятельствах – и подавно далеко не единственное требование.

Советские автомобили – даже представительского класса – приспособлены к бездорожью настолько, что американцы шутят: «Чего только не придумают русские, чтобы не строить дороги!» А толку? Всё равно «чем круче джип, тем дальше бежать за трактором». Зато комфорт в наших машинах всегда был весьма условен. Оно и понятно: когда тащишься по выбоинам и ухабам, никакая мягкость сидений не спасёт, а уж о форме пепельниц вовсе не думаешь.

Война требует ещё и ремонтопригодности. Разобрать, почистить и собрать АК куда проще, чем М-16, что очевидно хотя бы из сравнения нормативов времени на эту важнейшую операцию. Ключевые агрегаты Т-34 – мотор, трансмиссию, пушку – зачастую меняли в полевых условиях силами самого экипажа, а «Пантеру» приходилось буксировать к умельцам в полевые ремонтные мастерские (там были такие специалисты, что немцы шутили: танк остаётся на учёте, если от него осталась хотя бы табличка с заводским номером – всё остальное к ней прикрутят ремонтники). Вот и легковые наши автомобили до сих пор без особых проблем чинит слесарь с гаечным ключом – зато в автосервисе западного образца машину могут чуть ли не рентгеном просветить, выявляя проблемы, способные осложнить жизнь водителя через недели и месяцы.

Всю нашу гражданскую технику с незапамятных времён проектировали – да, пожалуй, и до сих пор проектируют – люди, думающие прежде всего об условиях большой войны (именно большой – у локальных войн своя специфика, и кучность капризной М-16 там зачастую бывает важнее безотказности АК). Да и заказчики зачастую рассуждают как в анекдоте: «Вдруг война, а я уставший». Порою это и впрямь необходимо: скажем, родоначальником класса городских внедорожников стала «Нива», отчётливо воплощающая отечественный инженерный менталитет. Но куда чаще возникают конструкции, оптимизированные под гипотетический наихудший случай – но именно поэтому далеко не оптимальные для тех условий, где им фактически предстоит работать.

Наши недостатки – продолжение наших достоинств.

Ошибка в ДНК: кому опасны генно-модифицированные продукты[5]

Наш закон велит указывать на любом продовольствии сведения о содержании генно-модифицированного сырья, если оно превышает 1 %. Предел уже не раз пытались ужесточить. Так, мэр Москвы[6] требует указывать любое ненулевое содержание. Что на практике затронет всю нашу еду – скажем, сою без генных модификаций давно не выращивают практически нигде в мире.

Коммерсанты саботируют норматив. Ведь запуганный эколожескими воплями народ боится «пищи зомби». Но, боюсь, юристы, чуя поживу, добьют коммерцию – и люди будут шарахаться от любой расфасованной пищи.

А есть ли от чего шарахаться?

Вся наша еда (кроме разве что охотничьей добычи да дичков, собираемых дикарями по джунглям и пустыням) сделана из культурных сортов растений и животных. Эти сорта – плод многолетнего (а то и многовекового) отбора результатов удачных мутаций, скрещивания разных образцов для выделения оптимальных сочетаний таких мутаций (по отдельности они иной раз вовсе не благоприятны ни для своих носителей, ни для нас) и прочих манипуляций над генами, постоянно модифицируемыми самой природой.

Генные технологии отличаются от классической селекции только тем, что нужные гены можно взять не только от организмов, скрещивающихся естественным путём. Хотя привычные нам гибриды тоже не слишком естественны: так, технология производства мулов – издревле предмет ехидных шуток.

Добыть из полярной рыбы ген природного антифриза и включить его в томат, чтобы новый сорт стал устойчив к заморозкам – задача сложная: надо разобраться, какой из многих тысяч генов отвечает именно за морозостойкость. Но от классики отличие только одно: не нужны миллионы неудачных проб и ошибок. Поэтому нынешние способы несравненно быстрее – значит, дешевле – старых. И при этом ничуть не опаснее, ибо основаны на тех же принципах.

Правда, в новой работе и ошибки случаются новые. Однажды в сою – бедную аминокислотой метионином – ввели ген из бразильского ореха, ответственный за выработку белка, содержащего очень много метионина. Но как раз этот белок вызывает у некоторых людей сильную аллергию. Сорт сои был кормовой. Но производители побоялись, что её по ошибке употребят в составе еды для людей, и сняли с производства. Соответственно изменены и правила генных манипуляций: теперь гены, связанные с веществами, потенциально вредными для человека, вовсе нельзя переносить во что-то съедобное (для человека или даже для животных). Хотя тот же бразильский орех в чистом виде продаётся свободно: те, кто склонен к аллергии, просто избегают его. Да и природная соя – аллерген покруче бразильского ореха, потребляется – в чистом виде или в добавках к другой пище – большей частью человечества.

Этот пример доказал: результаты генных технологий проверяются несравненно жёстче продуктов классической селекции. Если бы Лев Платонович Симиренко в конце XIX века вынужден был проходить нынешние тесты, любимый мною сорт яблок (ныне более известный под торговой маркой Granny Smith – бабушка Смит) мог вовсе не поступить в продажу: слишком кислый, да и хранится подозрительно долго – уж нет ли в нём чего-то бактерицидного?

Более того, во многих естественных продуктах есть явно опасные вещества. Так, каждый тысячный европеец плохо переваривает белок глиадин, содержащийся почти во всех злаках (кроме гречихи, кукурузы и риса). Без генной инженерии устранить подобные опасности вряд ли удастся.

Увы, никакие проверки не способны гарантировать абсолютную безопасность: если люди ухитряются давиться сливовыми косточками – косточки генно-модифицированной сливы сработают ничуть не хуже. Но по крайней мере генные модификации не опаснее «природных» – то есть выведенных привычной нам селекцией – пород и сортов.

Один несчастный случай всё же был. Аминокислоту триптофан, выработанную модифицированными бактериями, плохо очистили от питательного бульона для этих бактерий – и несколько человек, из-за редкой мутации чувствительных к одной из примесей, заболели. Пришлось срочно совершенствовать технологию очистки.

Правда, рассказывают о страшных угрозах много и сенсационно. Так, биолух профессор Пуштаи обнаружил: если месяцами подряд кормить крыс одним генно-модифицированным картофелем, они почувствуют себя хуже. На простейшую мысль – накормить контрольную группу крыс обычным картофелем и убедиться, что всеядным животным плохо от любой монотонной диеты – его мудрости уже не хватило. Нейрофизиолог Ирина Ермакова догадалась завести три группы крыс: одну кормила стандартной лабораторной диетой, второй добавляла обычную сою, третьей – модифицированную. Но во всех публикациях она сравнивает только первую и третью группы, а о второй молчит: ведь общеизвестно – крысы плохо переносят любую сою!

Страшилки о генных технологиях – клевета. Злостная. И беспроигрышная: пустил слушок в два слова – а опровергать надо горами статей столь серьёзных, что их не всякий прочтёт. Проплачивают её прежде всего производители ядохимикатов и удобрений: ведь главная ныне задача генных инженеров – совершенствование естественной защиты растений от вредных факторов. Ещё один источник финансирования клеветы – Европейский Союз, чьи фермеры вроде Жозе Бове[7] безнадёжно проиграли конкурентам из Нового Света и давно выпрашивают казённые подачки: не переучиваться же на более осмысленные занятия! Третий мощный генератор клеветы – политики, поддерживающие отсталость сельского хозяйства третьего мира, дабы голодающая Африка зависела от подкормки из-за океана.

Искренние же адепты панического эколожества напрашиваются на реплику, популярную ещё в мою бытность программистом. В особо безнадёжных случаях на вопрос коллеги «Где тут ошибка?» до сих пор принято отвечать «В ДНК».

Локальная эффективность против глобальной[8]

Русский, бельгийский, американский физик Илья Рувимович Пригожин (1917.01.25-2003.05.28) получил Нобелевскую премию 1977-го года по химии за открытие синергетики – учения о самоорганизации неравновесных систем. Он показал: под воздействием материальных и энергетических потоков могут самоорганизовываться сложные структуры, существующие именно благодаря этим потокам. Более того, синергетические структуры тормозят потоки, направленные на выравнивание неравновесия, и тем самым снижают скорость роста энтропии – беспорядка в системе. Если какая-то структура недостаточно хороша в качестве тормоза беспорядка, она рано или поздно уступит место более эффективной. Причём формирование и переформирование происходит, как правило, скачкообразно (что соответствует, в частности, известному из биологии мутационному механизму порождения сырья для эволюции).

Физикам несомненно предстоит ещё не одно десятилетие выводить из теоремы Пригожина – о минимуме производства энтропии в открытой системе – разнообразные нетривиальные следствия. Но природа, как известно, не поделена непроходимыми междисциплинарными перегородками. Как стены церквей не доходят до неба, так и стены факультетов не ограничивают взаимодействия разных наук. Не зря в числе первых примеров физической теории Пригожина оказалась колебательная химическая реакция, обнаруженная Борисом Павловичем Белоусовым и далее исследованная биофизиком Анатолием Марковичем Жаботинским. А ныне синергетические эффекты обнаруживаются едва ли не в любой отрасли знаний.

Экономика – достаточно сложная часть природы, чтобы и к ней были приложимы многие положения синергетики. Даже вполне равновесное в целом хозяйство содержит не только объекты – производителей и потребителей. Главное в ней – потоки товаров и услуг (и соответствующих им денег) между объектами. Понятно, на этих потоках также спонтанно формируются структуры, приводимые потоками в действие.

В полном соответствии с синергетическими законами эти структуры постепенно размножаются. В частности, прямые связи производителя с потребителем постепенно уступают место цепочкам посредников. Они берут на себя складирование товаров, их развозку по бесчисленным торговым точкам. А заодно изучают запросы и пожелания, собирают статистику эксплуатационного износа и случайных поломок, доводят всё это до сведения разработчиков. Развиваются и многие иные направления услуг, оказываемых посредниками. Причём каждое новое звено получает возможность совершенствоваться в каких-то узких специальностях, доводя свою эффективность до идеала. Благодаря всему этому растёт общая упорядоченность системы. Как и указал Пригожин, скорость роста энтропии падает.

Самоорганизация посредничества происходит не только в рыночной экономике. Советское плановое хозяйство тоже немыслимо без изобилия контор, чьи названия заканчиваются на – снаб и – сбыт. Плодились они не только по классическим законам развития бюрократии, описанным Сирилом Норткотом Уильям-Эдуардовичем Паркинсоном, но и в соответствии с очевидной целесообразностью управленческой специализации. Отсюда видно: законы синергетики мало зависят от формы собственности – они проявляются в любом обществе с достаточно глубоким разделением труда. Более того, вся мировая история доказала: и рынок, и разделение труда в сильнейшей степени зависят как раз от развития многоступенчатого посредничества.

Увы, нет достоинств без недостатков. В частности, посредничество чревато появлением разрыва между возможностями и потребностями. Приведу пример из отечественной истории. Ещё в первом тысячелетии нашей эры русские кузнецы производили самозатачивающиеся ножи. К тонкой сердцевине из высокоуглеродистой твёрдой стали прикованы боковые обкладки из низкоуглеродистой мягкой. Обкладки стираются быстрее сердцевины, так что лезвие всегда остаётся заострено под правильным углом. Но по мере развития торговли высокотехнологичная – и потому сравнительно дорогая – конструкция уступила место на прилавках ножам из мягкой стали с прикованной твёрдой кромкой. Непрофессионал не разглядит разницы с прежним вариантом. Но заточку такой нож не держит – его надо то и дело подправлять. А когда узкая полоска высокоуглеродистой стали сотрётся, остаток можно вовсе выбросить. Пока покупатель мог пойти к кузнецу и предъявить явно дефектное изделие – мастера не рисковали своей репутацией. А с посредника что возьмёшь? Принцип самозаточки забылся, и его переоткрыли заново уже в XX веке.

Впрочем, в рамках синергетики куда важнее другое обстоятельство. Структуры множатся, становятся всё мельче – и каждое дробление замедляет подпитывающий их поток. С точки зрения классической экономики это – несомненное благо: всё больше народу оказывается при деле, всё меньше безработных, всё стабильнее и спокойнее общество в целом. Но с точки зрения конечного результата производственных процессов налицо непроизводительная растрата сил и средств. В самом деле, суммарные возможности общества определяются именно производством товаров и непосредственных услуг. Чем больше доля этих возможностей, достающаяся посредникам, – тем меньше получают конечные потребители, тем меньше оплата труда первичных производителей. Рано или поздно издержки на содержание посредников превышают выигрыш от углубления разделения труда, повышающего его производительность, и точного удовлетворения потребностей, снижающего потери от недоиспользования всего производимого. Тут уж даже снижение безработицы не помогает стабилизировать общество: ведь на каждого посредника тоже приходится всё меньший доход, да вдобавок многие начинают осознавать бессмысленность своей работы, что также порождает желание что-то изменить.

Избыток посредников особо нагляден на постсоветском пространстве. Едва ли не любой товар проходит через десятки промежуточных ступеней, накручивающих на первоначальную цену собственные издержки, так что конечная цена растёт в разы. Классическая легенда о передаваемом из рук в руки куске масла заканчивается моралью: вроде бы ничего не убыло, а у всех руки жирные. У нас она уже не работает: жирных рук столько, что убыль масла не просто видна невооружённым глазом, а зачастую превосходит то, что дойдёт до бутерброда.

По законам синергетики этого и следовало ожидать. Структура, порождаемая потоком, неизбежно тормозит его. Беспорядок системы в целом растёт не так быстро – зато упорядоченность интересующей нас части системы также растёт куда медленнее, нежели в отсутствие самоорганизующихся структур.

Вдобавок цель общества в целом – не только стабильное выживание. Сказано в древнейшие времена: «Если я не за себя – то кто за меня? Но если я только за себя – то зачем я?» Стратегические задачи, превышающие уровень текущего выживания, необходимы для общего нашего развития. И при их решении сроки куда важнее ограничения мировой энтропии. Даже Соединённые Государства Америки – оплот рыночной идеологии – во время Великой депрессии (когда социальная стабилизация была важнее экономических мотивов), Второй мировой войны и Лунной гонки создавали целевые программы, исполняемые специально созданными управлениями, а не полагались на привычных рыночных посредников – при всём их изобилии.

Законы синергетики нужно знать и учитывать – но далеко не всегда надлежит полностью отдаваться на их волю. Самоорганизация структур, приводимых в действие хозяйственными потоками, зачастую тормозит сами потоки настолько, что угрожает параличом всей экономики. Рыночная автоматика, привлекательная возможностью работы вовсе без прямого вмешательства общества в целом или чиновников как его представителей, оборачивается вялым течением по заводям, а то и тупикам. Можно пустить реку через тысячи крошечных запруд и мельничных колёс. Но соотношение суммарной производительности к суммарным затратам общества – включая расходы на содержание персонала – оказывается куда выше, если поток проходит через несколько мощных ГЭС. Да и судоходство проще обеспечить большими шлюзами, нежели волоками через пороги. Когда есть возможность, надо строить большие структуры – и производственные, и посреднические.

Учёные активнее Солнца[9]

Майк Локвуд из Эпплтонской лаборатории Резерфорда в Великобритании и Клаус Фрёлих из Всемирного центра изучения радиации в Швейцарии, изучив данные спутниковых измерений солнечной активности, установили: последний её пик пришёлся на 1985-й год, после чего она непрерывно снижается. Из этого они сделали вывод: Солнце не могло вызвать глобальное потепление нашей планеты. Мол, если бы светило заметно влияло на климат Земли, то нынче на планете должно было бы начаться похолодание.

Сообщение донельзя актуальное. Недавно[10] обнаружено глобальное потепление Марса. Там нет ни одного из земных факторов, обычно обвиняемых в росте температуры. Раз климат Земли и Марса теплеет синхронно – приходится предположить: причина – на Солнце.

Спутниковые данные вроде опровергают эту гипотезу. Значит, причину изменения климата приходится всё же искать на Земле. А тут давно готово обвинительное заключение: глобальное потепление вызвано парниковыми – поглощающими инфракрасные (тепловые) лучи – газами.

Между тем парниковые газы реабилитированы ещё век назад. Защитил их блестящий экспериментатор – крупнейших американский физик той эпохи Робёрт Вуд. Он изготовил две одинаковых теплицы, но одну из них покрыл стеклом, поглощающим почти всю инфракрасную часть спектра, а другую – каменной солью, пропускающей тепловые лучи практически беспрепятственно. Температура в обеих теплицах всегда оставалась одинаковой.

Вуд – как всякий хороший экспериментатор – прекрасно разбирался в физической теории. Поэтому легко объяснил результат своего опыта. Видимая часть солнечного спектра – несущая куда больше энергии, чем тепловая – поглощается грунтом теплицы и прогревает его. От грунта греется воздух. Нагретый воздух легче холодного и в естественных условиях поднимается, унося тепло с собой. В теплице же крыша не позволяет ему уйти – и температура воздуха внутри теплицы оказывается куда выше, чем снаружи. Инфракрасная же часть спектра прогревает воздух в обоих случаях: если она доходит до грунта, то просто добавляется к энергии видимого света, а если поглощается стеклом, то стекло затем отдаёт заметную часть этого тепла всё тому же воздуху (но кое-что уходит наружу: парниковый эффект немного охлаждает теплицу).

В последние десятилетия популярный пример парникового эффекта – Венера. Там атмосфера – почти исключительно из углекислоты и водяного пара. Оба эти газа интенсивно поглощают инфракрасные лучи. Их – особенно углекислоту, на концентрацию которой в атмосфере человечество теоретически способно влиять – и на Земле обвиняют в потеплении. А уж на Венере, чья атмосфера больше ничего и не содержит, результат очевиден: температура у поверхности – порядка 740 К (почти 500 °C). Даже если сделать поправку на то, что Венера в полтора раза ближе к Солнцу, чем Земля, и соответственно получает вдвое больше тепла, – эффект всё равно более чем заметен: без него было бы примерно 400 К (около 130 °C).

Но тонкость тут как раз в том, что атмосфера Венеры состоит только из этих двух газов. Углекислота в два с половиной раза тяжелее водяного пара. Поэтому она скапливается в нижних слоях атмосферы, а вода – наверху. Даже нагревшись до венерианской температуры, углекислота остаётся тяжелее воды и поэтому не может подняться. Всё тепло, накопившееся от солнечных лучей, остаётся у поверхности планеты – и накаляет её.

Основные же газы земной атмосферы – азот и кислород – очень близки по плотности. Водяной пар и углекислота – лишь ничтожные примеси к ним. Поэтому состав земной атмосферы постоянен по всей высоте. Потоки нагретого воздуха легко поднимаются на десятки километров, отдавая в космос всё тепло – независимо от того, накопилось оно в газах, поглощающих инфракрасные лучи, или в поверхности, поглощающей остальной солнечный свет. Парниковый эффект на Земле заведомо невозможен по крайней мере до тех пор, пока содержание углекислоты на ней не приблизится к венерианскому – смертельному для человека. Но этого мы не достигнем, даже если сожжём всё ископаемое топливо: запасов углерода на планете не хватит.

Налицо противоречие. Глобальное потепление не может быть вызвано земными причинами. Но и активность Солнца падает. Откуда же лишнее тепло?

Как раз от Солнца. Его активность – магнитная. Вихри магнитного поля, выходя на поверхность, в некоторых местах затрудняют подвод к ней тепла изнутри, и появляются области пониженной температуры – пятна. А в других – усиливают, порождая горячие зоны – факелы. Излучение пропорционально четвёртой степени температуры. Поэтому от пятен оно существенно слабее, чем от основной поверхности. А от факелов намного больше – зато в нём больше доля коротких волн, активно поглощающихся в верхних слоях атмосферы. Поэтому, чем больше активность, чем больше вихрей в магнитном поле нашего светила, чем они разнообразнее, тем больше энергии уходит от Солнца – но тем меньше доходит до поверхности, и её температура падает. С 1985-го активность снижается – значит, Земля (и Марс) греется сильнее.

Вряд ли астрофизики этого не понимают. Значит, сознательно обманывают простых смертных, приписывая своим исследованиям смысл, прямо противоположный реальному.

Глобальное потепление – громадный бизнес. Даже не потому, что для сокращения выброса углекислоты нужны новые технологии, да ещё и замена угля нефтью, а нефти природным газом (тоже весьма парниковым). Главное – все эти замены не по карману развивающимся странам. Если они присоединятся к парниковой истерике – страны развитые надолго отсрочат появление новых конкурентов. Ради такой цели можно и научной совестью поступиться.

В судьбе мелочей не бывает[11]

В 1938-м в очередном конкурсе на винтовку для Красной Армии победил не Сергей Гаврилович Симонов, как почти все ожидали, а его давний – и куда менее удачливый – конкурент Фёдор Васильевич Токарев.

Винтовка Симонова лучше по всем статьям. На 3/4 кило легче токаревской. На 25 деталей меньше. 16 пружин вместо 22. 7 марок стали вместо 12. В производстве заметно быстрее и на пару процентов дешевле.

Вдобавок на вооружении с 1936-го уже состояла винтовка Симонова. Причём не самозарядная, какую требовал новый конкурс, а куда более сложная автоматическая. Таких произвели почти 40 тысяч за пару лет: по меркам нашей армии немного, но для технически сложной новинки – изрядный объём производства. Они неплохо показали себя в испанской войне.

Хотя недостатков хватало. Скажем, можно собрать винтовку, не вставив на место главный запирающий элемент, и выстрелить: затвор разобьёт заднюю часть ствольной коробки и скулу незадачливого стрелка. Ошибка грубая, но не уникальная. Так, американский единый пулемёт М-60, принятый на вооружение в 1957-м – через два десятилетия после АВС – можно собрать десятком неправильных способов – и во многих вариантах он сможет сделать несколько выстрелов, ломая весь свой механизм.

Но главное – опыт боевого применения АВС показал: автоматический огонь мощными винтовочными патронами из лёгкого оружия – такая нагрузка на стрелка, что попасть в цель почти невозможно. Потому и решили вернуться к самозарядке – без стрельбы очередями.

С 1943-го автоматические винтовки делают в основном под сравнительно слабые патроны. Таковы наш автомат Калашникова, американская М-16, многие менее известные – но не менее качественные – системы. С появлением недорогих оптических прицелов возродился интерес к винтовкам под патрон классической мощности. Но у них нынче компоновка другая – на штыковой бой не рассчитана, зато отдача воспринимается легче, потому и огонь кучнее.

На вооружении были и системы Токарева – но в других категориях. Он переделал первый в мире станковый пулемёт Хайрэма Стивенса Максима в ручной – их выпустили меньше 3000, а затем появился полноценный ручник Василия Алексеевича Дегтярёва. Пистолет «Тульский Токарев» хорош – но до винтовки ему далеко. А вот все варианты самозарядной винтовки, предложенные Токаревым раньше, отвергнуты по бесспорно серьёзным причинам.

Да и на новом конкурсе претензии к СВТ были заметно основательнее, чем к СВС. Против Симонова нашёлся только один важный довод. На испытаниях у СВС поломался ударник. Дефект чисто производственный. Конструктор тут, в сущности, ни при чём. Недаром на дополнительных испытаниях – весной 1939-го – никаких нареканий к винтовке не было.

Неожиданный результат конкурса породил множество легенд. Многие обвиняют Токарева в доносе на конкурента. Но тогда бы Симонова просто арестовали. Раз он остался на свободе – значит, и винтовку ни в чём не обвинили.

Автор множества фантазий на исторические темы Андрей Георгиевич Купцов сочинил мистическую версию. По его мнению, незаконный правитель укрепляется, принося в жертву своих подданных. Российские сторонники династии Романовых и германские приверженцы Хохенцоллернов[12] разоружали армии обеих республик, чтобы в предстоящей войне потери были чем побольше и кровь проложила свергнутым монархам дорогу обратно на престол. Потому и от гениальных творений Симонова отказались: мол, слишком эффективные. Купцова вообще весело читать: он искренне верит своим фантазиям, а потому противоречит самому себе чуть ли не в каждом абзаце.

Ключ к исторической загадке я нашёл в журнале «Оружие». Тот уже больше года перепечатывает знаменитый труд «Материальная часть стрелкового оружия», созданный под руководством академика Анатолия Аркадьевича Благонравова и вышедший в двух томах в 1946-м. Я в юности прочёл его от корки до корки – но поскольку тогда знал об оружии очень мало, многие важные подробности просто не оценил по достоинству. Только сейчас обратил внимание на фразу в описании автоматической винтовки Симонова: «В первых образцах ударник имел два боковых окна… Наличие двух окон в ударнике способствовало быстрому появлению трещин в этих местах и поломкам».

В винтовке Симонова поломалась деталь, с которой и в предыдущей системе были проблемы. Естественно, члены конкурсной комиссии, знакомые с предысторией этого класса оружия, решили: конструктор повторил старую ошибку. А ведь были в автоматической винтовке Симонова и другие скрытые дефекты, выявленные и устранённые лишь на основе долгого опыта. Так не лучше ли взять изделие другого конструктора? Пусть оно похуже – но в предыдущих изделиях Токарева скрытых дефектов было поменьше. От самозарядки Симонова отказались, по сути, только потому, что он сам себе испортил репутацию.

Симонов – хороший конструктор. Хотя и самоучка, не прошедший серьёзной инженерной подготовки: потому и сделал несколько ляпов. Но всё же способный быстро обучаться – хотя бы на своих ошибках. Поэтому вскоре встали на вооружение ещё два его творения – самозарядное противотанковое ружьё в 1941-м и самозарядный карабин в 1945-м (до сих пор этими карабинами вооружают почётный караул – оружие не только надёжное и лёгкое, но ещё и на редкость изящное). Провал в 1938-м остался исключением.

Восстановлению репутации Симонова изрядно поспособствовал и опыт винтовки Токарева. Уже в 1939-м её в пожарном порядке стали облегчать и с 1940-го выпускали новый вариант. В ходе войны оказалось: свежепризванных солдат не успевают обучить правильному обслуживанию СВТ – и она изрядно капризничала в бою. Добил её переход на американский винтовочный порох, поставляемый по ленд-лизу: газоотводный тракт СВТ оптимизирован под характеристики наших порохов, и на импортных барахлил.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7